Soil biodiversity and crop diversification are vital components of healthy soils and agricultural sustainability

Junling ZHANG, Marcel G. A. VAN DER HEIJDEN, Fusuo ZHANG, S. Franz BENDER

PDF(706 KB)
PDF(706 KB)
Front. Agr. Sci. Eng. ›› 2020, Vol. 7 ›› Issue (3) : 236-242. DOI: 10.15302/J-FASE-2020336
PERSPECTIVE
PERSPECTIVE

Soil biodiversity and crop diversification are vital components of healthy soils and agricultural sustainability

Author information +
History +

Cite this article

Download citation ▾
Junling ZHANG, Marcel G. A. VAN DER HEIJDEN, Fusuo ZHANG, S. Franz BENDER. Soil biodiversity and crop diversification are vital components of healthy soils and agricultural sustainability. Front. Agr. Sci. Eng., 2020, 7(3): 236‒242 https://doi.org/10.15302/J-FASE-2020336

References

[1]
Godfray H C J, Beddington J R, Crute I R, Haddad L, Lawrence D, Muir J F, Pretty J, Robinson S, Thomas S M, Toulmin C. Food security: the challenge of feeding 9 billion people. Science, 2010, 327(5967): 812–818
CrossRef Pubmed Google scholar
[2]
Field C B, Barros V R, Dokken D J, Mach K J, Mastrandrea M D, Bilir T E, Chatterjee M, Ebi K L, Estrada Y O, Genova R C, Girma B, Kissel E S, Levy A N, MacCracken S, Mastrandrea P R, White L L. IPCC Climate Change 2014: Impacts Adaptation and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge (UK) and New York (USA): Cambridge University Press, 2014, 1132
[3]
Rockström J, Williams J, Daily G, Noble A, Matthews N, Gordon L, Wetterstrand H, DeClerck F, Shah M, Steduto P, de Fraiture C, Hatibu N, Unver O, Bird J, Sibanda L, Smith J. Sustainable intensification of agriculture for human prosperity and global sustainability. Ambio, 2017, 46(1): 4–17
CrossRef Pubmed Google scholar
[4]
Foley J A, Ramankutty N, Brauman K A, Cassidy E S, Gerber J S, Johnston M, Mueller N D, O’Connell C, Ray D K, West P C, Balzer C, Bennett E M, Carpenter S R, Hill J, Monfreda C, Polasky S, Rockström J, Sheehan J, Siebert S, Tilman D, Zaks D P M. Solutions for a cultivated planet. Nature, 2011, 478(7369): 337–342
CrossRef Pubmed Google scholar
[5]
Pretty J, Benton T G, Bharucha Z P, Dicks L V, Flora C B, Godfray H C J, Goulson D, Hartley S, Lampkin N, Morris C, Pierzynski G, Prasad P V V, Reganold J, Rockström J, Smith P, Thorne P, Wratten S. Global assessment of agricultural system redesign for sustainable intensification. Nature Sustainability, 2018, 1(8): 441–446
CrossRef Google scholar
[6]
Liu X J, Xu W, Duan L, Du E Z, Pan Y P, Lu X K, Zhang L, Wu Z Y, Wang X M, Zhang Y, Shen J L, Song L, Feng Z Z, Liu X Y, Song W, Tang A H, Zhang Y Y, Zhang X Y, Collett J L Jr. Collett Jr J L, Chang Y H. Atmospheric nitrogen emission, deposition, and air quality impacts in China: an overview. Current Pollution Reports, 2017, 3(78): 65–77
CrossRef Google scholar
[7]
Yu C, Huang X, Chen H, Godfray H C J, Wright J S, Hall J W, Gong P, Ni S, Qiao S, Huang G, Xiao Y, Zhang J, Feng Z, Ju X, Ciais P, Stenseth N C, Hessen D O, Sun Z, Yu L, Cai W, Fu H, Huang X, Zhang C, Liu H, Taylor J. Managing nitrogen to restore water quality in China. Nature, 2019, 567(7749): 516–520
CrossRef Pubmed Google scholar
[8]
Guo J H, Liu X J, Zhang Y, Shen J L, Han W X, Zhang W F, Christie P, Goulding K W T, Vitousek P M, Zhang F S. Significant acidification in major Chinese croplands. Science, 2010, 327(5968): 1008–1010
CrossRef Pubmed Google scholar
[9]
Bommarco R, Kleijn D, Potts S G. Ecological intensification: harnessing ecosystem services for food security. Trends in Ecology & Evolution, 2013, 28(4): 230–238
CrossRef Pubmed Google scholar
[10]
Kleijn D, Bommarco R, Fijen T P M, Garibaldi L A, Potts S G, van der Putten W H. Ecological intensification: bridging the gap between science and practice. Trends in Ecology & Evolution, 2019, 34(2): 154–166
Pubmed
[11]
Bender S F, Wagg C, van der Heijden M G A. An underground revolution: biodiversity and soil ecological engineering for agricultural sustainability. Trends in Ecology and Evolution, 2016, 31(6): 440–452
CrossRef Pubmed Google scholar
[12]
Ng E L, Zhang J L. The search for the meaning of soil health: lessons from human health and ecosystem health. Sustainability, 2019, 11(13): 3697
CrossRef Google scholar
[13]
Bardgett R D, van der Putten W H. Belowground biodiversity and ecosystem functioning. Nature, 2014, 515(7528): 505–511
CrossRef Pubmed Google scholar
[14]
Wall D H, Nielsen U N, Six J. Soil biodiversity and human health. Nature, 2015, 528(7580): 69–76
CrossRef Pubmed Google scholar
[15]
Doran J W, Sarrantonio M, Liebig M A. Soil health and sustainability. Advances in Agronomy, 1996, 56(08): 1–54
[16]
Tsiafouli M A, Thébault E, Sgardelis S P, de Ruiter P C, van der Putten W H, Birkhofer K, Hemerik L, de Vries F T, Bardgett R D, Brady M V, Bjornlund L, Jørgensen H B, Christensen S, Hertefeldt T D, Hotes S, Gera Hol W H, Frouz J, Liiri M, Mortimer S R, Setälä H, Tzanopoulos J, Uteseny K, Pižl V, Stary J, Wolters V, Hedlund K. Intensive agriculture reduces soil biodiversity across Europe. Global Change Biology, 2015, 21(2): 973–985
CrossRef Pubmed Google scholar
[17]
Verbruggen E, Röling W F, Gamper H A, Kowalchuk G A, Verhoef H A, van der Heijden M G. Positive effects of organic farming on below-ground mutualists: large-scale comparison of mycorrhizal fungal communities in agricultural soils. New Phytologist, 2010, 186(4): 968–979
CrossRef Pubmed Google scholar
[18]
Philippot L, Spor A, Hénault C, Bru D, Bizouard F, Jones C M, Sarr A, Maron P A. Loss in microbial diversity affects nitrogen cycling in soil. The ISME Journal, 2013, 7(8): 1609–1619
CrossRef Pubmed Google scholar
[19]
Wagg C, Bender S F, Widmer F, van der Heijden M G A. Soil biodiversity and soil community composition determine ecosystem multifunctionality. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(14): 5266–5270
CrossRef Pubmed Google scholar
[20]
Schimel J P, Schaeffer S M. Microbial control over carbon cycling in soil. Frontiers in Microbiology, 2012, 3: 348
CrossRef Pubmed Google scholar
[21]
Bender S F, van der Heijden M G A. Soil biota enhance agricultural sustainability by improving crop yield, nutrient uptake and reducing nitrogen leaching losses. Journal of Applied Ecology, 2015, 52(1): 228–239
CrossRef Google scholar
[22]
Zhan J, Thrall P H, Burdon J J. Achieving sustainable plant disease management through evolutionary principles. Trends in Plant Science, 2014, 19(9): 570–575
CrossRef Pubmed Google scholar
[23]
Savary S, Bregaglio S, Willocquet L, Gustafson D, Mason D’Croz D, Sparks A, Castilla N, Djurle A, Allinne C, Sharma M, Rossi V, Amorim L, Bergamin A, Yuen J, Esker P, McRoberts N, Avelino J, Duveiller E, Koo J, Garrett K. Crop health and its global impacts on the components of food security. Food Security, 2017, 9(2): 311–327
CrossRef Google scholar
[24]
Zhu Y, Chen H, Fan J, Wang Y, Li Y, Chen J, Fan J, Yang S, Hu L, Leung H, Mew T W, Teng P S, Wang Z, Mundt C C. Genetic diversity and disease control in rice. Nature, 2000, 406(6797): 718–722
CrossRef Pubmed Google scholar
[25]
Pagán I, González-Jara P, Moreno-Letelier A, Rodelo-Urrego M, Fraile A, Piñero D, García-Arenal F. Effect of biodiversity changes in disease risk: exploring disease emergence in a plant-virus system. PLoS Pathogens, 2012, 8(7): e1002796
CrossRef Pubmed Google scholar
[26]
van Elsas J D, Chiurazzi M, Mallon C A, Elhottovā D, Krištůfek V, Salles J F. Microbial diversity determines the invasion of soil by a bacterial pathogen. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(4): 1159–1164
CrossRef Pubmed Google scholar
[27]
Fierer N. Embracing the unknown: disentangling the complexities of the soil microbiome. Nature Reviews: Microbiology, 2017, 15(10): 579–590
CrossRef Pubmed Google scholar
[28]
Raaijmakers J M, Mazzola M. ECOLOGY. Soil immune responses. Science, 2016, 352(6292): 1392–1393
CrossRef Pubmed Google scholar
[29]
Nielsen U N, Ayres E, Wall D H, Bardgett R D. Soil biodiversity and carbon cycling: a review and synthesis of studies examining diversity-function relationships. European Journal of Soil Science, 2011, 62(1): 105–116
CrossRef Google scholar
[30]
Yachi S, Loreau M. Biodiversity and ecosystem productivity in a fluctuating environment: the insurance hypothesis. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96(4): 1463–1468
CrossRef Pubmed Google scholar
[31]
Griffiths B S, Ritz K, Bardgett R D, Cook R, Christensen S, Ekelund F, Sorensen S J, Baath E, Bloem J, de Ruiter P C, Dolfing J, Nicolardot B. Ecosystem response of pasture soil communities to fumigation-induced microbial diversity reductions: an examination of the biodiversity-ecosystem function relationship. Oikos, 2000, 90(2): 279–294
CrossRef Google scholar
[32]
Morriën E, Hannula S E, Snoek L B, Helmsing N R, Zweers H, de Hollander M, Soto R L, Bouffaud M L, Buée M, Dimmers W, Duyts H, Geisen S, Girlanda M, Griffiths R I, Jørgensen H B, Jensen J, Plassart P, Redecker D, Schmelz R M, Schmidt O, Thomson B C, Tisserant E, Uroz S, Winding A, Bailey M J, Bonkowski M, Faber J H, Martin F, Lemanceau P, de Boer W, van Veen J A, van der Putten W H. Soil networks become more connected and take up more carbon as nature restoration progresses. Nature Communications, 2017, 8(1): 14349
CrossRef Pubmed Google scholar
[33]
Wagg C, Schlaeppi K, Banerjee S, Kuramae E E, van der Heijden M G A. Fungal-bacterial diversity and microbiome complexity predict ecosystem functioning. Nature Communications, 2019, 10(1): 4841
CrossRef Pubmed Google scholar
[34]
Giles M, Morley N, Baggs E M, Daniell T J. Soil nitrate reducing processes—drivers, mechanisms for spatial variation, and significance for nitrous oxide production. Frontiers in Microbiology, 2012, 3: 407
CrossRef Pubmed Google scholar
[35]
Cui Z, Zhang H, Chen X, Zhang C, Ma W, Huang C, Zhang W, Mi G, Miao Y, Li X, Gao Q, Yang J, Wang Z, Ye Y, Guo S, Lu J, Huang J, Lv S, Sun Y, Liu Y, Peng X, Ren J, Li S, Deng X, Shi X, Zhang Q, Yang Z, Tang L, Wei C, Jia L, Zhang J, He M, Tong Y, Tang Q, Zhong X, Liu Z, Cao N, Kou C, Ying H, Yin Y, Jiao X, Zhang Q, Fan M, Jiang R, Zhang F, Dou Z. Pursuing sustainable productivity with millions of smallholder farmers. Nature, 2018, 555(7696): 363–366
CrossRef Pubmed Google scholar
[36]
Pittelkow C M, Liang X, Linquist B A, van Groenigen K J, Lee J, Lundy M E, van Gestel N, Six J, Venterea R T, van Kessel C. Productivity limits and potentials of the principles of conservation agriculture. Nature, 2015, 517(7534): 365–368
CrossRef Pubmed Google scholar
[37]
Bender S F, Wagg C, van der Heijden M G A. Strategies for environmentally sound soil ecological engineering: a reply to Machado et al. Trends in Ecology and Evolution, 2017, 32(1): 10–12
CrossRef Pubmed Google scholar
[38]
Bakker M G, Manter D K, Sheflin A M, Weir T L, Vivanco J M. Harnessing the rhizosphere microbiome through plant breeding and agricultural management. Plant and Soil, 2012, 360(1–2): 1–13
CrossRef Google scholar
[39]
Panke-Buisse K, Poole A C, Goodrich J K, Ley R E, Kao-Kniffin J. Selection on soil microbiomes reveals reproducible impacts on plant function. ISME Journal, 2015, 9(4): 980–989
CrossRef Pubmed Google scholar
[40]
Singh J S, Abhilash P, Gupta V K. Agriculturally important microbes in sustainable food production. Trends in Biotechnology, 2016, 34(10): 773–775
CrossRef Google scholar
[41]
Albizua A, Williams A, Hedlund K, Pascual U. Crop rotations including ley and manure can promote ecosystem services in conventional farming systems. Applied Soil Ecology, 2015, 95: 54–61
CrossRef Google scholar
[42]
Gaudin A C M, Tolhurst T N, Ker A P, Janovicek K, Tortora C, Martin R C, Deen W. Increasing crop diversity mitigates weather variations and improves yield stability. PLoS One, 2015, 10(2): e0113261
CrossRef Pubmed Google scholar
[43]
Renard D, Tilman D. National food production stabilized by crop diversity. Nature, 2019, 571(7764): 257–260
CrossRef Pubmed Google scholar
[44]
Giller K E, Cadisch G. Future benefits from biological nitrogen fixation: An ecological approach to agriculture. Plant and Soil, 1995, 174(1-2): 255–277
CrossRef Google scholar
[45]
Vance C P. Symbiotic nitrogen fixation and phosphorus acquisition. Plant nutrition in a world of declining renewable resources. Plant Physiology, 2001, 127(2): 390–397
CrossRef Pubmed Google scholar
[46]
Wittwer R A, Dorn B, Jossi W, van der Heijden M G A. Cover crops support ecological intensification of arable cropping systems. Scientific Reports, 2017, 7(1): 41911
CrossRef Pubmed Google scholar
[47]
van Etten J, de Sousa K, Aguilar A, Barrios M, Coto A, Dell’Acqua M, Fadda C, Gebrehawaryat Y, van de Gevel J, Gupta A, Kiros A Y, Madriz B, Mathur P, Mengistu D K, Mercado L, Nurhisen Mohammed J, Paliwal A, Pè M E, Quirós C F, Rosas J C, Sharma N, Singh S S, Solanki I S, Steinke J. Crop variety management for climate adaptation supported by citizen science. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(10): 4194–4199
CrossRef Pubmed Google scholar

Acknowledgements

This work was funded by the National Natural Science Foundation of China (31872182), the National Key Research and Development Program of China (2016YFE0101100), and the Swiss National Science Foundation through the 2015-2016 BiodivERsA COFUND call (31BD30-172466 and 31003A-166079).

Compliance with ethics guidelines

Junling Zhang, Marcel G. A. van der Heijden, Fusuo Zhang, and S. Franz Bender declare that they have no conflicts of interest or financial conflicts to disclose.
This article does not contain any studies with human or animal subjects performed by any of the authors.

RIGHTS & PERMISSIONS

The Author(s) 2020. Published by Higher Education Press. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0)
AI Summary AI Mindmap
PDF(706 KB)

Accesses

Citations

Detail

Sections
Recommended

/