Genome-edited crops: how to move them from laboratory to market
Kunling CHEN, Caixia GAO
Genome-edited crops: how to move them from laboratory to market
Recent breakthroughs in CRISPR technology allow specific genome manipulation of almost all crops and have initiated a revolution in precision crop breeding. Rationally-based regulation and widespread public acceptance are needed to propel genome-edited crops from laboratory to market and to translate this innovative technology into agricultural productivity.
CRISPR/Cas / genome editing / base editing / precision breeding / regulation
[1] |
Scheben A, Wolter F, Batley J, Puchta H, Edwards D. Towards CRISPR/Cas crops—bringing together genomics and genome editing. New Phytologist, 2017, 216(3): 682–698
CrossRef
Pubmed
Google scholar
|
[2] |
Pacher M, Puchta H. From classical mutagenesis to nuclease-based breeding—directing natural DNA repair for a natural end-product. Plant Journal, 2017, 90(4): 819–833
CrossRef
Pubmed
Google scholar
|
[3] |
Prado J R, Segers G, Voelker T, Carson D, Dobert R, Phillips J, Cook K, Cornejo C, Monken J, Grapes L, Reynolds T, Martino-Catt S. Genetically engineered crops: from idea to product. Annual Review of Plant Biology, 2014, 65(1): 769–790
CrossRef
Pubmed
Google scholar
|
[4] |
Chen K, Wang Y, Zhang R, Zhang H, Gao C. CRISPR/Cas genome editing and precision plant breeding in agriculture. Annual Review of Plant Biology, 2019, 70(1): 667–697
CrossRef
Pubmed
Google scholar
|
[5] |
Li J F, Norville J E, Aach J, McCormack M, Zhang D, Bush J, Church G M, Sheen J. Multiplex and homologous recombination-mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9. Nature Biotechnology, 2013, 31(8): 688–691
CrossRef
Pubmed
Google scholar
|
[6] |
Nekrasov V, Staskawicz B, Weigel D, Jones J D, Kamoun S. Targeted mutagenesis in the model plant Nicotiana benthamiana using Cas9 RNA-guided endonuclease. Nature Biotechnology, 2013, 31(8): 691–693
CrossRef
Pubmed
Google scholar
|
[7] |
Shan Q, Wang Y, Li J, Zhang Y, Chen K, Liang Z, Zhang K, Liu J, Xi J J, Qiu J L, Gao C. Targeted genome modification of crop plants using a CRISPR-Cas system. Nature Biotechnology, 2013, 31(8): 686–688
CrossRef
Pubmed
Google scholar
|
[8] |
Yin K, Gao C, Qiu J L. Progress and prospects in plant genome editing. Nature Plants, 2017, 3(8): 17107
CrossRef
Pubmed
Google scholar
|
[9] |
Mishra R, Joshi R K, Zhao K. Base editing in crops: current advances, limitations and future implications. Plant Biotechnology Journal, 2020, 18(1): 20–31
CrossRef
Pubmed
Google scholar
|
[10] |
Anzalone A V, Randolph P B, Davis J R, Sousa A A, Koblan L W, Levy J M, Chen P J, Wilson C, Newby G A, Raguram A, Liu D R. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature, 2019, 576(7785): 149–157
CrossRef
Pubmed
Google scholar
|
[11] |
Woo J W, Kim J, Kwon S I, Corvalán C, Cho S W, Kim H, Kim S G, Kim S T, Choe S, Kim J S. DNA-free genome editing in plants with preassembled CRISPR-Cas9 ribonucleoproteins. Nature Biotechnology, 2015, 33(11): 1162–1164
CrossRef
Pubmed
Google scholar
|
[12] |
Svitashev S, Schwartz C, Lenderts B, Young J K, Mark Cigan A. Genome editing in maize directed by CRISPR-Cas9 ribonucleoprotein complexes. Nature Communications, 2016, 7(1): 13274
CrossRef
Pubmed
Google scholar
|
[13] |
Liang Z, Chen K, Li T, Zhang Y, Wang Y, Zhao Q, Liu J, Zhang H, Liu C, Ran Y, Gao C. Efficient DNA-free genome editing of bread wheat using CRISPR/Cas9 ribonucleoprotein complexes. Nature Communications, 2017, 8(1): 14261
CrossRef
Pubmed
Google scholar
|
[14] |
Wang Y, Cheng X, Shan Q, Zhang Y, Liu J, Gao C, Qiu J L. Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nature Biotechnology, 2014, 32(9): 947–951
CrossRef
Pubmed
Google scholar
|
[15] |
Xu R, Yang Y, Qin R, Li H, Qiu C, Li L, Wei P, Yang J. Rapid improvement of grain weight via highly efficient CRISPR/Cas9-mediated multiplex genome editing in rice. Journal of Genetics and Genomics, 2016, 43(8): 529–532
CrossRef
Pubmed
Google scholar
|
[16] |
Sánchez-León S, Gil-Humanes J, Ozuna C V, Giménez M J, Sousa C, Voytas D F, Barro F. Low-gluten, nontransgenic wheat engineered with CRISPR/Cas9. Plant Biotechnology Journal, 2018, 16(4): 902–910
CrossRef
Pubmed
Google scholar
|
[17] |
Zhang H, Si X, Ji X, Fan R, Liu J, Chen K, Wang D, Gao C. Genome editing of upstream open reading frames enables translational control in plants. Nature Biotechnology, 2018, 36(9): 894–898
CrossRef
Pubmed
Google scholar
|
[18] |
Oliva R, Ji C, Atienza-Grande G, Huguet-Tapia J C, Perez-Quintero A, Li T, Eom J S, Li C, Nguyen H, Liu B, Auguy F, Sciallano C, Luu V T, Dossa G S, Cunnac S, Schmidt S M, Slamet-Loedin I H, Vera Cruz C, Szurek B, Frommer W B, White F F, Yang B. Broad-spectrum resistance to bacterial blight in rice using genome editing. Nature Biotechnology, 2019, 37(11): 1344–1350
CrossRef
Pubmed
Google scholar
|
[19] |
Khanday I, Skinner D, Yang B, Mercier R, Sundaresan V. A male-expressed rice embryogenic trigger redirected for asexual propagation through seeds. Nature, 2019, 565(7737): 91–95
CrossRef
Pubmed
Google scholar
|
[20] |
Wang C, Liu Q, Shen Y, Hua Y, Wang J, Lin J, Wu M, Sun T, Cheng Z, Mercier R, Wang K. Clonal seeds from hybrid rice by simultaneous genome engineering of meiosis and fertilization genes. Nature Biotechnology, 2019, 37(3): 283–286
CrossRef
Pubmed
Google scholar
|
[21] |
Shi J, Gao H, Wang H, Lafitte H R, Archibald R L, Yang M, Hakimi S M, Mo H, Habben J E. ARGOS8 variants generated by CRISPR-Cas9 improve maize grain yield under field drought stress conditions. Plant Biotechnology Journal, 2017, 15(2): 207–216
CrossRef
Pubmed
Google scholar
|
[22] |
Sun Y, Zhang X, Wu C, He Y, Ma Y, Hou H, Guo X, Du W, Zhao Y, Xia L. Engineering herbicide-resistant rice plants through CRISPR/Cas9-mediated homologous recombination of acetolactate synthase. Molecular Plant, 2016, 9(4): 628–631
CrossRef
Pubmed
Google scholar
|
[23] |
Li J, Meng X, Zong Y, Chen K, Zhang H, Liu J, Li J, Gao C. Gene replacements and insertions in rice by intron targeting using CRISPR-Cas9. Nature Plants, 2016, 2(10): 16139
CrossRef
Pubmed
Google scholar
|
[24] |
Zhang R, Liu J, Chai Z, Chen S, Bai Y, Zong Y, Chen K, Li J, Jiang L, Gao C. Generation of herbicide tolerance traits and a new selectable marker in wheat using base editing. Nature Plants, 2019, 5(5): 480–485
CrossRef
Pubmed
Google scholar
|
[25] |
Li T, Yang X, Yu Y, Si X, Zhai X, Zhang H, Dong W, Gao C, Xu C. Domestication of wild tomato is accelerated by genome editing. Nature Biotechnology, 2018, 36(12): 1160–1163
CrossRef
Pubmed
Google scholar
|
[26] |
Lemmon Z H, Reem N T, Dalrymple J, Soyk S, Swartwood K E, Rodriguez-Leal D, Van Eck J, Lippman Z B. Rapid improvement of domestication traits in an orphan crop by genome editing. Nature Plants, 2018, 4(10): 766–770
CrossRef
Pubmed
Google scholar
|
[27] |
Zsögön A, Čermák T, Naves E R, Notini M M, Edel K H, Weinl S, Freschi L, Voytas D F, Kudla J, Peres L E P. De novo domestication of wild tomato using genome editing. Nature Biotechnology, 2018, 36(12): 1211–1216
CrossRef
Pubmed
Google scholar
|
[28] |
Ishii T. Crop gene-editing: should we bypass or apply existing GMO policy? Trends in Plant Science, 2018, 23(11): 947–950
CrossRef
Pubmed
Google scholar
|
[29] |
Ishii T, Araki M. A future scenario of the global regulatory landscape regarding genome-edited crops. GM Crops and Food: Biotechnology in Agriculture and the Food Chain, 2017, 8(1): 44–56
CrossRef
Pubmed
Google scholar
|
[30] |
Whelan A I, Lema M A. Regulatory framework for gene editing and other new breeding techniques (NBTs) in Argentina. GM Crops and Food: Biotechnology in Agriculture and the Food Chain, 2015, 6(4): 253–265
CrossRef
Pubmed
Google scholar
|
[31] |
Zannoni L. Evolving regulatory landscape for genome-edited plants. CRISPR Journal, 2019, 2(1): 3–8
CrossRef
Pubmed
Google scholar
|
[32] |
Smyth S J. Canadian regulatory perspectives on genome engineered crops. GM Crops and Food: Biotechnology in Agriculture and the Food Chain, 2017, 8(1): 35–43
CrossRef
Pubmed
Google scholar
|
[33] |
Office of the Gene Technology Regulator (OGTR) of Australian Government of Department of Health. Overview of the Gene Technology Amendment (2019 Measures No. 1) Regulations 2001. Available at OGTR website on September 1, 2019
|
[34] |
Li G, Liu Y G, Chen Y. Genome-editing technologies: the gap between application and policy. Science China Life Sciences, 2019, 62(11): 1534–1538
CrossRef
Pubmed
Google scholar
|
[35] |
United States Department of Agriculture (USDA). Secretary Perdue Issues USDA Statement on Plant Breeding Innovation. Available at USDA website on March 28, 2018
|
[36] |
Cameron J. 13 nations say it’s time to end ‘political posturing’ and embrace crop gene editing. Available at Genetic Literacy Project website on November 7, 2018
|
[37] |
Bruetschy C. The EU regulatory framework on genetically modified organisms (GMOs). Transgenic Research, 2019, 28(Suppl 2): 169–174
CrossRef
Pubmed
Google scholar
|
[38] |
Huang S, Weigel D, Beachy R N, Li J. A proposed regulatory framework for genome-edited crops. Nature Genetics, 2016, 48(2): 109–111
CrossRef
Pubmed
Google scholar
|
[39] |
Scheben A, Edwards D. Bottlenecks for genome-edited crops on the road from lab to farm. Genome Biology, 2018, 19(1): 178
CrossRef
Pubmed
Google scholar
|
/
〈 | 〉 |