Interspecies transmission and evolution of the emerging coronaviruses: perspectives from bat physiology and protein spatial structure

Baicheng HUANG, Kegong TIAN

PDF(614 KB)
PDF(614 KB)
Front. Agr. Sci. Eng. ›› 2020, Vol. 7 ›› Issue (2) : 218-226. DOI: 10.15302/J-FASE-2020324
REVIEW
REVIEW

Interspecies transmission and evolution of the emerging coronaviruses: perspectives from bat physiology and protein spatial structure

Author information +
History +

Abstract

Emergent coronaviruses (CoVs) such as SARS-CoV and MERS-CoV have posed great threats to public health worldwide over the past two decades. Currently, the emergence of SARS-CoV-2 as a pandemic causes greater public health concern. CoV diversity is due to the large size and replication mechanisms of the genomes together with having bats as their optimum natural hosts. The ecological behavior and unique immune characteristics of bats are optimal for the homologous recombination of CoVs. The relationship of spatial structural characteristics of the spike protein, a protein that is critical for recognition by host receptors, in different CoVs may provide evidence in explaining the coevolution of CoVs and their hosts. This information may help to enhance our understanding of CoV evolution and thus provide part of the basis of preparations for any future outbreaks.

Keywords

bat / coronavirus / evolution / host receptor / spike protein / transmission

Cite this article

Download citation ▾
Baicheng HUANG, Kegong TIAN. Interspecies transmission and evolution of the emerging coronaviruses: perspectives from bat physiology and protein spatial structure. Front. Agr. Sci. Eng., 2020, 7(2): 218‒226 https://doi.org/10.15302/J-FASE-2020324

References

[1]
Su S, Wong G, Shi W, Liu J, Lai A C K, Zhou J, Liu W, Bi Y, Gao G F. Epidemiology, genetic recombination, and pathogenesis of coronaviruses. Trends in Microbiology, 2016, 24(6): 490–502
CrossRef Pubmed Google scholar
[2]
Zhong N S, Zheng B J, Li Y M, Poon L L M, Xie Z H, Chan K H, Li P H, Tan S Y, Chang Q, Xie J P, Liu X Q, Xu J, Li D X, Yuen K Y, Peiris J S M, Guan Y. Epidemiology and cause of severe acute respiratory syndrome (SARS) in Guangdong, People’s Republic of China, in February, 2003. Lancet, 2003, 362(9393): 1353–1358
CrossRef Pubmed Google scholar
[3]
Zaki A M, van Boheemen S, Bestebroer T M, Osterhaus A D M E, Fouchier R A M. Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. New England Journal of Medicine, 2012, 367(19): 1814–1820
CrossRef Pubmed Google scholar
[4]
Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, Zhao X, Huang B, Shi W, Lu R, Niu P, Zhan F, Ma X, Wang D, Xu W, Wu G, Gao G F, Tan W. A novel coronavirus from patients with pneumonia in China, 2019. New England Journal of Medicine, 2020, 382(8): 727–733
CrossRef Pubmed Google scholar
[5]
Calisher C H, Childs J E, Field H E, Holmes K V, Schountz T. Bats: important reservoir hosts of emerging viruses. Clinical Microbiology Reviews, 2006, 19(3): 531–545
CrossRef Pubmed Google scholar
[6]
Ge X Y, Li J L, Yang X L, Chmura A A, Zhu G, Epstein J H, Mazet J K, Hu B, Zhang W, Peng C, Zhang Y J, Luo C M, Tan B, Wang N, Zhu Y, Crameri G, Zhang S Y, Wang L F, Daszak P, Shi Z L. Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor. Nature, 2013, 503(7477): 535–538
CrossRef Pubmed Google scholar
[7]
Leroy E M, Kumulungui B, Pourrut X, Rouquet P, Hassanin A, Yaba P, Délicat A, Paweska J T, Gonzalez J P, Swanepoel R. Fruit bats as reservoirs of Ebola virus. Nature, 2005, 438(7068): 575–576
CrossRef Pubmed Google scholar
[8]
Towner J S, Amman B R, Sealy T K, Carroll S A R, Comer J A, Kemp A, Swanepoel R, Paddock C D, Balinandi S, Khristova M L, Formenty P B H, Albarino C G, Miller D M, Reed Z D, Kayiwa J T, Mills J N, Cannon D L, Greer P W, Byaruhanga E, Farnon E C, Atimnedi P, Okware S, Katongole-Mbidde E, Downing R, Tappero J W, Zaki S R, Ksiazek T G, Nichol S T, Rollin P E. Isolation of genetically diverse Marburg viruses from Egyptian fruit bats. PLoS Pathogens, 2009, 5(7): e1000536
CrossRef Pubmed Google scholar
[9]
Cui J, Li F, Shi Z L. Origin and evolution of pathogenic coronaviruses. Nature Reviews: Microbiology, 2019, 17(3): 181–192
CrossRef Pubmed Google scholar
[10]
Zhou P, Yang X L, Wang X G, Hu B, Zhang L, Zhang W, Si H R, Zhu Y, Li B, Huang C L, Chen H D, Chen J, Luo Y, Guo H, Jiang R D, Liu M Q, Chen Y, Shen X R, Wang X, Zheng X S, Zhao K, Chen Q J, Deng F, Liu L L, Yan B, Zhan F X, Wang Y Y, Xiao G F, Shi Z L. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature, 2020, 579(7798): 270–273
CrossRef Pubmed Google scholar
[11]
Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T, Erichsen S, Schiergens T S, Herrler G, Wu N H, Nitsche A, Müller M A, Drosten C, Pöhlmann S. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell, 2020, 181: 1–10
CrossRef Pubmed Google scholar
[12]
Caì Y, Yú S Q, Postnikova E N, Mazur S, Bernbaum J G, Burk R, Zhāng T, Radoshitzky S R, Müller M A, Jordan I, Bollinger L, Hensley L E, Jahrling P B, Kuhn J H. CD26/DPP4 cell-surface expression in bat cells correlates with bat cell susceptibility to Middle East respiratory syndrome coronavirus (MERS-CoV) infection and evolution of persistent infection. PLoS One, 2014, 9(11): e112060
CrossRef Pubmed Google scholar
[13]
Woo P C Y, Lau S K P, Lam C S F, Lau C C Y, Tsang A K L, Lau J H N, Bai R, Teng J L L, Tsang C C C, Wang M, Zheng B J, Chan K H, Yuen K Y. Discovery of seven novel mammalian and avian coronaviruses in the genus deltacoronavirus supports bat coronaviruses as the gene source of alphacoronavirus and betacoronavirus and avian coronaviruses as the gene source of gammacoronavirus and deltacoronavirus. Journal of Virology, 2012, 86(7): 3995–4008
CrossRef Pubmed Google scholar
[14]
Wang L, Zhang Y, Byrum B. Complete genome sequence of porcine coronavirus HKU15 strain IN2847 from the United States. Genome Announcements, 2014, 2(2): e00291-14
CrossRef Pubmed Google scholar
[15]
Cavanagh D. Coronavirus avian infectious bronchitis virus. Veterinary Research, 2007, 38(2): 281–297
CrossRef Pubmed Google scholar
[16]
Erles K, Toomey C, Brooks H W, Brownlie J. Detection of a group 2 coronavirus in dogs with canine infectious respiratory disease. Virology, 2003, 310(2): 216–223
CrossRef Pubmed Google scholar
[17]
Pensaert M, Haelterman E O, Burnstein T. Transmissible gastroenteritis of swine: virus-intestinal cell interactions. I. Immunofluorescence, histopathology and virus production in the small intestine through the course of infection. Archiv fur die Gesamte Virusforschung, 1970, 31(3): 321–334
CrossRef Pubmed Google scholar
[18]
Pensaert M B, de Bouck P. A new coronavirus-like particle associated with diarrhea in swine. Archives of Virology, 1978, 58(3): 243–247
CrossRef Pubmed Google scholar
[19]
Zhou P, Fan H, Lan T, Yang X L, Shi W F, Zhang W, Zhu Y, Zhang Y W, Xie Q M, Mani S, Zheng X S, Li B, Li J M, Guo H, Pei G Q, An X P, Chen J W, Zhou L, Mai K J, Wu Z X, Li D, Anderson D E, Zhang L B, Li S Y, Mi Z Q, He T T, Cong F, Guo P J, Huang R, Luo Y, Liu X L, Chen J, Huang Y, Sun Q, Zhang X L, Wang Y Y, Xing S Z, Chen Y S, Sun Y, Li J, Daszak P, Wang L F, Shi Z L, Tong Y G, Ma J Y. Fatal swine acute diarrhoea syndrome caused by an HKU2-related coronavirus of bat origin. Nature, 2018, 556(7700): 255–258
CrossRef Pubmed Google scholar
[20]
Bridger J C, Caul E O, Egglestone S I. Replication of an enteric bovine coronavirus in intestinal organ cultures. Archives of Virology, 1978, 57(1): 43–51
CrossRef Pubmed Google scholar
[21]
Sharpee R L, Mebus C A, Bass E P. Characterization of a calf diarrheal coronavirus. American Journal of Veterinary Research, 1976, 37(9): 1031–1041
Pubmed
[22]
Pedersen N C, Evermann J F, McKeirnan A J, Ott R L. Pathogenicity studies of feline coronavirus isolates 79-1146 and 79-1683. American Journal of Veterinary Research, 1984, 45(12): 2580–2585
Pubmed
[23]
Binn L N, Lazar E C, Keenan K P, Huxsoll D L, Marchwicki R H, Strano A J. Recovery and characterization of a coronavirus from military dogs with diarrhea. Proceedings, Annual Meeting of the United States Animal Health Association, 1974, 78(78): 359–366
Pubmed
[24]
Wevers B A, van der Hoek L. Recently discovered human coronaviruses. Clinics in Laboratory Medicine, 2009, 29(4): 715–724
CrossRef Pubmed Google scholar
[25]
Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, Zhang L, Fan G, Xu J, Gu X, Cheng Z, Yu T, Xia J, Wei Y, Wu W, Xie X, Yin W, Li H, Liu M, Xiao Y, Gao H, Guo L, Xie J, Wang G, Jiang R, Gao Z, Jin Q, Wang J, Cao B. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet, 2020, 395(10223): 497–506
CrossRef Pubmed Google scholar
[26]
Hu B, Ge X, Wang L F, Shi Z. Bat origin of human coronaviruses. Virology Journal, 2015, 12(1): 221
CrossRef Pubmed Google scholar
[27]
Peiris J S M, Lai S T, Poon L L M, Guan Y, Yam L Y C, Lim W, Nicholls J, Yee W K S, Yan W W, Cheung M T, Cheng V C C, Chan K H, Tsang D N C, Yung R W H, Ng T K, Yuen K Y. Coronavirus as a possible cause of severe acute respiratory syndrome. Lancet, 2003, 361(9366): 1319–1325
CrossRef Pubmed Google scholar
[28]
Guan Y, Zheng B J, He Y Q, Liu X L, Zhuang Z X, Cheung C L, Luo S W, Li P H, Zhang L J, Guan Y J, Butt K M, Wong K L, Chan K W, Lim W, Shortridge K F, Yuen K Y, Peiris J S M, Poon L L M. Isolation and characterization of viruses related to the SARS coronavirus from animals in southern China. Science, 2003, 302(5643): 276–278
CrossRef Pubmed Google scholar
[29]
Li W, Shi Z, Yu M, Ren W, Smith C, Epstein J H, Wang H, Crameri G, Hu Z, Zhang H, Zhang J, McEachern J, Field H, Daszak P, Eaton B T, Zhang S, Wang L F. Bats are natural reservoirs of SARS-like coronaviruses. Science, 2005, 310(5748): 676–679
CrossRef Pubmed Google scholar
[30]
Lau S K P, Woo P C Y, Li K S M, Huang Y, Tsoi H W, Wong B H L, Wong S S Y, Leung S Y, Chan K H, Yuen K Y. Severe acute respiratory syndrome coronavirus-like virus in Chinese horseshoe bats. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(39): 14040–14045
CrossRef Pubmed Google scholar
[31]
Yu M, Stevens V, Berry J D, Crameri G, McEachern J, Tu C, Shi Z, Liang G, Weingartl H, Cardosa J, Eaton B T, Wang L F. Determination and application of immunodominant regions of SARS coronavirus spike and nucleocapsid proteins recognized by sera from different animal species. Journal of Immunological Methods, 2008, 331(1–2): 1–12
CrossRef Pubmed Google scholar
[32]
Wang N, Li S Y, Yang X L, Huang H M, Zhang Y J, Guo H, Luo C M, Miller M, Zhu G, Chmura A A, Hagan E, Zhou J H, Zhang Y Z, Wang L F, Daszak P, Shi Z L. Serological evidence of bat SARS-related coronavirus infection in humans, China. Virologica Sinica, 2018, 33(1): 104–107
CrossRef Pubmed Google scholar
[33]
Memish Z A, Mishra N, Olival K J, Fagbo S F, Kapoor V, Epstein J H, Alhakeem R, Durosinloun A, Al Asmari M, Islam A, Kapoor A, Briese T, Daszak P, Al Rabeeah A A, Lipkin W I. Middle East respiratory syndrome coronavirus in bats, Saudi Arabia. Emerging Infectious Diseases, 2013, 19(11): 1819–1823
CrossRef Pubmed Google scholar
[34]
Azhar E I, El-Kafrawy S A, Farraj S A, Hassan A M, Al-Saeed M S, Hashem A M, Madani T A. Evidence for camel-to-human transmission of MERS coronavirus. New England Journal of Medicine, 2014, 370(26): 2499–2505
CrossRef Pubmed Google scholar
[35]
Müller M A, Corman V M, Jores J, Meyer B, Younan M, Liljander A, Bosch B J, Lattwein E, Hilali M, Musa B E, Bornstein S, Drosten C. MERS coronavirus neutralizing antibodies in camels, Eastern Africa, 1983–1997. Emerging Infectious Diseases, 2014, 20(12): 2093–2095
CrossRef Pubmed Google scholar
[36]
Zohaib A, Saqib M, Athar M A, Chen J, Sial A U R, Khan S, Taj Z, Sadia H, Tahir U, Tayyab M H, Qureshi M A, Mansoor M K, Naeem M A, Hu B J, Khan B A, Ujjan I D, Li B, Zhang W, Luo Y, Zhu Y, Waruhiu C, Khan I, Yang X L, Sajid M S, Corman V M, Yan B, Shi Z L. Countrywide survey for MERS-coronavirus antibodies in dromedaries and humans in Pakistan. Virologica Sinica, 2018, 33(5): 410–417
CrossRef Pubmed Google scholar
[37]
Lam T T Y, Shum M H H, Zhu H C, Tong Y G, Ni X B, Liao Y S, Wei W, Cheung W Y M, Li W J, Li L F, Lam T T Y, Shum M H H, Zhu H C, Tong Y G, Ni X, Liao Y S, Wei W, Cheung W Y M, Li W J, Li L F, Leung G M, Holmes E C, Hu Y L, Guan Y. Identification of 2019-nCoV related coronaviruses in Malayan pangolins in southern China. bioRxiv, 2020 [Preprint] doi: 10.1101/2020.02.13.945485
[38]
Xiao K P, Zhai J Q, Feng Y Y, Zhou N, Zhang X, Zou J J, Li N, Guo Y Q, Li X B, Shen X J, Zhang Z P, Shu F F, Huang W Y, Li Y, Zhang Z D, Chen R A, Wu Y J, Peng S M, Huang M, Xie W J, Cai Q H, Hou F H, Liu Y H, Chen W, Xiao L H, Shen Y Y. Isolation and characterization of 2019-nCoV-like coronavirus from Malayan Pangolins. bioRxiv, 2020 [Preprint] doi: 10.1101/2020.02.17.951335
[39]
Liu P, Jiang J Z, Hua Y, Wang X H, Hou F H, Wan X F, Chen J, Zou J J, Chen J P. Are pangolins the intermediate host of the 2019 novel coronavirus (2019-nCoV)? bioRxiv, 2020 [Preprint] doi: 10.1101/2020.02.18.954628
[40]
Hill J E, Smith J D. Bats: A Natural History. Austin, USA: University of Texas Press, 1984
[41]
Tsagkogeorga G, Parker J, Stupka E, Cotton J A, Rossiter S J. Phylogenomic analyses elucidate the evolutionary relationships of bats. Current Biology, 2013, 23(22): 2262–2267
CrossRef Pubmed Google scholar
[42]
Eick G N, Jacobs D S, Matthee C A. A nuclear DNA phylogenetic perspective on the evolution of echolocation and historical biogeography of extant bats (Chiroptera). Molecular Biology and Evolution, 2005, 22(9): 1869–1886
CrossRef Pubmed Google scholar
[43]
Badrane H, Tordo N. Host switching in Lyssavirus history from the Chiroptera to the Carnivora orders. Journal of Virology, 2001, 75(17): 8096–8104
CrossRef Pubmed Google scholar
[44]
McColl K A, Tordo N, Aguilar Setién A A. Bat lyssavirus infections. Revue Scientifique et Technique (International Office of Epizootics), 2000, 19(1): 177–196
CrossRef Pubmed Google scholar
[45]
Zhang Y Z. Discovery of hantaviruses in bats and insectivores and the evolution of the genus Hantavirus. Virus Research, 2014, 187: 15–21
CrossRef Pubmed Google scholar
[46]
Chua K B, Koh C L, Hooi P S, Wee K F, Khong J H, Chua B H, Chan Y P, Lim M E, Lam S K. Isolation of Nipah virus from Malaysian Island flying-foxes. Microbes and Infection, 2002, 4(2): 145–151
CrossRef Pubmed Google scholar
[47]
Halpin K, Young P L, Field H E, Mackenzie J S. Isolation of Hendra virus from pteropid bats: a natural reservoir of Hendra virus. Journal of General Virology, 2000, 81(8): 1927–1932
CrossRef Pubmed Google scholar
[48]
Fleming T H, Eby P. Ecology of bat migration. In: Kunz T H, Fenton M B, eds. Bat ecology. Life history and social biology, vol 4. Chicago, USA: University of Chicago Press, 2003
[49]
Mondul A M, Krebs J W, Childs J E. Trends in national surveillance for rabies among bats in the United States (1993–2000). Journal of the American Veterinary Medical Association, 2003, 222(5): 633–639
CrossRef Pubmed Google scholar
[50]
Shankar V, Orciari L A, De Mattos C, Kuzmin I V, Pape W J, O’Shea T J, Rupprecht C E. Genetic divergence of rabies viruses from bat species of Colorado, USA. Vector Borne and Zoonotic Diseases, 2005, 5(4): 330–341
CrossRef Pubmed Google scholar
[51]
Lau S K P, Li K S M, Huang Y, Shek C T, Tse H, Wang M, Choi G K Y, Xu H, Lam C S F, Guo R, Chan K H, Zheng B J, Woo P C Y, Yuen K Y. Ecoepidemiology and complete genome comparison of different strains of severe acute respiratory syndrome-related Rhinolophus bat coronavirus in China reveal bats as a reservoir for acute, self-limiting infection that allows recombination events. Journal of Virology, 2010, 84(6): 2808–2819
CrossRef Pubmed Google scholar
[52]
Yu P, Hu B, Shi Z L, Cui J. Geographical structure of bat SARS-related coronaviruses. Infection, Genetics and Evolution, 2019, 69: 224–229
CrossRef Pubmed Google scholar
[53]
Constantine D G, Emmons R W, Woodie J D. Rabies virus in nasal mucosa of naturally infected bats. Science, 1972, 175(4027): 1255–1256
CrossRef Pubmed Google scholar
[54]
Hosken D J, Withers P C. Temperature regulation and metabolism of an Australian bat, Chalinolobus gouldii (Chiroptera: Vespertilionidae) when euthermic and torpid. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 1997, 167(1): 71–80
CrossRef Pubmed Google scholar
[55]
Sulkin S E, Allen R. Virus infections in bats. Basel, Switzerland: Karger Publishers, 1974
[56]
Subudhi S, Rapin N, Bollinger T K, Hill J E, Donaldson M E, Davy C M, Warnecke L, Turner J M, Kyle C J, Willis C K R, Misra V. A persistently infecting coronavirus in hibernating Myotis lucifugus, the North American little brown bat. Journal of General Virology, 2017, 98(9): 2297–2309
CrossRef Pubmed Google scholar
[57]
Foley N M, Hughes G M, Huang Z X, Clarke M, Jebb D, Whelan C V, Petit E J, Touzalin F, Farcy O, Jones G, Ransome R D, Kacprzyk J, O’Connell M J, Kerth G, Rebelo H, Rodrigues L, Puechmaille S J, Teeling E C. Growing old, yet staying young: the role of telomeres in bats’ exceptional longevity. Science Advances, 2018, 4(2): eaao0926
[58]
Sen G C. Viruses and interferons. Annual Review of Microbiology, 2001, 55(1): 255–281
CrossRef Pubmed Google scholar
[59]
Hiscott J, Nguyen T L A, Arguello M, Nakhaei P, Paz S. Manipulation of the nuclear factor-κB pathway and the innate immune response by viruses. Oncogene, 2006, 25(51): 6844–6867
CrossRef Pubmed Google scholar
[60]
Omatsu T, Bak E J, Ishii Y, Kyuwa S, Tohya Y, Akashi H, Yoshikawa Y. Induction and sequencing of Rousette bat interferon alpha and beta genes. Veterinary Immunology and Immunopathology, 2008, 124(1–2): 169–176
CrossRef Pubmed Google scholar
[61]
Banerjee A, Rapin N, Bollinger T, Misra V. Lack of inflammatory gene expression in bats: a unique role for a transcription repressor. Scientific Reports, 2017, 7(1): 2232
CrossRef Pubmed Google scholar
[62]
Ahn M, Anderson D E, Zhang Q, Tan C W, Lim B L, Luko K, Wen M, Chia W N, Mani S, Wang L C, Ng J H J, Sobota R M, Dutertre C A, Ginhoux F, Shi Z L, Irving A T, Wang L F. Dampened NLRP3-mediated inflammation in bats and implications for a special viral reservoir host. Nature Microbiology, 2019, 4(5): 789–799
CrossRef Pubmed Google scholar
[63]
Fuchs J, Hölzer M, Schilling M, Patzina C, Schoen A, Hoenen T, Zimmer G, Marz M, Weber F, Müller M A, Kochs G. Evolution and antiviral specificities of interferon-induced Mx proteins of bats against Ebola, influenza, and other RNA viruses. Journal of Virology, 2017, 91(15): e00361-17
CrossRef Pubmed Google scholar
[64]
De La Cruz-Rivera P C, Kanchwala M, Liang H, Kumar A, Wang L F, Xing C, Schoggins J W. The IFN response in bats displays distinctive IFN-stimulated gene expression kinetics with atypical RNASEL induction. Journal of Immunology, 2018, 200(1): 209–217
CrossRef Pubmed Google scholar
[65]
Maina J N. What it takes to fly: the structural and functional respiratory refinements in birds and bats. Journal of Experimental Biology, 2000, 203(Pt 20): 3045–3064
Pubmed
[66]
Cadet J, Wagner J R. DNA base damage by reactive oxygen species, oxidizing agents, and UV radiation. Cold Spring Harbor Perspectives in Biology, 2013, 5(2): a012559
CrossRef Pubmed Google scholar
[67]
Sheldon B C, Verhulst S. Ecological immunology: costly parasite defences and trade-offs in evolutionary ecology. Trends in Ecology & Evolution, 1996, 11(8): 317–321
CrossRef Pubmed Google scholar
[68]
Jebb D, Foley N M, Whelan C V, Touzalin F, Puechmaille S J, Teeling E C. Population level mitogenomics of long-lived bats reveals dynamic heteroplasmy and challenges the Free Radical Theory of Ageing. Scientific Reports, 2018, 8(1): 13634
CrossRef Pubmed Google scholar
[69]
Subudhi S, Rapin N, Misra V. Immune system modulation and viral persistence in bats: understanding viral spillover. Viruses, 2019, 11(2): 192
CrossRef Pubmed Google scholar
[70]
Belouzard S, Millet J K, Licitra B N, Whittaker G R. Mechanisms of coronavirus cell entry mediated by the viral spike protein. Viruses, 2012, 4(6): 1011–1033
CrossRef Pubmed Google scholar
[71]
Bosch B J, van der Zee R, de Haan C A M, Rottier P J M. The coronavirus spike protein is a class I virus fusion protein: structural and functional characterization of the fusion core complex. Journal of Virology, 2003, 77(16): 8801–8811
CrossRef Pubmed Google scholar
[72]
Li W, van Kuppeveld F J M, He Q, Rottier P J M, Bosch B J. Cellular entry of the porcine epidemic diarrhea virus. Virus Research, 2016, 226: 117–127
CrossRef Pubmed Google scholar
[73]
Kuo L, Godeke G J, Raamsman M J B, Masters P S, Rottier P J M. Retargeting of coronavirus by substitution of the spike glycoprotein ectodomain: crossing the host cell species barrier. Journal of Virology, 2000, 74(3): 1393–1406
CrossRef Pubmed Google scholar
[74]
Haijema B J, Volders H, Rottier P J M. Switching species tropism: an effective way to manipulate the feline coronavirus genome. Journal of Virology, 2003, 77(8): 4528–4538
CrossRef Pubmed Google scholar
[75]
Casais R, Dove B, Cavanagh D, Britton P. Recombinant avian infectious bronchitis virus expressing a heterologous spike gene demonstrates that the spike protein is a determinant of cell tropism. Journal of Virology, 2003, 77(16): 9084–9089
CrossRef Pubmed Google scholar
[76]
Pedersen N C. Virologic and immunologic aspects of feline infectious peritonitis virus infection. In: Lai M M C, Stohlman S A, eds. Coronaviruses. Advances in Experimental Medicine and Biology, vol 218. Boston, USA: Springer, 1987
[77]
Rottier P J, Nakamura K, Schellen P, Volders H, Haijema B J. Acquisition of macrophage tropism during the pathogenesis of feline infectious peritonitis is determined by mutations in the feline coronavirus spike protein. Journal of Virology, 2005, 79(22): 14122–14130
CrossRef Pubmed Google scholar
[78]
Li W, Moore M J, Vasilieva N, Sui J, Wong S K, Berne M A, Somasundaran M, Sullivan J L, Luzuriaga K, Greenough T C, Choe H, Farzan M. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature, 2003, 426(6965): 450–454
CrossRef Pubmed Google scholar
[79]
Li W, Zhang C, Sui J, Kuhn J H, Moore M J, Luo S, Wong S K, Huang I C, Xu K, Vasilieva N, Murakami A, He Y, Marasco W A, Guan Y, Choe H, Farzan M. Receptor and viral determinants of SARS-coronavirus adaptation to human ACE2. EMBO Journal, 2005, 24(8): 1634–1643
CrossRef Pubmed Google scholar
[80]
Ren W, Qu X, Li W, Han Z, Yu M, Zhou P, Zhang S Y, Wang L F, Deng H, Shi Z. Difference in receptor usage between severe acute respiratory syndrome (SARS) coronavirus and SARS-like coronavirus of bat origin. Journal of Virology, 2008, 82(4): 1899–1907
CrossRef Pubmed Google scholar
[81]
Wu K, Peng G, Wilken M, Geraghty R J, Li F. Mechanisms of host receptor adaptation by severe acute respiratory syndrome coronavirus. Journal of Biological Chemistry, 2012, 287(12): 8904–8911
CrossRef Pubmed Google scholar
[82]
Song H D, Tu C C, Zhang G W, Wang S Y, Zheng K, Lei L C, Chen Q X, Gao Y W, Zhou H Q, Xiang H, Zheng H J, Chern S W W, Cheng F, Pan C M, Xuan H, Chen S J, Luo H M, Zhou D H, Liu Y F, He J F, Qin P Z, Li L H, Ren Y Q, Liang W J, Yu Y D, Anderson L, Wang M, Xu R H, Wu X W, Zheng H Y, Chen J D, Liang G, Gao Y, Liao M, Fang L, Jiang L Y, Li H, Chen F, Di B, He L J, Lin J Y, Tong S, Kong X, Du L, Hao P, Tang H, Bernini A, Yu X J, Spiga O, Guo Z M, Pan H Y, He W Z, Manuguerra J C, Fontanet A, Danchin A, Niccolai N, Li Y X, Wu C I, Zhao G P. Cross-host evolution of severe acute respiratory syndrome coronavirus in palm civet and human. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(7): 2430–2435
CrossRef Pubmed Google scholar
[83]
Letko M, Miazgowicz K, McMinn R, Seifert S N, Sola I, Enjuanes L, Carmody A, van Doremalen N, Munster V. Adaptive evolution of MERS-CoV to species variation in DPP4. Cell Reports, 2018, 24(7): 1730–1737
CrossRef Pubmed Google scholar
[84]
Yuan Y, Qi J X, Peng R C, Li C R, Lu G W, Yan J H, Wang Q H, Gao G F. Molecular basis of binding between MERS-CoV and CD26s from seven bat species. Journal of Virology, 2020, 94(5): e01387-19
[85]
Peck K M, Cockrell A S, Yount B L, Scobey T, Baric R S, Heise M T. Glycosylation of mouse DPP4 plays a role in inhibiting Middle East respiratory syndrome coronavirus infection. Journal of Virology, 2015, 89(8): 4696–4699
CrossRef Pubmed Google scholar
[86]
Pitera J W. Expected distributions of root-mean-square positional deviations in proteins. Journal of Physical Chemistry B, 2014, 118(24): 6526–6530
CrossRef Pubmed Google scholar

Acknowledgements

This work was funded by Luoyang Heluo Talent Plan.

Compliance with ethics guidelines

Baicheng Huang and Kegong Tian declare that they have no conflicts of interest or financial conflicts to disclose.
This article is a review and does not contain any studies with human or animal subjects performed by either of the authors.

RIGHTS & PERMISSIONS

The Author(s) 2020. Published by Higher Education Press. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0)
AI Summary AI Mindmap
PDF(614 KB)

Accesses

Citations

Detail

Sections
Recommended

/