A brief review of genome editing technology for generating animal models
Haoyi WANG, Sen WU, Mario R. CAPECCHI, Rudolf JAENISCH
A brief review of genome editing technology for generating animal models
The recent development of genome editing technologies has given researchers unprecedented power to alter DNA sequences at chosen genomic loci, thereby generating various genetically edited animal models. This mini-review briefly summarizes the development of major genome editing tools, focusing on the application of these tools to generate animal models in multiple species.
animal model / CRISPR / genome editing / TALEN / ZFN
[1] |
Jaenisch R, Mintz B. Simian virus 40 DNA sequences in DNA of healthy adult mice derived from preimplantation blastocysts injected with viral DNA. Proceedings of the National Academy of Sciences of the United States of America, 1974, 71(4): 1250–1254
|
[2] |
Jaenisch R. Germ line integration and Mendelian transmission of the exogenous Moloney leukemia virus. Proceedings of the National Academy of Sciences of the United States of America, 1976, 73(4): 1260–1264
CrossRef
Pubmed
Google scholar
|
[3] |
Gordon J W, Scangos G A, Plotkin D J, Barbosa J A, Ruddle F H. Genetic transformation of mouse embryos by microinjection of purified DNA. Proceedings of the National Academy of Sciences of the United States of America, 1980, 77(12): 7380–7384
CrossRef
Pubmed
Google scholar
|
[4] |
Schnieke A, Harbers K, Jaenisch R. Embryonic lethal mutation in mice induced by retrovirus insertion into the α1(I) collagen gene. Nature, 1983, 304(5924): 315–320
CrossRef
Pubmed
Google scholar
|
[5] |
Smithies O, Gregg R G, Boggs S S, Koralewski M A, Kucherlapati R S. Insertion of DNA sequences into the human chromosomal β-globin locus by homologous recombination. Nature, 1985, 317(6034): 230–234
CrossRef
Pubmed
Google scholar
|
[6] |
Thomas K R, Folger K R, Capecchi M R. High frequency targeting of genes to specific sites in the mammalian genome. Cell, 1986, 44(3): 419–428
CrossRef
Pubmed
Google scholar
|
[7] |
Capecchi M R. Gene targeting in mice: functional analysis of the mammalian genome for the twenty-first century. Nature Reviews: Genetics, 2005, 6(6): 507–512
CrossRef
Pubmed
Google scholar
|
[8] |
Bradley A, Evans M, Kaufman M H, Robertson E. Formation of germ-line chimaeras from embryo-derived teratocarcinoma cell lines. Nature, 1984, 309(5965): 255–256
CrossRef
Pubmed
Google scholar
|
[9] |
Thomas K R, Capecchi M R. Site-directed mutagenesis by gene targeting in mouse embryo-derived stem cells. Cell, 1987, 51(3): 503–512
CrossRef
Pubmed
Google scholar
|
[10] |
Doetschman T, Gregg R G, Maeda N, Hooper M L, Melton D W, Thompson S, Smithies O. Targetted correction of a mutant HPRT gene in mouse embryonic stem cells. Nature, 1987, 330(6148): 576–578
CrossRef
Pubmed
Google scholar
|
[11] |
Buehr M, Meek S, Blair K, Yang J, Ure J, Silva J, McLay R, Hall J, Ying Q L, Smith A. Capture of authentic embryonic stem cells from rat blastocysts. Cell, 2008, 135(7): 1287–1298
CrossRef
Pubmed
Google scholar
|
[12] |
Rouet P, Smih F, Jasin M. Introduction of double-strand breaks into the genome of mouse cells by expression of a rare-cutting endonuclease. Molecular and Cellular Biology, 1994, 14(12): 8096–8106
CrossRef
Pubmed
Google scholar
|
[13] |
Rudin N, Sugarman E, Haber J E. Genetic and physical analysis of double-strand break repair and recombination in Saccharomyces cerevisiae. Genetics, 1989, 122(3): 519–534
Pubmed
|
[14] |
Silva G, Poirot L, Galetto R, Smith J, Montoya G, Duchateau P, Pâques F. Meganucleases and other tools for targeted genome engineering: perspectives and challenges for gene therapy. Current Gene Therapy, 2011, 11(1): 11–27
CrossRef
Pubmed
Google scholar
|
[15] |
Miller J, McLachlan A D, Klug A. Repetitive zinc-binding domains in the protein transcription factor IIIA from Xenopus oocytes. EMBO Journal, 1985, 4(6): 1609–1614
CrossRef
Pubmed
Google scholar
|
[16] |
Najafabadi H S, Mnaimneh S, Schmitges F W, Garton M, Lam K N, Yang A, Albu M, Weirauch M T, Radovani E, Kim P M, Greenblatt J, Frey B J, Hughes T R. C2H2 zinc finger proteins greatly expand the human regulatory lexicon. Nature Biotechnology, 2015, 33(5): 555–562
CrossRef
Pubmed
Google scholar
|
[17] |
Takatsuji H. Zinc-finger transcription factors in plants. Cellular and Molecular Life Sciences, 1998, 54(6): 582–596
CrossRef
Pubmed
Google scholar
|
[18] |
Urnov F D, Rebar E J, Holmes M C, Zhang H S, Gregory P D. Genome editing with engineered zinc finger nucleases. Nature Reviews: Genetics, 2010, 11(9): 636–646
CrossRef
Pubmed
Google scholar
|
[19] |
Bibikova M, Carroll D, Segal D J, Trautman J K, Smith J, Kim Y G, Chandrasegaran S. Stimulation of homologous recombination through targeted cleavage by chimeric nucleases. Molecular and Cellular Biology, 2001, 21(1): 289–297
CrossRef
Pubmed
Google scholar
|
[20] |
Bibikova M, Golic M, Golic K G, Carroll D. Targeted chromosomal cleavage and mutagenesis in Drosophila using zinc-finger nucleases. Genetics, 2002, 161(3): 1169–1175
Pubmed
|
[21] |
Bibikova M, Beumer K, Trautman J K, Carroll D. Enhancing gene targeting with designed zinc finger nucleases. Science, 2003, 300(5620): 764
CrossRef
Pubmed
Google scholar
|
[22] |
Beumer K J, Trautman J K, Bozas A, Liu J L, Rutter J, Gall J G, Carroll D. Efficient gene targeting in Drosophila by direct embryo injection with zinc-finger nucleases. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(50): 19821–19826
CrossRef
Pubmed
Google scholar
|
[23] |
Doyon Y, McCammon J M, Miller J C, Faraji F, Ngo C, Katibah G E, Amora R, Hocking T D, Zhang L, Rebar E J, Gregory P D, Urnov F D, Amacher S L. Heritable targeted gene disruption in zebrafish using designed zinc-finger nucleases. Nature Biotechnology, 2008, 26(6): 702–708
CrossRef
Pubmed
Google scholar
|
[24] |
Meng X, Noyes M B, Zhu L J, Lawson N D, Wolfe S A. Targeted gene inactivation in zebrafish using engineered zinc-finger nucleases. Nature Biotechnology, 2008, 26(6): 695–701
CrossRef
Pubmed
Google scholar
|
[25] |
Geurts A M, Cost G J, Freyvert Y, Zeitler B, Miller J C, Choi V M, Jenkins S S, Wood A, Cui X, Meng X, Vincent A, Lam S, Michalkiewicz M, Schilling R, Foeckler J, Kalloway S, Weiler H, Ménoret S, Anegon I, Davis G D, Zhang L, Rebar E J, Gregory P D, Urnov F D, Jacob H J, Buelow R. Knockout rats via embryo microinjection of zinc-finger nucleases. Science, 2009, 325(5939): 433
CrossRef
Pubmed
Google scholar
|
[26] |
Boch J, Scholze H, Schornack S, Landgraf A, Hahn S, Kay S, Lahaye T, Nickstadt A, Bonas U. Breaking the code of DNA binding specificity of TAL-type III effectors. Science, 2009, 326(5959): 1509–1512
CrossRef
Pubmed
Google scholar
|
[27] |
Moscou M J, Bogdanove A J. A simple cipher governs DNA recognition by TAL effectors. Science, 2009, 326(5959): 1501
CrossRef
Pubmed
Google scholar
|
[28] |
Miller J C, Tan S, Qiao G, Barlow K A, Wang J, Xia D F, Meng X, Paschon D E, Leung E, Hinkley S J, Dulay G P, Hua K L, Ankoudinova I, Cost G J, Urnov F D, Zhang H S, Holmes M C, Zhang L, Gregory P D, Rebar E J. A TALE nuclease architecture for efficient genome editing. Nature Biotechnology, 2011, 29(2): 143–148
CrossRef
Pubmed
Google scholar
|
[29] |
Hockemeyer D, Wang H, Kiani S, Lai C S, Gao Q, Cassady J P, Cost G J, Zhang L, Santiago Y, Miller J C, Zeitler B, Cherone J M, Meng X, Hinkley S J, Rebar E J, Gregory P D, Urnov F D, Jaenisch R. Genetic engineering of human pluripotent cells using TALE nucleases. Nature Biotechnology, 2011, 29(8): 731–734
CrossRef
Pubmed
Google scholar
|
[30] |
Tesson L, Usal C, Ménoret S, Leung E, Niles B J, Remy S, Santiago Y, Vincent A I, Meng X, Zhang L, Gregory P D, Anegon I, Cost G J. Knockout rats generated by embryo microinjection of TALENs. Nature Biotechnology, 2011, 29(8): 695–696
CrossRef
Pubmed
Google scholar
|
[31] |
Sander J D, Cade L, Khayter C, Reyon D, Peterson R T, Joung J K, Yeh J R J. Targeted gene disruption in somatic zebrafish cells using engineered TALENs. Nature Biotechnology, 2011, 29(8): 697–698
CrossRef
Pubmed
Google scholar
|
[32] |
Huang P, Xiao A, Zhou M, Zhu Z, Lin S, Zhang B. Heritable gene targeting in zebrafish using customized TALENs. Nature Biotechnology, 2011, 29(8): 699–700
CrossRef
Pubmed
Google scholar
|
[33] |
Qiu Z, Liu M, Chen Z, Shao Y, Pan H, Wei G, Yu C, Zhang L, Li X, Wang P, Fan H Y, Du B, Liu B, Liu M, Li D. High-efficiency and heritable gene targeting in mouse by transcription activator-like effector nucleases. Nucleic Acids Research, 2013, 41(11): e120
CrossRef
Pubmed
Google scholar
|
[34] |
Liu H, Chen Y, Niu Y, Zhang K, Kang Y, Ge W, Liu X, Zhao E, Wang C, Lin S, Jing B, Si C, Lin Q, Chen X, Lin H, Pu X, Wang Y, Qin B, Wang F, Wang H, Si W, Zhou J, Tan T, Li T, Ji S, Xue Z, Luo Y, Cheng L, Zhou Q, Li S, Sun Y E, Ji W. TALEN-mediated gene mutagenesis in rhesus and cynomolgus monkeys. Cell Stem Cell, 2014, 14(3): 323–328
CrossRef
Pubmed
Google scholar
|
[35] |
Remy S, Tesson L, Menoret S, Usal C, De Cian A, Thepenier V, Thinard R, Baron D, Charpentier M, Renaud J B, Buelow R, Cost G J, Giovannangeli C, Fraichard A, Concordet J P, Anegon I. Efficient gene targeting by homology-directed repair in rat zygotes using TALE nucleases. Genome Research, 2014, 24(8): 1371–1383
CrossRef
Pubmed
Google scholar
|
[36] |
Wefers B, Meyer M, Ortiz O, Hrabé de Angelis M, Hansen J, Wurst W, Kühn R. Direct production of mouse disease models by embryo microinjection of TALENs and oligodeoxynucleotides. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(10): 3782–3787
CrossRef
Pubmed
Google scholar
|
[37] |
Bedell V M, Wang Y, Campbell J M, Poshusta T L, Starker C G, Krug R G 2nd, Tan W, Penheiter S G, Ma A C, Leung A Y H, Fahrenkrug S C, Carlson D F, Voytas D F, Clark K J, Essner J J, Ekker S C. In vivo genome editing using a high-efficiency TALEN system. Nature, 2012, 491(7422): 114–118
CrossRef
Pubmed
Google scholar
|
[38] |
Wang H, Hu Y C, Markoulaki S, Welstead G G, Cheng A W, Shivalila C S, Pyntikova T, Dadon D B, Voytas D F, Bogdanove A J, Page D C, Jaenisch R. TALEN-mediated editing of the mouse Y chromosome. Nature Biotechnology, 2013, 31(6): 530–532
CrossRef
Pubmed
Google scholar
|
[39] |
Tan W, Carlson D F, Lancto C A, Garbe J R, Webster D A, Hackett P B, Fahrenkrug S C. Efficient nonmeiotic allele introgression in livestock using custom endonucleases. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(41): 16526–16531
CrossRef
Pubmed
Google scholar
|
[40] |
Carlson D F, Tan W, Lillico S G, Stverakova D, Proudfoot C, Christian M, Voytas D F, Long C R, Whitelaw C B, Fahrenkrug S C. Efficient TALEN-mediated gene knockout in livestock. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(43): 17382–17387
CrossRef
Pubmed
Google scholar
|
[41] |
Makarova K S, Wolf Y I, Alkhnbashi O S, Costa F, Shah S A, Saunders S J, Barrangou R, Brouns S J, Charpentier E, Haft D H, Horvath P, Moineau S, Mojica F J, Terns R M, Terns M P, White M F, Yakunin A F, Garrett R A, van der Oost J, Backofen R, Koonin E V. An updated evolutionary classification of CRISPR-Cas systems. Nature Reviews: Microbiology, 2015, 13(11): 722–736
CrossRef
Pubmed
Google scholar
|
[42] |
Jiang F, Doudna J A. CRISPR-Cas9 structures and mechanisms. Annual Review of Biophysics, 2017, 46(1): 505–529
CrossRef
Pubmed
Google scholar
|
[43] |
Gasiunas G, Barrangou R, Horvath P, Siksnys V. Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(39): E2579–E2586
CrossRef
Pubmed
Google scholar
|
[44] |
Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna J A, Charpentier E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science, 2012, 337(6096): 816–821
CrossRef
Pubmed
Google scholar
|
[45] |
Mali P, Yang L, Esvelt K M, Aach J, Guell M, DiCarlo J E, Norville J E, Church G M. RNA-guided human genome engineering via Cas9. Science, 2013, 339(6121): 823–826
CrossRef
Pubmed
Google scholar
|
[46] |
Cong L, Ran F A, Cox D, Lin S, Barretto R, Habib N, Hsu P D, Wu X, Jiang W, Marraffini L A, Zhang F. Multiplex genome engineering using CRISPR/Cas systems. Science, 2013, 339(6121): 819–823
CrossRef
Pubmed
Google scholar
|
[47] |
Wang H, Yang H, Shivalila C S, Dawlaty M M, Cheng A W, Zhang F, Jaenisch R. One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell, 2013, 153(4): 910–918
CrossRef
Pubmed
Google scholar
|
[48] |
Yang L, Güell M, Niu D, George H, Lesha E, Grishin D, Aach J, Shrock E, Xu W, Poci J, Cortazio R, Wilkinson R A, Fishman J A, Church G. Genome-wide inactivation of porcine endogenous retroviruses (PERVs). Science, 2015, 350(6264): 1101–1104
CrossRef
Pubmed
Google scholar
|
[49] |
Yang H, Wang H, Shivalila C S, Cheng A W, Shi L, Jaenisch R. One-step generation of mice carrying reporter and conditional alleles by CRISPR/Cas-mediated genome engineering. Cell, 2013, 154(6): 1370–1379
CrossRef
Pubmed
Google scholar
|
[50] |
Li W, Teng F, Li T, Zhou Q. Simultaneous generation and germline transmission of multiple gene mutations in rat using CRISPR-Cas systems. Nature Biotechnology, 2013, 31(8): 684–686
CrossRef
Pubmed
Google scholar
|
[51] |
Li D, Qiu Z, Shao Y, Chen Y, Guan Y, Liu M, Li Y, Gao N, Wang L, Lu X, Zhao Y, Liu M. Heritable gene targeting in the mouse and rat using a CRISPR-Cas system. Nature Biotechnology, 2013, 31(8): 681–683
CrossRef
Pubmed
Google scholar
|
[52] |
Hwang W Y, Fu Y, Reyon D, Maeder M L, Tsai S Q, Sander J D, Peterson R T, Yeh J R, Joung J K. Efficient genome editing in zebrafish using a CRISPR-Cas system. Nature Biotechnology, 2013, 31(3): 227–229
CrossRef
Pubmed
Google scholar
|
[53] |
Xiang G, Ren J, Hai T, Fu R, Yu D, Wang J, Li W, Wang H, Zhou Q. Editing porcine IGF2 regulatory element improved meat production in Chinese Bama pigs. Cellular and Molecular Life Sciences, 2018, 75(24): 4619–4628
CrossRef
Pubmed
Google scholar
|
[54] |
Niu Y, Shen B, Cui Y, Chen Y, Wang J, Wang L, Kang Y, Zhao X, Si W, Li W, Xiang A P, Zhou J, Guo X, Bi Y, Si C, Hu B, Dong G, Wang H, Zhou Z, Li T, Tan T, Pu X, Wang F, Ji S, Zhou Q, Huang X, Ji W, Sha J. Generation of gene-modified cynomolgus monkey via Cas9/RNA-mediated gene targeting in one-cell embryos. Cell, 2014, 156(4): 836–843
CrossRef
Pubmed
Google scholar
|
[55] |
Hashimoto M, Takemoto T. Electroporation enables the efficient mRNA delivery into the mouse zygotes and facilitates CRISPR/Cas9-based genome editing. Scientific Reports, 2015, 5(1): 11315
CrossRef
Pubmed
Google scholar
|
[56] |
Qin W, Dion S L, Kutny P M, Zhang Y, Cheng A W, Jillette N L, Malhotra A, Geurts A M, Chen Y G, Wang H. Efficient CRISPR/Cas9-mediated genome editing in mice by zygote electroporation of nuclease. Genetics, 2015, 200(2): 423–430
CrossRef
Pubmed
Google scholar
|
[57] |
Kaneko T, Sakuma T, Yamamoto T, Mashimo T. Simple knockout by electroporation of engineered endonucleases into intact rat embryos. Scientific Reports, 2014, 4(1): 6382
CrossRef
Pubmed
Google scholar
|
[58] |
Wang W, Kutny P M, Byers S L, Longstaff C J, DaCosta M J, Pang C, Zhang Y, Taft R A, Buaas F W, Wang H. Delivery of Cas9 protein into mouse zygotes through a series of electroporation dramatically increases the efficiency of model creation. Journal of Genetics and Genomics, 2016, 43(5): 319–327
CrossRef
Pubmed
Google scholar
|
[59] |
Takahashi G, Gurumurthy C B, Wada K, Miura H, Sato M, Ohtsuka M. GONAD: genome-editing via Oviductal Nucleic Acids Delivery system: a novel microinjection independent genome engineering method in mice. Scientific Reports, 2015, 5(1): 11406
CrossRef
Pubmed
Google scholar
|
[60] |
Wu Y, Zhou H, Fan X, Zhang Y, Zhang M, Wang Y, Xie Z, Bai M, Yin Q, Liang D, Tang W, Liao J, Zhou C, Liu W, Zhu P, Guo H, Pan H, Wu C, Shi H, Wu L, Tang F, Li J. Correction of a genetic disease by CRISPR-Cas9-mediated gene editing in mouse spermatogonial stem cells. Cell Research, 2015, 25(1): 67–79
CrossRef
Pubmed
Google scholar
|
[61] |
Wei L, Wang X, Yang S, Yuan W, Li J. Efficient generation of the mouse model with a defined point mutation through haploid cell-mediated gene editing. Journal of Genetics and Genomics, 2017, 44(9): 461–463
CrossRef
Pubmed
Google scholar
|
[62] |
Adli M. The CRISPR tool kit for genome editing and beyond. Nature Communications, 2018, 9(1): 1911
CrossRef
Pubmed
Google scholar
|
[63] |
Wang H, La Russa M, Qi L S. CRISPR/Cas9 in genome editing and beyond. Annual Review of Biochemistry, 2016, 85(1): 227–264
CrossRef
Pubmed
Google scholar
|
[64] |
Rees H A, Liu D R. Base editing: precision chemistry on the genome and transcriptome of living cells. Nature Reviews: Genetics, 2018, 19(12): 770–788
CrossRef
Pubmed
Google scholar
|
[65] |
Nishida K, Arazoe T, Yachie N, Banno S, Kakimoto M, Tabata M, Mochizuki M, Miyabe A, Araki M, Hara K Y, Shimatani Z, Kondo A. Targeted nucleotide editing using hybrid prokaryotic and vertebrate adaptive immune systems. Science, 2016, 353(6305): aaf8729
CrossRef
Pubmed
Google scholar
|
[66] |
Komor A C, Kim Y B, Packer M S, Zuris J A, Liu D R. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature, 2016, 533(7603): 420–424
CrossRef
Pubmed
Google scholar
|
[67] |
Gaudelli N M, Komor A C, Rees H A, Packer M S, Badran A H, Bryson D I, Liu D R. Programmable base editing of A·T to G·C in genomic DNA without DNA cleavage. Nature, 2017, 551(7681): 464–471
CrossRef
Pubmed
Google scholar
|
[68] |
Liu Z, Lu Z, Yang G, Huang S, Li G, Feng S, Liu Y, Li J, Yu W, Zhang Y, Chen J, Sun Q, Huang X. Efficient generation of mouse models of human diseases via ABE- and BE-mediated base editing. Nature Communications, 2018, 9(1): 2338
CrossRef
Pubmed
Google scholar
|
[69] |
Liang P, Sun H, Sun Y, Zhang X, Xie X, Zhang J, Zhang Z, Chen Y, Ding C, Xiong Y, Ma W, Liu D, Huang J, Songyang Z. Effective gene editing by high-fidelity base editor 2 in mouse zygotes. Protein & Cell, 2017, 8(8): 601–611
CrossRef
Pubmed
Google scholar
|
[70] |
Kim K, Ryu S M, Kim S T, Baek G, Kim D, Lim K, Chung E, Kim S, Kim J S. Highly efficient RNA-guided base editing in mouse embryos. Nature Biotechnology, 2017, 35(5): 435–437
CrossRef
Pubmed
Google scholar
|
[71] |
Ma Y, Yu L, Zhang X, Xin C, Huang S, Bai L, Chen W, Gao R, Li J, Pan S, Qi X, Huang X, Zhang L. Highly efficient and precise base editing by engineered dCas9-guide tRNA adenosine deaminase in rats. Cell Discovery, 2018, 4(1): 39
CrossRef
Pubmed
Google scholar
|
[72] |
Liu Z, Chen M, Chen S, Deng J, Song Y, Lai L, Li Z. Highly efficient RNA-guided base editing in rabbit. Nature Communications, 2018, 9(1): 2717
CrossRef
Pubmed
Google scholar
|
[73] |
Yang L, Zhang X, Wang L, Yin S, Zhu B, Xie L, Duan Q, Hu H, Zheng R, Wei Y, Peng L, Han H, Zhang J, Qiu W, Geng H, Siwko S, Zhang X, Liu M, Li D. Increasing targeting scope of adenosine base editors in mouse and rat embryos through fusion of TadA deaminase with Cas9 variants. Protein & Cell, 2018, 9(9): 814–819
CrossRef
Pubmed
Google scholar
|
[74] |
Anzalone A V, Randolph P B, Davis J R, Sousa A A, Koblan L W, Levy J M, Chen P J, Wilson C, Newby G A, Raguram A, Liu D R. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature, 2019, 576(7785): 149–157
CrossRef
Pubmed
Google scholar
|
[75] |
Klompe S E, Vo P L H, Halpin-Healy T S, Sternberg S H. Transposon-encoded CRISPR-Cas systems direct RNA-guided DNA integration. Nature, 2019, 571(7764): 219–225
CrossRef
Pubmed
Google scholar
|
[76] |
Strecker J, Ladha A, Gardner Z, Schmid-Burgk J L, Makarova K S, Koonin E V, Zhang F. RNA-guided DNA insertion with CRISPR-associated transposases. Science, 2019, 365(6448): 48–53
CrossRef
Pubmed
Google scholar
|
/
〈 | 〉 |