Base editing in pigs for precision breeding

Ruigao SONG, Yu WANG, Yanfang WANG, Jianguo ZHAO

PDF(435 KB)
PDF(435 KB)
Front. Agr. Sci. Eng. ›› 2020, Vol. 7 ›› Issue (2) : 161-170. DOI: 10.15302/J-FASE-2019308
REVIEW
REVIEW

Base editing in pigs for precision breeding

Author information +
History +

Abstract

Pigs are one of the most important domesticated animals and have great value in agriculture and biomedicine. Single nucleotide polymorphisms (SNPs) are a dominant type of genetic variation among individual pigs and contribute to the formation of traits. Precision single base substitution provides a strategy for accurate genetic improvement in pig production with the characterization of functional SNPs and genetic variants in pigs. Base editing has recently been developed as the latest gene-editing tool that can directly make changes in single nucleotides without introducing double-stranded DNA breaks (DSBs), providing a promising solution for precise genetic modification in large animals. This review summarizes gene-editing developments and highlights recent genetic dissection related to SNPs in major economic traits which may have the potential to be modified using SNP-editing applications. In addition, limitations and future directions of base editing in pig breeding are discussed.

Keywords

base editing / genetic improvement / pigs / single nucleotide polymorphisms

Cite this article

Download citation ▾
Ruigao SONG, Yu WANG, Yanfang WANG, Jianguo ZHAO. Base editing in pigs for precision breeding. Front. Agr. Sci. Eng., 2020, 7(2): 161‒170 https://doi.org/10.15302/J-FASE-2019308

References

[1]
Park H S, Min B, Oh S H. Research trends in outdoor pig production—a review. Asian-Australasian Journal of Animal Sciences, 2017, 30(9): 1207–1214
CrossRef Pubmed Google scholar
[2]
Groenen M A M, Archibald A L, Uenishi H, Tuggle C K, Takeuchi Y, Rothschild M F, Rogel-Gaillard C, Park C, Milan D, Megens H J, Li S, Larkin D M, Kim H, Frantz L A F, Caccamo M, Ahn H, Aken B L, Anselmo A, Anthon C, Auvil L, Badaoui B, Beattie C W, Bendixen C, Berman D, Blecha F, Blomberg J, Bolund L, Bosse M, Botti S, Bujie Z, Bystrom M, Capitanu B, Carvalho-Silva D, Chardon P, Chen C, Cheng R, Choi S H, Chow W, Clark R C, Clee C, Crooijmans R P M A, Dawson H D, Dehais P, De Sapio F, Dibbits B, Drou N, Du Z Q, Eversole K, Fadista J, Fairley S, Faraut T, Faulkner G J, Fowler K E, Fredholm M, Fritz E, Gilbert J G R, Giuffra E, Gorodkin J, Griffin D K, Harrow J L, Hayward A, Howe K, Hu Z L, Humphray S J, Hunt T, Hornshøj H, Jeon J T, Jern P, Jones M, Jurka J, Kanamori H, Kapetanovic R, Kim J, Kim J H, Kim K W, Kim T H, Larson G, Lee K, Lee K T, Leggett R, Lewin H A, Li Y, Liu W, Loveland J E, Lu Y, Lunney J K, Ma J, Madsen O, Mann K, Matthews L, McLaren S, Morozumi T, Murtaugh M P, Narayan J, Truong Nguyen D, Ni P, Oh S J, Onteru S, Panitz F, Park E W, Park H S, Pascal G, Paudel Y, Perez-Enciso M, Ramirez-Gonzalez R, Reecy J M, Rodriguez-Zas S, Rohrer G A, Rund L, Sang Y, Schachtschneider K, Schraiber J G, Schwartz J, Scobie L, Scott C, Searle S, Servin B, Southey B R, Sperber G, Stadler P, Sweedler J V, Tafer H, Thomsen B, Wali R, Wang J, Wang J, White S, Xu X, Yerle M, Zhang G, Zhang J, Zhang J, Zhao S, Rogers J, Churcher C, Schook L B. Analyses of pig genomes provide insight into porcine demography and evolution. Nature, 2012, 491(7424): 393–398
CrossRef Pubmed Google scholar
[3]
Chen K, Baxter T, Muir W M, Groenen M A, Schook L B. Genetic resources, genome mapping and evolutionary genomics of the pig (Sus scrofa). International Journal of Biological Sciences, 2007, 3(3): 153–165
CrossRef Pubmed Google scholar
[4]
Gilbert H, Billon Y, Brossard L, Faure J, Gatellier P, Gondret F, Labussière E, Lebret B, Lefaucheur L, Le Floch N, Louveau I, Merlot E, Meunier-Salaün M C, Montagne L, Mormede P, Renaudeau D, Riquet J, Rogel-Gaillard C, van Milgen J, Vincent A, Noblet J. Review: divergent selection for residual feed intake in the growing pig. Animal, 2017, 11(9): 1427–1439
CrossRef Pubmed Google scholar
[5]
Goddard M E, Hayes B J. Mapping genes for complex traits in domestic animals and their use in breeding programmes. Nature Reviews: Genetics, 2009, 10(6): 381–391
CrossRef Pubmed Google scholar
[6]
Hammer R E, Pursel V G, Rexroad C E Jr, Wall R J, Bolt D J, Ebert K M, Palmiter R D, Brinster R L. Production of transgenic rabbits, sheep and pigs by microinjection. Nature, 1985, 315(6021): 680–683
CrossRef Pubmed Google scholar
[7]
Capecchi M R. Altering the genome by homologous recombination. Science, 1989, 244(4910): 1288–1292
CrossRef Pubmed Google scholar
[8]
Wilmut I, Schnieke A E, McWhir J, Kind A J, Campbell K H S. Viable offspring derived from fetal and adult mammalian cells. Nature, 1997, 385(6619): 810–813
CrossRef Pubmed Google scholar
[9]
Yang D, Yang H, Li W, Zhao B, Ouyang Z, Liu Z, Zhao Y, Fan N, Song J, Tian J, Li F, Zhang J, Chang L, Pei D, Chen Y E, Lai L. Generation of PPARg mono-allelic knockout pigs via zinc-finger nucleases and nuclear transfer cloning. Cell Research, 2011, 21(6): 979–982
CrossRef Pubmed Google scholar
[10]
Ahmad H I, Ahmad M J, Asif A R, Adnan M, Iqbal M K, Mehmood K, Muhammad S A, Bhuiyan A A, Elokil A, Du X, Zhao C, Liu X, Xie S. A review of CRISPR-based genome editing: survival, evolution and challenges. Current Issues in Molecular Biology, 2018, 28: 47–68
CrossRef Pubmed Google scholar
[11]
Yang Y, Liu S, Cheng Y, Nie L, Lv C, Wang G, Zhang Y, Hao L. Highly efficient and rapid detection of the cleavage activity of Cas9/gRNA via a fluorescent reporter. Applied Biochemistry and Biotechnology, 2016, 180(4): 655–667
CrossRef Pubmed Google scholar
[12]
Whyte J J, Zhao J, Wells K D, Samuel M S, Whitworth K M, Walters E M, Laughlin M H, Prather R S. Gene targeting with zinc finger nucleases to produce cloned eGFP knockout pigs. Molecular Reproduction and Development, 2011, 78(1): 2
CrossRef Pubmed Google scholar
[13]
Huang X J, Zhang H X, Wang H, Xiong K, Qin L, Liu H. Disruption of the myostatin gene in porcine primary fibroblasts and embryos using zinc-finger nucleases. Molecules and Cells, 2014, 37(4): 302–306
CrossRef Pubmed Google scholar
[14]
Yin Y, Hao H, Xu X, Shen L, Wu W, Zhang J, Li Q. Generation of an MC3R knock-out pig by CRSPR/Cas9 combined with somatic cell nuclear transfer (SCNT) technology. Lipids in Health and Disease, 2019, 18(1): 122
CrossRef Pubmed Google scholar
[15]
Yang W, Li S, Li X J. A CRISPR monkey model unravels a unique function of PINK1 in primate brains. Molecular Neurodegeneration, 2019, 14(1): 17
CrossRef Pubmed Google scholar
[16]
Paquet D, Kwart D, Chen A, Sproul A, Jacob S, Teo S, Olsen K M, Gregg A, Noggle S, Tessier-Lavigne M. Efficient introduction of specific homozygous and heterozygous mutations using CRISPR/Cas9. Nature, 2016, 533(7601): 125–129
CrossRef Pubmed Google scholar
[17]
Whitworth K M, Lee K, Benne J A, Beaton B P, Spate L D, Murphy S L, Samuel M S, Mao J, O’Gorman C, Walters E M, Murphy C N, Driver J, Mileham A, McLaren D, Wells K D, Prather R S. Use of the CRISPR/Cas9 system to produce genetically engineered pigs from in vitro-derived oocytes and embryos. Biology of Reproduction, 2014, 91(3): 78
CrossRef Pubmed Google scholar
[18]
Whitworth K M, Rowland R R R, Ewen C L, Trible B R, Kerrigan M A, Cino-Ozuna A G, Samuel M S, Lightner J E, McLaren D G, Mileham A J, Wells K D, Prather R S. Gene-edited pigs are protected from porcine reproductive and respiratory syndrome virus. Nature Biotechnology, 2016, 34(1): 20–22
CrossRef Pubmed Google scholar
[19]
Xiang G, Ren J, Hai T, Fu R, Yu D, Wang J, Li W, Wang H, Zhou Q. Editing porcine IGF2 regulatory element improved meat production in Chinese Bama pigs. Cellular and Molecular Life Sciences, 2018, 75(24): 4619–4628
CrossRef Pubmed Google scholar
[20]
Zheng Q, Lin J, Huang J, Zhang H, Zhang R, Zhang X, Cao C, Hambly C, Qin G, Yao J, Song R, Jia Q, Wang X, Li Y, Zhang N, Piao Z, Ye R, Speakman J R, Wang H, Zhou Q, Wang Y, Jin W, Zhao J. Reconstitution of UCP1 using CRISPR/Cas9 in the white adipose tissue of pigs decreases fat deposition and improves thermogenic capacity. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(45): E9474–E9482
CrossRef Pubmed Google scholar
[21]
Xie Z, Pang D, Yuan H, Jiao H, Lu C, Wang K, Yang Q, Li M, Chen X, Yu T, Chen X, Dai Z, Peng Y, Tang X, Li Z, Wang T, Guo H, Li L, Tu C, Lai L, Ouyang H. Genetically modified pigs are protected from classical swine fever virus. PLoS Pathogens, 2018, 14(12): e1007193
CrossRef Pubmed Google scholar
[22]
Oladzad A, Porch T, Rosas J C, Moghaddam S M, Beaver J, Beebe S E, Burridge J, Jochua C N, Miguel M A, Miklas P N, Ratz B, White J W, Lynch J, McClean P E. Single and multi-trait GWAS identify genetic factors associated with production traits in common bean under abiotic stress environments. Genetics, 2019, 9(6): 1881–1892
Pubmed
[23]
Yang S, Li X, Li K, Fan B, Tang Z. A genome-wide scan for signatures of selection in Chinese indigenous and commercial pig breeds. BMC Genetics, 2014, 15(1): 7
CrossRef Pubmed Google scholar
[24]
Silió L, Barragán C, Fernández A I, García-Casco J, Rodríguez M C. Assessing effective population size, coancestry and inbreeding effects on litter size using the pedigree and SNP data in closed lines of the Iberian pig breed. Journal of Animal Breeding and Genetics, 2016, 133(2): 145–154
CrossRef Pubmed Google scholar
[25]
Servin B, Faraut T, Iannuccelli N, Zelenika D, Milan D. High-resolution autosomal radiation hybrid maps of the pig genome and their contribution to the genome sequence assembly. BMC Genomics, 2012, 13(1): 585
CrossRef Pubmed Google scholar
[26]
Lee K T, Lee Y M, Alam M, Choi B H, Park M R, Kim K S, Kim T H, Kim J J. A whole genome association study on meat quality traits using high density SNP chips in a cross between Korean native pig and Landrace. Asian-Australasian Journal of Animal Sciences, 2012, 25(11): 1529–1539
CrossRef Pubmed Google scholar
[27]
Ma X, Li P H, Zhu M X, He L C, Sui S P, Gao S, Su G S, Ding N S, Huang Y, Lu Z Q, Huang X G, Huang R H. Genome-wide association analysis reveals genomic regions on Chromosome 13 affecting litter size and candidate genes for uterine horn length in Erhualian pigs. Animal, 2018, 12(12): 2453–2461
CrossRef Pubmed Google scholar
[28]
Hess A S, Islam Z, Hess M K, Rowland R R R, Lunney J K, Doeschl-Wilson A, Plastow G S, Dekkers J C M. Comparison of host genetic factors influencing pig response to infection with two North American isolates of porcine reproductive and respiratory syndrome virus. Genetics, Selection, Evolution, 2016, 48(1): 43
CrossRef Pubmed Google scholar
[29]
Andersson L, Haley C S, Ellegren H, Knott S A, Johansson M, Andersson K, Andersson-Eklund L, Edfors-Lilja I, Fredholm M, Hansson I, Håkansson J. Genetic mapping of quantitative trait loci for growth and fatness in pigs. Science, 1994, 263(5154): 1771–1774
CrossRef Pubmed Google scholar
[30]
Uimari P, Sironen A, Sevån-Aimonen M L. Whole-genome SNP association analysis of reproduction traits in the Finnish Landrace pig breed. Genetics, Selection, Evolution, 2011, 43(1): 42
CrossRef Pubmed Google scholar
[31]
Sellier P, Maignel L, Bidanel J P. Genetic parameters for tissue and fatty acid composition of backfat, perirenal fat and longissimus muscle in Large White and Landrace pigs. Animal, 2010, 4(4): 497–504
CrossRef Pubmed Google scholar
[32]
Hernández-Sánchez J, Amills M, Pena R N, Mercadé A, Manunza A, Quintanilla R. Genomic architecture of heritability and genetic correlations for intramuscular and back fat contents in Duroc pigs. Journal of Animal Science, 2013, 91(2): 623–632
CrossRef Pubmed Google scholar
[33]
Ding R, Yang M, Quan J, Li S, Zhuang Z, Zhou S, Zheng E, Hong L, Li Z, Cai G, Huang W, Wu Z, Yang J. Single-locus and multi-locus genome-wide association studies for intramuscular fat in Duroc pigs. Frontiers in Genetics, 2019, 10: 619
CrossRef Pubmed Google scholar
[34]
Zappaterra M, Luise D, Zambonelli P, Mele M, Serra A, Costa L N, Davoli R. Association study between backfat fatty acid composition and SNPs in candidate genes highlights the effect of FASN polymorphism in large white pigs. Meat Science, 2019, 156: 75–84
CrossRef Pubmed Google scholar
[35]
Pena R N, Noguera J L, García-Santana M J, González E, Tejeda J F, Ros-Freixedes R, Ibáñez-Escriche N. Five genomic regions have a major impact on fat composition in Iberian pigs. Scientific Reports, 2019, 9(1): 2031
CrossRef Pubmed Google scholar
[36]
Casiró S, Velez-Irizarry D, Ernst C W, Raney N E, Bates R O, Charles M G, Steibel J P. Genome-wide association study in an F2 Duroc x Pietrain resource population for economically important meat quality and carcass traits. Journal of Animal Science, 2017, 95(2): 545–558
CrossRef Pubmed Google scholar
[37]
Van Laere A S, Nguyen M, Braunschweig M, Nezer C, Collette C, Moreau L, Archibald A L, Haley C S, Buys N, Tally M, Andersson G, Georges M, Andersson L. A regulatory mutation in IGF2 causes a major QTL effect on muscle growth in the pig. Nature, 2003, 425(6960): 832–836
CrossRef Pubmed Google scholar
[38]
Criado-Mesas L, Ballester M, Crespo-Piazuelo D, Castelló A, Benítez R, Fernández A I, Folch J M. Analysis of porcine IGF2 gene expression in adipose tissue and its effect on fatty acid composition. PLoS One, 2019, 14(8): e0220708
CrossRef Pubmed Google scholar
[39]
Ma J, Yang J, Zhou L, Ren J, Liu X, Zhang H, Yang B, Zhang Z, Ma H, Xie X, Xing Y, Guo Y, Huang L. A splice mutation in the PHKG1 gene causes high glycogen content and low meat quality in pig skeletal muscle. PLoS Genetics, 2014, 10(10): e1004710
CrossRef Pubmed Google scholar
[40]
Bruun C S, Jørgensen C B, Nielsen V H, Andersson L, Fredholm M. Evaluation of the porcine melanocortin 4 receptor (MC4R) gene as a positional candidate for a fatness QTL in a cross between Landrace and Hampshire. Animal Genetics, 2006, 37(4): 359–362
CrossRef Pubmed Google scholar
[41]
Allison C P, Johnson R C, Doumit M E. The effects of halothane sensitivity on carcass composition and meat quality in HAL-1843-normal pigs. Journal of Animal Science, 2005, 83(3): 671–678
CrossRef Pubmed Google scholar
[42]
Onteru S K, Ross J W, Rothschild M F. The role of gene discovery, QTL analyses and gene expression in reproductive traits in the pig. Society of Reproduction and Fertility Supplement, 2009, 66: 87–102
Pubmed
[43]
Pig Quantitative Trait Locus (QTL) Database (Pig QTLdb). Pig QTL/associations data summary, 2019. Available at Pig QTLdb website on February 14, 2020
[44]
Wang Y, Ding X, Tan Z, Xing K, Yang T, Pan Y, Wang Y, Sun D, Wang C. Genome-wide association study for reproductive traits in a Large White pig population. Animal Genetics, 2018, 49(2): 127–131
CrossRef Pubmed Google scholar
[45]
Bosse M, Megens H J, Frantz L A F, Madsen O, Larson G, Paudel Y, Duijvesteijn N, Harlizius B, Hagemeijer Y, Crooijmans R P M A, Groenen M A M. Genomic analysis reveals selection for Asian genes in European pigs following human-mediated introgression. Nature Communications, 2014, 5(1): 4392
CrossRef Pubmed Google scholar
[46]
Bjerre D, Madsen L B, Mark T, Cirera S, Larsen K, Jørgensen C B, Fredholm M. Potential role of the porcine superoxide dismutase 1 (SOD1) gene in pig reproduction. Animal Biotechnology, 2013, 24(1): 1–9
CrossRef Pubmed Google scholar
[47]
Boddicker N, Waide E H, Rowland R R R, Lunney J K, Garrick D J, Reecy J M, Dekkers J C M. Evidence for a major QTL associated with host response to porcine reproductive and respiratory syndrome virus challenge. Journal of Animal Science, 2012, 90(6): 1733–1746
CrossRef Pubmed Google scholar
[48]
Boddicker N J, Garrick D J, Rowland R R R, Lunney J K, Reecy J M, Dekkers J C M. Validation and further characterization of a major quantitative trait locus associated with host response to experimental infection with porcine reproductive and respiratory syndrome virus. Animal Genetics, 2014, 45(1): 48–58
CrossRef Pubmed Google scholar
[49]
Boddicker N J, Bjorkquist A, Rowland R R R, Lunney J K, Reecy J M, Dekkers J C M. Genome-wide association and genomic prediction for host response to porcine reproductive and respiratory syndrome virus infection. Genetics, Selection, Evolution, 2014, 46(1): 18
CrossRef Pubmed Google scholar
[50]
Serão N V L, Kemp R A, Mote B E, Willson P, Harding J C S, Bishop S C, Plastow G S, Dekkers J C M. Genetic and genomic basis of antibody response to porcine reproductive and respiratory syndrome (PRRS) in gilts and sows. Genetics, Selection, Evolution, 2016, 48(1): 51
CrossRef Pubmed Google scholar
[51]
Burkard C, Lillico S G, Reid E, Jackson B, Mileham A J, Ait-Ali T, Whitelaw C B, Archibald A L. Precision engineering for PRRSV resistance in pigs: Macrophages from genome edited pigs lacking CD163 SRCR5 domain are fully resistant to both PRRSV genotypes while maintaining biological function. PLoS Pathogens, 2017, 13(2): e1006206
CrossRef Pubmed Google scholar
[52]
Skallerup P, Thamsborg S M, Jørgensen C B, Mejer H, Göring H H, Archibald A L, Fredholm M, Nejsum P. Detection of a quantitative trait locus associated with resistance to infection with Trichuris suis in pigs. Veterinary Parasitology, 2015, 210(3–4): 264–269
CrossRef Pubmed Google scholar
[53]
Estellé J, Fernández A I, Pérez-Enciso M, Fernández A, Rodríguez C, Sánchez A, Noguera J L, Folch J M. A non-synonymous mutation in a conserved site of the MTTP gene is strongly associated with protein activity and fatty acid profile in pigs. Animal Genetics, 2009, 40(6): 813–820
CrossRef Pubmed Google scholar
[54]
Jungerius B J, van Laere A S, Te Pas M F, van Oost B A, Andersson L, Groenen M A. The IGF2-intron3-G3072A substitution explains a major imprinted QTL effect on backfat thickness in a Meishan x European white pig intercross. Genetical Research, 2004, 84(2): 95–101
CrossRef Pubmed Google scholar
[55]
Yin Q, Yang H W, Han X L, Fan B, Liu B. Isolation, mapping, SNP detection and association with backfat traits of the porcine CTNNBL1 and DGAT2 genes. Molecular Biology Reports, 2012, 39(4): 4485–4490
CrossRef Pubmed Google scholar
[56]
Chen Z G, Ma Z X, Zuo B, Lei M G, Xiong Y Z. Molecular characterization and association with carcass traits of the porcine SLC39A7 gene. Journal of Animal Breeding and Genetics, 2009, 126(4): 288–295
CrossRef Pubmed Google scholar
[57]
Fontanesi L, Scotti E, Buttazzoni L, Dall’Olio S, Davoli R, Russo V. A single nucleotide polymorphism in the porcine cathepsin K (CTSK) gene is associated with back fat thickness and production traits in Italian Duroc pigs. Molecular Biology Reports, 2010, 37(1): 491–495
CrossRef Pubmed Google scholar
[58]
Muráni E, Murániová M, Ponsuksili S, Schellander K, Wimmers K. Molecular characterization and evidencing of the porcine CRH gene as a functional-positional candidate for growth and body composition. Biochemical and Biophysical Research Communications, 2006, 342(2): 394–405
CrossRef Pubmed Google scholar
[59]
Ballester M, Revilla M, Puig-Oliveras A, Marchesi J A, Castelló A, Corominas J, Fernández A I, Folch J M. Analysis of the porcine APOA2 gene expression in liver, polymorphism identification and association with fatty acid composition traits. Animal Genetics, 2016, 47(5): 552–559
CrossRef Pubmed Google scholar
[60]
Fontanesi L, Bertolini F, Dall’Olio S, Buttazzoni L, Gallo M, Russo V. Analysis of association between the MUC4 g.8227C>G polymorphism and production traits in Italian heavy pigs using a selective genotyping approach. Animal Biotechnology, 2012, 23(3): 147–155
CrossRef Pubmed Google scholar
[61]
Hirose K, Takizawa T, Fukawa K, Ito T, Ueda M, Hayashi Y, Tanaka K. Association of an SNP marker in exon 24 of a class 3 phosphoinositide-3-kinase (PIK3C3) gene with production traits in Duroc pigs. Animal Science Journal, 2011, 82(1): 46–51
CrossRef Pubmed Google scholar
[62]
An S M, Hwang J H, Kwon S, Yu G E, Park D H, Kang D G, Kim T W, Park H C, Ha J, Kim C W. Effect of single nucleotide polymorphisms in IGFBP2 and IGFBP3 genes on litter size traits in Berkshire pigs. Animal Biotechnology, 2018, 29(4): 301–308
CrossRef Pubmed Google scholar
[63]
Gunawan A, Cinar M U, Uddin M J, Kaewmala K, Tesfaye D, Phatsara C, Tholen E, Looft C, Schellander K. Investigation on association and expression of ESR2 as a candidate gene for boar sperm quality and fertility. Reproduction in Domestic Animals, 2012, 47(5): 782–790
CrossRef Pubmed Google scholar
[64]
Kaewmala K, Uddin M J, Cinar M U, Große-Brinkhaus C, Jonas E, Tesfaye D, Phatsara C, Tholen E, Looft C, Schellander K. Investigation into association and expression of PLCz and COX-2 as candidate genes for boar sperm quality and fertility. Reproduction in Domestic Animals, 2012, 47(2): 213–223
CrossRef Pubmed Google scholar
[65]
Kaewmala K, Uddin M J, Cinar M U, Grosse-Brinkhaus C, Jonas E, Tesfaye D, Phatsara C, Tholen E, Looft C, Schellander K. Association study and expression analysis of CD9 as candidate gene for boar sperm quality and fertility traits. Animal Reproduction Science, 2011, 125(1–4): 170–179
CrossRef Pubmed Google scholar
[66]
Wang S J, Liu W J, Sargent C A, Zhao S H, Liu H B, Liu X D, Wang C, Hua G H, Yang L G, Affara N A, Zhang S J. Effects of the polymorphisms of Mx1, BAT2 and CXCL12 genes on immunological traits in pigs. Molecular Biology Reports, 2012, 39(3): 2417–2427
CrossRef Pubmed Google scholar
[67]
Sun N, Liu D, Chen H, Liu X, Meng F, Zhang X, Chen H, Xie S, Li X, Wu Z. Localization, expression change in PRRSV infection and association analysis of the porcine TAP1 gene. International Journal of Biological Sciences, 2012, 8(1): 49–58
CrossRef Pubmed Google scholar
[68]
Sang Y, Ross C R, Rowland R R, Blecha F. Toll-like receptor 3 activation decreases porcine arterivirus infection. Viral Immunology, 2008, 21(3): 303–314
CrossRef Pubmed Google scholar
[69]
Brock A J, Matika O, Wilson A D, Anderson J, Morin A C, Finlayson H A, Reiner G, Willems H, Bishop S C, Archibald A L, Ait-Ali T. An intronic polymorphism in the porcine IRF7 gene is associated with better health and immunity of the host during Sarcocystis infection, and affects interferon signalling. Animal Genetics, 2011, 42(4): 386–394
CrossRef Pubmed Google scholar
[70]
Liu Y, Luo Y R, Lu X, Qiu X T, Zhou J P, Gong Y F, Ding X D, Zhang Q. Association analysis of polymorphisms of porcine LMP2 and LMP7 genes with haematological traits. Molecular Biology Reports, 2011, 38(7): 4455–4460
CrossRef Pubmed Google scholar
[71]
Wu Z C, Liu Y, Zhao Q H, Zhu S P, Huo Y J, Zhu G Q, Wu S L, Bao W B. Association between polymorphisms in exons 4 and 10 of the BPI gene and immune indices in Sutai pigs. Genetics and Molecular Research, 2015, 14(2): 6048–6058
CrossRef Pubmed Google scholar
[72]
Kich J D, Uthe J J, Benavides M V, Cantão M E, Zanella R, Tuggle C K, Bearson S M. TLR4 single nucleotide polymorphisms (SNPs) associated with Salmonella shedding in pigs. Journal of Applied Genetics, 2014, 55(2): 267–271
CrossRef Pubmed Google scholar
[73]
Wu X, Wang Y, Sun Y. Molecular characterization, expression analysis and association study with immune traits of porcine PSMB6 gene. Molecular Biology Reports, 2011, 38(8): 5465–5470
CrossRef Pubmed Google scholar
[74]
Huang J, Ma G J, Sun N N, Wu Z F, Li X Y, Zhao S H. BCL10 as a new candidate gene for immune response in pigs: cloning, expression and association analysis. International Journal of Immunogenetics, 2010, 37(2): 103–110
CrossRef Pubmed Google scholar
[75]
Butler J R, Santos R M N, Martens G R, Ladowski J M, Wang Z Y, Li P, Tector M, Tector A J. Efficient generation of targeted and controlled mutational events in porcine cells using nuclease-directed homologous recombination. Journal of Surgical Research, 2017, 212: 238–245
CrossRef Pubmed Google scholar
[76]
Tao L, Yang M, Wang X, Zhang Z, Wu Z, Tian J, An L, Wang S. Efficient biallelic mutation in porcine parthenotes using a CRISPR-Cas9 system. Biochemical and Biophysical Research Communications, 2016, 476(4): 225–229
CrossRef Pubmed Google scholar
[77]
Yue C, Bai W L, Zheng Y Y, Hui T Y, Sun J M, Guo D, Guo S L, Wang Z Y. Correlation analysis of candidate gene SNP for high-yield in Liaoning cashmere goats with litter size and cashmere performance. Animal Biotechnology, 2019 [Published Online] doi: 10.1080/10495398.2019.1652188
Pubmed
[78]
Chapman J R, Taylor M R G, Boulton S J. Playing the end game: DNA double-strand break repair pathway choice. Molecular Cell, 2012, 47(4): 497–510
CrossRef Pubmed Google scholar
[79]
Cox D B T, Platt R J, Zhang F. Therapeutic genome editing: prospects and challenges. Nature Medicine, 2015, 21(2): 121–131
CrossRef Pubmed Google scholar
[80]
Tsai S Q, Zheng Z, Nguyen N T, Liebers M, Topkar V V, Thapar V, Wyvekens N, Khayter C, Iafrate A J, Le L P, Aryee M J, Joung J K. GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases. Nature Biotechnology, 2015, 33(2): 187–197
CrossRef Pubmed Google scholar
[81]
Shin H Y, Wang C, Lee H K, Yoo K H, Zeng X, Kuhns T, Yang C M, Mohr T, Liu C, Hennighausen L. CRISPR/Cas9 targeting events cause complex deletions and insertions at 17 sites in the mouse genome. Nature Communications, 2017, 8(1): 15464
CrossRef Pubmed Google scholar
[82]
Kosicki M, Tomberg K, Bradley A. Repair of double-strand breaks induced by CRISPR-Cas9 leads to large deletions and complex rearrangements. Nature Biotechnology, 2018, 36(8): 765–771
CrossRef Pubmed Google scholar
[83]
Gehrke J M, Cervantes O, Clement M K, Wu Y, Zeng J, Bauer D E, Pinello L, Joung J K. An APOBEC3A-Cas9 base editor with minimized bystander and off-target activities. Nature Biotechnology, 2018, 36(10): 977–982
CrossRef Pubmed Google scholar
[84]
Rees H A, Liu D R. Base editing: precision chemistry on the genome and transcriptome of living cells. Nature Reviews: Genetics, 2018, 19(12): 770–788
CrossRef Pubmed Google scholar
[85]
Dandage R, Després P C, Yachie N, Landry C R. beditor: a computational workflow for designing libraries of guide RNAs for CRISPR-mediated base editing. Genetics, 2019, 212(2): 377–385
CrossRef Pubmed Google scholar
[86]
Komor A C, Kim Y B, Packer M S, Zuris J A, Liu D R. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature, 2016, 533(7603): 420–424
CrossRef Pubmed Google scholar
[87]
Komor A C, Zhao K T, Packer M S, Gaudelli N M, Waterbury A L, Koblan L W, Kim Y B, Badran A H, Liu D R. Improved base excision repair inhibition and bacteriophage Mu Gam protein yields C:G-to-T:A base editors with higher efficiency and product purity. Science Advances, 2017, 3(8): eaao4774
[88]
Zong Y, Song Q, Li C, Jin S, Zhang D, Wang Y, Qiu J L, Gao C. Efficient C-to-T base editing in plants using a fusion of nCas9 and human APOBEC3A. Nature Biotechnology, 2018, 36(10): 950–953
CrossRef Pubmed Google scholar
[89]
Koblan L W, Doman J L, Wilson C, Levy J M, Tay T, Newby G A, Maianti J P, Raguram A, Liu D R. Improving cytidine and adenine base editors by expression optimization and ancestral reconstruction. Nature Biotechnology, 2018, 36(9): 843–846
CrossRef Pubmed Google scholar
[90]
Kim Y B, Komor A C, Levy J M, Packer M S, Zhao K T, Liu D R. Increasing the genome-targeting scope and precision of base editing with engineered Cas9-cytidine deaminase fusions. Nature Biotechnology, 2017, 35(4): 371–376
CrossRef Pubmed Google scholar
[91]
Hua K, Tao X, Zhu J K. Expanding the base editing scope in rice by using Cas9 variants. Plant Biotechnology Journal, 2019, 17(2): 499–504
CrossRef Pubmed Google scholar
[92]
Hu J H, Miller S M, Geurts M H, Tang W, Chen L, Sun N, Zeina C M, Gao X, Rees H A, Lin Z, Liu D R. Evolved Cas9 variants with broad PAM compatibility and high DNA specificity. Nature, 2018, 556(7699): 57–63
CrossRef Pubmed Google scholar
[93]
Nishimasu H, Shi X, Ishiguro S, Gao L, Hirano S, Okazaki S, Noda T, Abudayyeh O O, Gootenberg J S, Mori H, Oura S, Holmes B, Tanaka M, Seki M, Hirano H, Aburatani H, Ishitani R, Ikawa M, Yachie N, Zhang F, Nureki O. Engineered CRISPR-Cas9 nuclease with expanded targeting space. Science, 2018, 361(6408): 1259–1262
CrossRef Pubmed Google scholar
[94]
Gaudelli N M, Komor A C, Rees H A, Packer M S, Badran A H, Bryson D I, Liu D R. Programmable base editing of A·T to G·C in genomic DNA without DNA cleavage. Nature, 2017, 551(7681): 464–471
CrossRef Pubmed Google scholar
[95]
Huang T P, Zhao K T, Miller S M, Gaudelli N M, Oakes B L, Fellmann C, Savage D F, Liu D R. Circularly permuted and PAM-modified Cas9 variants broaden the targeting scope of base editors. Nature Biotechnology, 2019, 37(6): 626–631
CrossRef Pubmed Google scholar
[96]
Hua K, Tao X, Han P, Wang R, Zhu J K. Genome engineering in rice using Cas9 variants that recognize NG PAM sequences. Molecular Plant, 2019, 12(7): 1003–1014
CrossRef Pubmed Google scholar
[97]
Chatterjee P, Jakimo N, Jacobson J M. Minimal PAM specificity of a highly similar SpCas9 ortholog. Science Advcances, 2018, 4(10): eaau0766
[98]
Anzalone A V, Randolph P B, Davis J R, Sousa A A, Koblan L W, Levy J M, Chen P J, Wilson C, Newby G A, Raguram A, Liu D R. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature, 2019, 576(7785): 149–157
CrossRef Pubmed Google scholar
[99]
Zhang R, Wang Y, Chen L, Wang R, Li C, Li X, Fang B, Ren X, Ruan M, Liu J, Xiong Q, Zhang L, Jin Y, Zhang M, Liu X, Li L, Chen Q, Pan D, Li R, Cooper D K C, Yang H, Dai Y. Reducing immunoreactivity of porcine bioprosthetic heart valves by genetically-deleting three major glycan antigens, GGTA1/β4GalNT2/CMAH. Acta Biomaterialia, 2018, 72: 196–205
CrossRef Pubmed Google scholar
[100]
Yuan H M, Yu T T, Wang L Y, Yang L, Zhang Y Z, Liu H, Li M J, Tang X C, Liu Z Q, Li Z J, Lu C, Chen X, Pang D X, Ouyang H S. Efficient base editing by RNA-guided cytidine base editors (CBEs) in pigs. Cellular and Molecular Life Sciences, 2019 [Published Online] doi: 10.1007/s00018-019-03205-2
Pubmed
[101]
Xie J, Ge W, Li N, Liu Q, Chen F, Yang X, Huang X, Ouyang Z, Zhang Q, Zhao Y, Liu Z, Gou S, Wu H, Lai C, Fan N, Jin Q, Shi H, Liang Y, Lan T, Quan L, Li X, Wang K, Lai L. Efficient base editing for multiple genes and loci in pigs using base editors. Nature Communications, 2019, 10(1): 2852
CrossRef Pubmed Google scholar
[102]
Li Z, Duan X, An X, Feng T, Li P, Li L, Liu J, Wu P, Pan D, Du X, Wu S. Efficient RNA-guided base editing for disease modeling in pigs. Cell Discovery, 2018, 4(1): 64
CrossRef Pubmed Google scholar
[103]
Molla K A, Yang Y. CRISPR/Cas-mediated base editing: technical considerations and practical applications. Trends in Biotechnology, 2019, 37(10): 1121–1142
CrossRef Pubmed Google scholar
[104]
Zuo E, Sun Y, Wei W, Yuan T, Ying W, Sun H, Yuan L, Steinmetz L M, Li Y, Yang H. Cytosine base editor generates substantial off-target single-nucleotide variants in mouse embryos. Science, 2019, 364(6437): 289–292
CrossRef Pubmed Google scholar

Acknowledgements

This work was supported by the National Natural Science Foundation of China (81671274, 31925036, 31272440, and 31801031), the National Transgenic Project of China (2016ZX08009003-006-007), and the Elite Youth Program of the Chinese Academy of Agricultural Sciences (ASTIP-IAS05).

Compliance with ethics guidelines

Ruigao Song, Yu Wang, Yanfang Wang, and Jianguo Zhao declare that they have no conflicts of interest or financial conflicts to disclose.
This article is a review and does not contain any studies with human or animal subjects performed by any of the authors.

RIGHTS & PERMISSIONS

The Author(s) 2020. Published by Higher Education Press. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0)
AI Summary AI Mindmap
PDF(435 KB)

Accesses

Citations

Detail

Sections
Recommended

/