Regulatory issues for genetically modified animals
Perry Bradbury HACKETT
Regulatory issues for genetically modified animals
Precision genetics and breeding have the potential to meet the agricultural needs and goals of the world in the 21st century. These needs include increasing the efficiency of production of animals and improving their products with minimal impact on the environment. The USA is the major innovator in genomic science and the acknowledged leader in formulating policies to regulate genetic applications in medicine and agriculture. However, governments worldwide have been exceedingly reluctant to support the introduction of genetically modified (GM) animals into agriculture. Regulatory policies have stagnated due to legal guidelines that could not anticipate the needs and solutions that are evident today. This must change if we are to maintain planetary integrity. I propose a new, market-based regulatory model for GM livestock that has both a strong scientific foundation and has worked for 10000 years. The model is similar to that for information technology in which specific algorithms drive computer and cell phone applications. Genome engineers write genetic algorithms that drive the traits in biological organisms. Accordingly, GM products should be viewed in terms of their use and public benefit rather than by limitations to the genetic programing coming from a few highly vocal groups. Genetic algorithms (Genapps) of the 21st century will include not only introduction of synthetic genes, but also complete natural and synthetic biochemical pathways to produce agricultural products that are maximally efficient, healthy to humans and animals, and sustainable in an era of changing climates while avoiding environmental degradation.
algorithms / editing / FDA / GMO / recombinant DNA / USDA
[1] |
Borlaug N. Feeding a hungry world. Science, 2007, 318(5849): 359
CrossRef
Pubmed
Google scholar
|
[2] |
Ray D K, Mueller N D, West P C, Foley J A. Yield trends are insufficient to double global crop production by 2050. PLoS One, 2013, 8(6): e66428
CrossRef
Pubmed
Google scholar
|
[3] |
Pingali P L. Green Revolution: impacts, limits, and the path ahead. Proceedings of the National Academy of Sciences of the United States, 2012, 109(31): 12302–12308
CrossRef
Pubmed
Google scholar
|
[4] |
Borlaug N. Blasts GMO Doomsayers. Available at AgriBioWorld website on February 20, 2020
|
[5] |
Food and Agriculture Organization of the United Nations (FAO). How to Feed the World in 2050. Rome: FAO, 2009. Available at FAO website on February 20, 2020
|
[6] |
United Nations. Food Production Must Double by 2050 to Meet Demand from World’s Growing Population, Innovative Strategies Needed to Combat Hunger, Experts Tell Second Committee, 2009. Available at United Nations website on February 20, 2020
|
[7] |
The National Academies Press (NAS). Science breakthroughs to advance food and agricultural research by 2030. Washington, DC: The National Academies Press, 2019. Available at NAP website on February 20, 2020
|
[8] |
Godfray H C J, Beddington J R, Crute I R, Haddad L, Lawrence D, Muir J F, Pretty J, Robinson S, Thomas S M, Toulmin C. Food security: the challenge of feeding 9 billion people. Science, 2010, 327(5967): 812–818
CrossRef
Pubmed
Google scholar
|
[9] |
Hoekstra A Y, Wiedmann T O. Humanity’s unsustainable environmental footprint. Science, 2014, 344(6188): 1114–1117
CrossRef
Pubmed
Google scholar
|
[10] |
Bailey-Serres J, Parker J E, Ainsworth E A, Oldroyd G E D, Schroeder J I. Genetic strategies for improving crop yields. Nature, 2019, 575(7781): 109–118
CrossRef
Pubmed
Google scholar
|
[11] |
Kaplan J O, Krumhardt K M, Ellis E C, Ruddiman W F, Lemmen C, Goldewijk K K. Holocene carbon emissions: a result of anthropogenic land cover change. Holocene, 2011, 21(5): 775–791
CrossRef
Google scholar
|
[12] |
Graham-Rowe D. Agriculture: beyond food versus fuel. Nature, 2011, 474(7352): S6–S8
CrossRef
Pubmed
Google scholar
|
[13] |
Conway G, Toenniessen G. Feeding the world in the twenty-first century. Nature, 1999, 402(S6761): C55–C58
CrossRef
Pubmed
Google scholar
|
[14] |
Rands M R W, Adams W M, Bennun L, Butchart S H M, Clements A, Coomes D, Entwistle A, Hodge I, Kapos V, Scharlemann J P W, Sutherland W J, Vira B. Biodiversity conservation: challenges beyond 2010. Science, 2010, 329(5997): 1298–1303
CrossRef
Pubmed
Google scholar
|
[15] |
Büntgen U, Tegel W, Nicolussi K, McCormick M, Frank D, Trouet V, Kaplan J O, Herzig F, Heussner K U, Wanner H, Luterbacher J, Esper J. 2500 years of European climate variability and human susceptibility. Science, 2011, 331(6017): 578–582
CrossRef
Pubmed
Google scholar
|
[16] |
Marcott S A, Shakun J D, Clark P U, Mix A C. A reconstruction of regional and global temperature for the past 11300 years. Science, 2013, 339(6124): 1198–1201
CrossRef
Pubmed
Google scholar
|
[17] |
Eshed Y, Lippman Z B. Revolutions in agriculture chart a course for targeted breeding of old and new crops. Science, 2019, 366(6466): eaax0025
|
[18] |
Phelps L N, Kaplan J O. Land use for animal production in global change studies: defining and characterizing a framework. Global Change Biology, 2017, 23(11): 4457–4471
CrossRef
Pubmed
Google scholar
|
[19] |
Sachs J, Remans R, Smukler S, Winowiecki L, Andelman S J, Cassman K G, Castle D, DeFries R, Denning G, Fanzo J, Jackson L E, Leemans R, Lehmann J, Milder J C, Naeem S, Nziguheba G, Palm C A, Pingali P L, Reganold J P, Richter D D, Scherr S J, Sircely J, Sullivan C, Tomich T P, Sanchez P A. Monitoring the world’s agriculture. Nature, 2010, 466(7306): 558–560
CrossRef
Pubmed
Google scholar
|
[20] |
Anastácio R, Pereira M J. From the challenges imposed by climate change to the preservation of ecosystem processes and services. Natural Resources, 2017, 8(12): 788–807
CrossRef
Google scholar
|
[21] |
Kim H, Kim J S. A guide to genome engineering with programmable nucleases. Nature Reviews: Genetics, 2014, 15(5): 321–334
CrossRef
Pubmed
Google scholar
|
[22] |
Anzalone A V, Randolph P B, Davis J R, Sousa A A, Koblan L W, Levy J M, Chen P J, Wilson C, Newby G A, Raguram A, Liu D R. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature, 2019, 576(7785): 149–157
CrossRef
Pubmed
Google scholar
|
[23] |
Tizard M, Hallerman E, Fahrenkrug S, Newell-McGloughlin M, Gibson J, de Loos F, Wagner S, Laible G, Han J Y, D’Occhio M, Kelly L, Lowenthal J, Gobius K, Silva P, Cooper C, Doran T. Strategies to enable the adoption of animal biotechnology to sustainably improve global food safety and security. Transgenic Research, 2016, 25(5): 575–595
CrossRef
Pubmed
Google scholar
|
[24] |
Tizard M L, Jenkins K A, Cooper C A, Woodcock M E, Challagulla A, Doran T J. Potential benefits of gene editing for the future of poultry farming. Transgenic Research, 2019, 28(S2): 87–92
CrossRef
Pubmed
Google scholar
|
[25] |
Telugu B P, Park K E, Park C H. Genome editing and genetic engineering in livestock for advancing agricultural and biomedical applications. Mammalian Genome, 2017, 28(7–8): 338–347
CrossRef
Pubmed
Google scholar
|
[26] |
Laible G. Production of transgenic livestock: overview of transgenic technologies. In: Niemann H, Wrenzycki C, eds. Animal Biotechnology 2. Springer, 2018, 95–122
|
[27] |
Niemann H, Seamark B. The evolution of farm animal biotechnology. In: Niemann H, Wrenzycki C, eds. Animal Biotechnology 1. Springer, 2018, 1–26
|
[28] |
Yum S Y, Youn K Y, Choi W J, Jang G. Development of genome engineering technologies in cattle: from random to specific. Journal of Animal Science and Biotechnology, 2018, 9(1): 16
CrossRef
Pubmed
Google scholar
|
[29] |
Lillico S. Agricultural applications of genome editing in farmed animals. Transgenic Research, 2019, 28(S2): 57–60
CrossRef
Pubmed
Google scholar
|
[30] |
Kumar M, Yadav A K, Verma V, Singh B, Mal G, Nagpal R, Hemalatha R. Bioengineered probiotics as a new hope for health and diseases: an overview of potential and prospects. Future Microbiology, 2016, 11(4): 585–600
CrossRef
Pubmed
Google scholar
|
[31] |
Lam H M, Remais J, Fung M C, Xu L, Sun S S M. Food supply and food safety issues in China. Lancet, 2013, 381(9882): 2044–2053
CrossRef
Pubmed
Google scholar
|
[32] |
Mukhopadhyay K, Thomassin P J, Zhang J Y. Food security in China at 2050: a global CGE exercise. Journal of Economic Structures, 2018, 7(1): 1
CrossRef
Google scholar
|
[33] |
Cui K, Shoemaker S P. A look at food security in China. NPJ Science of Food, 2018, 2(1): 4
CrossRef
Pubmed
Google scholar
|
[34] |
Fedoroff N V. Will common sense prevail? Trends in Genetics, 2013, 29(4): 188–189
CrossRef
Pubmed
Google scholar
|
[35] |
Jones H D. Future of breeding by genome editing is in the hands of regulators. GM Crops and Food: Biotechnology in Agriculture and the Food Chain, 2015, 6(4): 223–232
CrossRef
Pubmed
Google scholar
|
[36] |
Meghani Z. Genetically engineered animals, drugs, and neoliberalism: the need for a new biotechnology regulatory policy framework. Journal of Agricultural & Environmental Ethics, 2017, 30(6): 715–743
CrossRef
Google scholar
|
[37] |
Van Eenennaam A L. Application of genome editing in farm animals: cattle. Transgenic Research, 2019, 28(S2): 93–100
CrossRef
Pubmed
Google scholar
|
[38] |
Van Eenennaam A L, Wells K D, Murray J D. Proposed U.S. regulation of gene-edited food animals is not fit for purpose. NPJ Science of Food, 2019, 3(1): 3
CrossRef
Pubmed
Google scholar
|
[39] |
Whitehouse. Executive Order on Modernizing the Regulatory Framework for Agricultural Biotechnology Products, 2019. Available at Whitehouse website on February 20, 2020
|
[40] |
Whelan A I, Lema M A. Regulatory framework for gene editing and other new breeding techniques (NBTs) in Argentina. GM Crops and Food: Biotechnology in Agriculture and the Food Chain, 2015, 6(4): 253–265
CrossRef
Pubmed
Google scholar
|
[41] |
Thygesen P. Clarifying the regulation of genome editing in Australia: situation for genetically modified organisms. Transgenic Research, 2019, 28(S2): 151–159
CrossRef
Pubmed
Google scholar
|
[42] |
Fernbach P M, Light N, Scott S E, Inbar Y, Rozin P. Extreme opponents of genetically modified foods know the least but think they know the most. Nature Human Behaviour, 2019, 3(3): 251–256
CrossRef
Pubmed
Google scholar
|
[43] |
Murray J D, Maga E A. Opinion: a new paradigm for regulating genetically engineered animals that are used as food. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(13): 3410–3413
CrossRef
Pubmed
Google scholar
|
[44] |
Statista. Number of active apps from the Apple App Store 2008–2019. Available at Statista website on February 20, 2020
|
[45] |
Maxmen A. Gay gene’ provokes fears of a genetic wild west. Nature, 2019, 574: 609–610
CrossRef
Pubmed
Google scholar
|
[46] |
Arber W, Linn S. DNA modification and restriction. Annual Review of Biochemistry, 1969, 38(1): 467–500
CrossRef
Pubmed
Google scholar
|
[47] |
Wells K D. History and future of genetically engineered food animal regulation: an open request. Transgenic Research, 2016, 25(3): 385–394
CrossRef
Pubmed
Google scholar
|
[48] |
Shah K, Nathanson N. Human exposure to SV40: review and comment. American Journal of Epidemiology, 1976, 103(1): 1–12
CrossRef
Pubmed
Google scholar
|
[49] |
Berg P, Baltimore D, Brenner S, Roblin R O 3rd, Singer M F. Summary statement of the Asilomar conference on recombinant DNA molecules. Proceedings of the National Academy of Sciences of the United States of America, 1975, 72(6): 1981–1984
CrossRef
Pubmed
Google scholar
|
[50] |
Berg P, Singer M F. The recombinant DNA controversy: twenty years later. Proceedings of the National Academy of Sciences of the United States of America, 1995, 92(20): 9011–9013
CrossRef
Pubmed
Google scholar
|
[51] |
Executive Office of the President, Office of Science and Technology Policy. Coordinated Framework for Regulation of Biotechnology. 1986. Available at the U.S. Department of Agriculture (USDA)-Animal and Plant Health Inspection Servive (APHIS) website on February 20, 2020
|
[52] |
Van Eenennaam A L, Muir W M. Transgenic salmon: a final leap to the grocery shelf? Nature Biotechnology, 2011, 29(8): 706–710
CrossRef
Pubmed
Google scholar
|
[53] |
Carroll D, Van Eenennaam A L, Taylor J F, Seger J, Voytas D F. Regulate genome-edited products, not genome editing itself. Nature Biotechnology, 2016, 34(5): 477–479
CrossRef
Pubmed
Google scholar
|
[54] |
Lamppa G, Nagy F, Chua N H. Light-regulated and organ-specific expression of a wheat Cab gene in transgenic tobacco. Nature, 1985, 316(6030): 750–752
CrossRef
Pubmed
Google scholar
|
[55] |
Jaenisch R, Mintz B. Simian virus 40 DNA sequences in DNA of healthy adult mice derived from preimplantation blastocysts injected with viral DNA. Proceedings of the National Academy of Sciences of the United States of America, 1974, 71(4): 1250–1254
CrossRef
Pubmed
Google scholar
|
[56] |
Costantini F, Lacy E. Introduction of a rabbit β-globin gene into the mouse germ line. Nature, 1981, 294(5836): 92–94
CrossRef
Pubmed
Google scholar
|
[57] |
Gordon J W, Ruddle F H. Integration and stable germ line transmission of genes injected into mouse pronuclei. Science, 1981, 214(4526): 1244–1246
CrossRef
Pubmed
Google scholar
|
[58] |
Palmiter R D, Brinster R L, Hammer R E, Trumbauer M E, Rosenfeld M G, Birnberg N C, Evans R M. Dramatic growth of mice that develop from eggs microinjected with metallothionein-growth hormone fusion genes. Nature, 1982, 300(5893): 611–615
CrossRef
Pubmed
Google scholar
|
[59] |
Zhu Z, Li G, He L, Chen S. Novel gene transfer into the fertilized eggs of gold fish (Carassius auratus L. 1758). Journal of Applied Ichthyology, 1985, 1(1): 31–34
CrossRef
Google scholar
|
[60] |
Peng W. GM crop cultivation surges, but novel traits languish. Nature Biotechnology, 2011, 29(4): 302
CrossRef
Pubmed
Google scholar
|
[61] |
International Service for the Acquisition of Agri-Biotech Applications (ISAAA). Crop Bitech Update. Available at ISAAA website on February 20, 2020
|
[62] |
Carlson R. Estimating the biotech sector’s contribution to the US economy. Nature Biotechnology, 2016, 34(3): 247–255
CrossRef
Pubmed
Google scholar
|
[63] |
Hackett P, Carroll D F. Regulatory hurdles for agriculture GMOs. Science, 2015, 347(6228): 1324
CrossRef
Pubmed
Google scholar
|
[64] |
United States Department of Agriculture (USDA)-National Agricultural Research, Extension, Education, and Economics Advisory Board (NAREEEAB). Use of Genetic Engineering in USDA Research. Available at USDA-NAREEEAB website on February 20, 2020
|
[65] |
United States Department of Agriculture (USDA)-Animal and Plant Health Inspection Servive (APHIS). Secretary Perdue Issues USDA Statement on Plant Breeding Innovation. Available at USDA-APHIS website on February 2020
|
[66] |
DeFrancesco L. How safe does transgenic food need to be? Nature Biotechnology, 2013, 31(9): 794–802
CrossRef
Pubmed
Google scholar
|
[67] |
Postlethwait J H, Schneiderman H A. A clonal analysis of determination in Antennapedia a homoeotic mutant of Drosophilamelanogaster. Proceedings of the National Academy of Sciences of the United States of America, 1969, 64(1): 176–183
CrossRef
Pubmed
Google scholar
|
[68] |
Miller H I, Kershen D L. US Congress mandates silliness, USDA complies. Nature Biotechnology, 2019, 37(5): 497–498
CrossRef
Pubmed
Google scholar
|
[69] |
Pew Research Center. Most Americans Accept Genetic Engineering of Animals That Benefits Human Health, But Many Oppose Other Uses, 2019. Available at Pew Research Center website on February 20, 2020
|
[70] |
Pew Research Center. Public Perspectives on Food Risks, 2018. Available at Pew Research Center website on February 20, 2020
|
[71] |
U.S. Food and Drug Administration (FDA). Guidance for Industry #187, 2017. Available at FDA website on February 20, 2020
|
[72] |
U.S. Food and Drug Administration (FDA). Pathogens and Filth in Spices, 2013. Available at FDA website on Feburary 20, 2020
|
[73] |
Kwit C, Moon H S, Warwick S I, Stewart C N Jr. Transgene introgression in crop relatives: molecular evidence and mitigation strategies. Trends in Biotechnology, 2011, 29(6): 284–293
CrossRef
Pubmed
Google scholar
|
[74] |
Ahmad N, Mukhtar Z. Genetic manipulations in crops: challenges and opportunities. Genomics, 2017, 109(5–6): 494–505
CrossRef
Pubmed
Google scholar
|
[75] |
Maga E A, Murray J D. Welfare applications of genetically engineered animals for use in agriculture. Journal of Animal Science, 2010, 88(4): 1588–1591
CrossRef
Pubmed
Google scholar
|
[76] |
Carlson D F, Lancto C A, Zang B, Kim E S, Walton M, Oldeschulte D, Seabury C, Sonstegard T S, Fahrenkrug S C. Production of hornless dairy cattle from genome-edited cell lines. Nature Biotechnology, 2016, 34(5): 479–481
CrossRef
Pubmed
Google scholar
|
[77] |
Porto-Neto L R, Bickhart D M, Landaeta-Hernandez A J, Utsunomiya Y T, Pagan M, Jimenez E, Hansen P J, Dikmen S, Schroeder S G, Kim E S, Sun J, Crespo E, Amati N, Cole J B, Null D J, Garcia J F, Reverter A, Barendse W, Sonstegard T S. Convergent evolution of slick coat in cattle through truncation mutations in the prolactin receptor. Frontiers in Genetics, 2018, 9(9): 57
CrossRef
Pubmed
Google scholar
|
[78] |
Howe S J, Mansour M R, Schwarzwaelder K, Bartholomae C, Hubank M, Kempski H, Brugman M H, Pike-Overzet K, Chatters S J, de Ridder D, Gilmour K C, Adams S, Thornhill S I, Parsley K L, Staal F J T, Gale R E, Linch D C, Bayford J, Brown L, Quaye M, Kinnon C, Ancliff P, Webb D K, Schmidt M, von Kalle C, Gaspar H B, Thrasher A J. Insertional mutagenesis combined with acquired somatic mutations causes leukemogenesis following gene therapy of SCID-X1 patients. Journal of Clinical Investigation, 2008, 118(9): 3143–3150
CrossRef
Pubmed
Google scholar
|
[79] |
Cavazza A, Moiani A, Mavilio F. Mechanisms of retroviral integration and mutagenesis. Human Gene Therapy, 2013, 24(2): 119–131
CrossRef
Pubmed
Google scholar
|
[80] |
Ghosh S, Thrasher A J, Gaspar H B. Gene therapy for monogenic disorders of the bone marrow. British Journal of Haematology, 2015, 171(2): 155–170
CrossRef
Pubmed
Google scholar
|
[81] |
Cesana D, Ranzani M, Volpin M, Bartholomae C, Duros C, Artus A, Merella S, Benedicenti F, Sergi Sergi L, Sanvito F, Brombin C, Nonis A, Serio C D, Doglioni C, von Kalle C, Schmidt M, Cohen-Haguenauer O, Naldini L, Montini E. Uncovering and dissecting the genotoxicity of self-inactivating lentiviral vectors in vivo. Molecular Therapy, 2014, 22(4): 774–785
CrossRef
Pubmed
Google scholar
|
[82] |
Hackett P B, Starr T K, Cooper L J N. Chapter 5—Risks of insertional mutagenesis by DNA transposons in cancer gene therapy. In: Translating Gene Therapy to the Clinic: Techniques and Approaches. Translational Research: The Journal of Laboratory and Clinical Medicine, 2015, 65–83
|
[83] |
Supek F, Lehner B. Scales and mechanisms of somatic mutation rate variation across the human genome. DNA Repair, 2019, 81: 102647
CrossRef
Pubmed
Google scholar
|
[84] |
Lander E S, Linton L M, Birren B, Nusbaum C, Zody M C, Baldwin J, Devon K, Dewar K, Doyle M, FitzHugh W, Funke R, Gage D, Harris K, Heaford A, Howland J, Kann L, Lehoczky J, LeVine R, McEwan P, McKernan K, Meldrim J, Mesirov J P, Miranda C, Morris W, Naylor J, Raymond C, Rosetti M, Santos R, Sheridan A, Sougnez C, Stange-Thomann Y, Stojanovic N, Subramanian A, Wyman D, Rogers J, Sulston J, Ainscough R, Beck S, Bentley D, Burton J, Clee C, Carter N, Coulson A, Deadman R, Deloukas P, Dunham A, Dunham I, Durbin R, French L, Grafham D, Gregory S, Hubbard T, Humphray S, Hunt A, Jones M, Lloyd C, McMurray A, Matthews L, Mercer S, Milne S, Mullikin J C, Mungall A, Plumb R, Ross M, Shownkeen R, Sims S, Waterston R H, Wilson R K, Hillier L W, McPherson J D, Marra M A, Mardis E R, Fulton L A, Chinwalla A T, Pepin K H, Gish W R, Chissoe S L, Wendl M C, Delehaunty K D, Miner T L, Delehaunty A, Kramer J B, Cook L L, Fulton R S, Johnson D L, Minx P J, Clifton S W, Hawkins T, Branscomb E, Predki P, Richardson P, Wenning S, Slezak T, Doggett N, Cheng J F, Olsen A, Lucas S, Elkin C, Uberbacher E, Frazier M, Gibbs R A, Muzny D M, Scherer S E, Bouck J B, Sodergren E J, Worley K C, Rives C M, Gorrell J H, Metzker M L, Naylor S L, Kucherlapati R S, Nelson D L, Weinstock G M, Sakaki Y, Fujiyama A, Hattori M, Yada T, Toyoda A, Itoh T, Kawagoe C, Watanabe H, Totoki Y, Taylor T, Weissenbach J, Heilig R, Saurin W, Artiguenave F, Brottier P, Bruls T, Pelletier E, Robert C, Wincker P, Smith D R, Doucette-Stamm L, Rubenfield M, Weinstock K, Lee H M, Dubois J, Rosenthal A, Platzer M, Nyakatura G, Taudien S, Rump A, Yang H, Yu J, Wang J, Huang G, Gu J, Hood L, Rowen L, Madan A, Qin S, Davis R W, Federspiel N A, Abola A P, Proctor M J, Myers R M, Schmutz J, Dickson M, Grimwood J, Cox D R, Olson M V, Kaul R, Raymond C, Shimizu N, Kawasaki K, Minoshima S, Evans G A, Athanasiou M, Schultz R, Roe B A, Chen F, Pan H, Ramser J, Lehrach H, Reinhardt R, McCombie W R, de la Bastide M, Dedhia N, Blöcker H, Hornischer K, Nordsiek G, Agarwala R, Aravind L, Bailey J A, Bateman A, Batzoglou S, Birney E, Bork P, Brown D G, Burge C B, Cerutti L, Chen H C, Church D, Clamp M, Copley R R, Doerks T, Eddy S R, Eichler E E, Furey T S, Galagan J, Gilbert J G, Harmon C, Hayashizaki Y, Haussler D, Hermjakob H, Hokamp K, Jang W, Johnson L S, Jones T A, Kasif S, Kaspryzk A, Kennedy S, Kent W J, Kitts P, Koonin E V, Korf I, Kulp D, Lancet D, Lowe T M, McLysaght A, Mikkelsen T, Moran J V, Mulder N, Pollara V J, Ponting C P, Schuler G, Schultz J, Slater G, Smit A F, Stupka E, Szustakowki J, Thierry-Mieg D, Thierry-Mieg J, Wagner L, Wallis J, Wheeler R, Williams A, Wolf Y I, Wolfe K H, Yang S P, Yeh R F, Collins F, Guyer M S, Peterson J, Felsenfeld A, Wetterstrand K A, Patrinos A, Morgan M J, de Jong P, Catanese J J, Osoegawa K, Shizuya H, Choi S, Chen Y J, Szustakowki J. Initial sequencing and analysis of the human genome. Nature, 2001, 409(6822): 860–921
CrossRef
Pubmed
Google scholar
|
[85] |
Cordaux R. The human genome in the LINE of fire. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(49): 19033–19034
CrossRef
Pubmed
Google scholar
|
[86] |
de Koning A P J, Gu W, Castoe T A, Batzer M A, Pollock D D. Repetitive elements may comprise over two-thirds of the human genome. PLoS Genetics, 2011, 7(12): e1002384
CrossRef
Pubmed
Google scholar
|
[87] |
Ade C, Roy-Engel A M, Deininger P L. Alu elements: an intrinsic source of human genome instability. Current Opinion in Virology, 2013, 3(6): 639–645
CrossRef
Pubmed
Google scholar
|
[88] |
Garcia-Perez J L, Widmann T J, Adams I R. The impact of transposable elements on mammalian development. Development, 2016, 143(22): 4101–4114
CrossRef
Pubmed
Google scholar
|
[89] |
Gardner E J, Prigmore E, Gallone G, Danecek P, Samocha K E, Handsaker J, Gerety S S, Ironfield H, Short P J, Sifrim A, Singh T, Chandler K E, Clement E, Lachlan K L, Prescott K, Rosser E, FitzPatrick D R, Firth H V, Hurles M E. Contribution of retrotransposition to developmental disorders. Nature Communications, 2019, 10(1): 4630
CrossRef
Pubmed
Google scholar
|
[90] |
Richardson S R, Morell S, Faulkner G J. L1 retrotransposons and somatic mosaicism in the brain. Annual Review of Genetics, 2014, 48(1): 1–27
CrossRef
Pubmed
Google scholar
|
[91] |
Larsen P A, Hunnicutt K E, Larsen R J, Yoder A D, Saunders A M. Warning SINEs: Alu elements, evolution of the human brain, and the spectrum of neurological disease. Chromosome Research, 2018, 26(1–2): 93–111
CrossRef
Pubmed
Google scholar
|
[92] |
Zarrei M, MacDonald J R, Merico D, Scherer S W. A copy number variation map of the human genome. Nature Reviews: Genetics, 2015, 16(3): 172–183
CrossRef
Pubmed
Google scholar
|
[93] |
Lauer S, Gresham D. An evolving view of copy number variants. Current Genetics, 2019, 65(6): 1287–1295
CrossRef
Pubmed
Google scholar
|
[94] |
Keel B N, Nonneman D J, Lindholm-Perry A K, Oliver W T, Rohrer G A. A survey of copy number variation in the porcine genome detected from whole-genome sequence. Frontiers in Genetics, 2019, 10: 737
CrossRef
Pubmed
Google scholar
|
[95] |
Federoff N V. Maize transposable elements in development and evolution. Integrative and Comparative Biology, 1989, 29(2): 549–555
|
[96] |
Schnable P S, Ware D, Fulton R S, Stein J C, Wei F, Pasternak S, Liang C, Zhang J, Fulton L, Graves T A, Minx P, Reily A D, Courtney L, Kruchowski S S, Tomlinson C, Strong C, Delehaunty K, Fronick C, Courtney B, Rock S M, Belter E, Du F, Kim K, Abbott R M, Cotton M, Levy A, Marchetto P, Ochoa K, Jackson S M, Gillam B, Chen W, Yan L, Higginbotham J, Cardenas M, Waligorski J, Applebaum E, Phelps L, Falcone J, Kanchi K, Thane T, Scimone A, Thane N, Henke J, Wang T, Ruppert J, Shah N, Rotter K, Hodges J, Ingenthron E, Cordes M, Kohlberg S, Sgro J, Delgado B, Mead K, Chinwalla A, Leonard S, Crouse K, Collura K, Kudrna D, Currie J, He R, Angelova A, Rajasekar S, Mueller T, Lomeli R, Scara G, Ko A, Delaney K, Wissotski M, Lopez G, Campos D, Braidotti M, Ashley E, Golser W, Kim H, Lee S, Lin J, Dujmic Z, Kim W, Talag J, Zuccolo A, Fan C, Sebastian A, Kramer M, Spiegel L, Nascimento L, Zutavern T, Miller B, Ambroise C, Muller S, Spooner W, Narechania A, Ren L, Wei S, Kumari S, Faga B, Levy M J, McMahan L, Van Buren P, Vaughn M W, Ying K, Yeh C T, Emrich S J, Jia Y, Kalyanaraman A, Hsia A P, Barbazuk W B, Baucom R S, Brutnell T P, Carpita N C, Chaparro C, Chia J M, Deragon J M, Estill J C, Fu Y, Jeddeloh J A, Han Y, Lee H, Li P, Lisch D R, Liu S, Liu Z, Nagel D H, McCann M C, SanMiguel P, Myers A M, Nettleton D, Nguyen J, Penning B W, Ponnala L, Schneider K L, Schwartz D C, Sharma A, Soderlund C, Springer N M, Sun Q, Wang H, Waterman M, Westerman R, Wolfgruber T K, Yang L, Yu Y, Zhang L, Zhou S, Zhu Q, Bennetzen J L, Dawe R K, Jiang J, Jiang N, Presting G G, Wessler S R, Aluru S, Martienssen R A, Clifton S W, McCombie W R, Wing R A, Wilson R K. The B73 maize genome: complexity, diversity, and dynamics. Science, 2009, 326(5956): 1112–1115
CrossRef
Pubmed
Google scholar
|
[97] |
Jiao Y, Peluso P, Shi J, Liang T, Stitzer M C, Wang B, Campbell M S, Stein J C, Wei X, Chin C S, Guill K, Regulski M, Kumari S, Olson A, Gent J, Schneider K L, Wolfgruber T K, May M R, Springer N M, Antoniou E, McCombie W R, Presting G G, McMullen M, Ross-Ibarra J, Dawe R K, Hastie A, Rank D R, Ware D. Improved maize reference genome with single-molecule technologies. Nature, 2017, 546(7659): 524–527
CrossRef
Pubmed
Google scholar
|
[98] |
Berendonk T U, Manaia C M, Merlin C, Fatta-Kassinos D, Cytryn E, Walsh F, Bürgmann H, Sørum H, Norström M, Pons M N, Kreuzinger N, Huovinen P, Stefani S, Schwartz T, Kisand V, Baquero F, Martinez J L. Tackling antibiotic resistance: the environmental framework. Nature Reviews: Microbiology, 2015, 13(5): 310–317
CrossRef
Pubmed
Google scholar
|
[99] |
Stalder T, Press M O, Sullivan SLiachko I, Top E M. Linking the resistome and plasmidome to the microbiome. The ISME Journal:Multidisciplinary Journal of Microbial Ecology, 2019, 13: 2437–2446
|
[100] |
Hackett P B, Alvarez M C. The molecular genetics of transgenic fish. Recent Biotechnology Advances Articles, 2000, 4(Part B): 77–145
|
[101] |
Mills S, McAuliffe O E, Coffey A, Fitzgerald G F, Ross R P. Plasmids of lactococci—genetic accessories or genetic necessities? FEMS Microbiology Reviews, 2006, 30(2): 243–273
CrossRef
Pubmed
Google scholar
|
[102] |
Sender R, Fuchs S, Milo R. Revised estimates for the number of human and bacteria cells in the body. PLoS Biology, 2016, 14(8): e1002533
CrossRef
Pubmed
Google scholar
|
[103] |
Nelson K E, Weinstock G M, Highlander S K, Worley K C, Creasy H H, Wortman J R, Rusch D B, Mitreva M, Sodergren E, Chinwalla A T, Feldgarden M, Gevers D, Haas B J, Madupu R, Ward D V, Birren B W, Gibbs R A, Methe B, Petrosino J F, Strausberg R L, Sutton G G, White O R, Wilson R K, Durkin S, Giglio M G, Gujja S, Howarth C, Kodira C D, Kyrpides N, Mehta T, Muzny D M, Pearson M, Pepin K, Pati A, Qin X, Yandava C, Zeng Q, Zhang L, Berlin A M, Chen L, Hepburn T A, Johnson J, McCorrison J, Miller J, Minx P, Nusbaum C, Russ C, Sykes S M, Tomlinson C M, Young S, Warren W C, Badger J, Crabtree J, Markowitz V M, Orvis J, Cree A, Ferriera S, Fulton L L, Fulton R S, Gillis M, Hemphill L D, Joshi V, Kovar C, Torralba M, Wetterstrand K A, Abouellleil A, Wollam A M, Buhay C J, Ding Y, Dugan S, FitzGerald M G, Holder M, Hostetler J, Clifton S W, Allen-Vercoe E, Earl A M, Farmer C N, Liolios K, Surette M G, Xu Q, Pohl C, Wilczek-Boney K, Zhu D. A catalog of reference genomes from the human microbiome. Science, 2010, 328(5981): 994–999
CrossRef
Pubmed
Google scholar
|
[104] |
Ó Cuív P, Aguirre de Cárcer D, Jones M, Klaassens E S, Worthley D L, Whitehall V L J, Kang S, McSweeney C S, Leggett B A, Morrison M. The effects from DNA extraction methods on the evaluation of microbial diversity associated with human colonic tissue. Microbial Ecology, 2011, 61(2): 353–362
CrossRef
Pubmed
Google scholar
|
[105] |
Huddleston J R. Horizontal gene transfer in the human gastrointestinal tract: potential spread of antibiotic resistance genes. Infection and Drug Resistance, 2014, 7: 167–176
CrossRef
Pubmed
Google scholar
|
[106] |
Cui Y, Hu T, Qu X, Zhang L, Ding Z, Dong A. Plasmids from food lactic acid bacteria: diversity, similarity, and new developments. International Journal of Molecular Sciences, 2015, 16(6): 13172–13202
CrossRef
Pubmed
Google scholar
|
[107] |
Sitaraman R. Prokaryotic horizontal gene transfer within the human holobiont: ecological-evolutionary inferences, implications and possibilities. Microbiome, 2018, 6(1): 163
CrossRef
Pubmed
Google scholar
|
[108] |
Jeong H, Arif B, Caetano-Anollés G, Kim K M, Nasir A. Horizontal gene transfer in human-associated microorganisms inferred by phylogenetic reconstruction and reconciliation. Scientific Reports, 2019, 9(1): 5953
CrossRef
Pubmed
Google scholar
|
[109] |
DeFilipp Z, Bloom P P, Torres Soto M, Mansour M K, Sater M R A, Huntley M H, Turbett S, Chung R T, Chen Y B, Hohmann E L. Drug-resistant E. coli bacteremia transmitted by fecal microbiota transplant. New England Journal of Medicine, 2019, 381(21): 2043–2050
CrossRef
Pubmed
Google scholar
|
[110] |
Norris A L, Lee S S, Greenlees K J, Tadesse D A, Miller M F, Lombardi H A. Template plasmid integration in germline genome-edited cattle. Nature Biotechnology, 2020, 38(2): 163–164
CrossRef
Pubmed
Google scholar
|
[111] |
Young A E, Mansour T A, McNabb B R, Owen J R, Trott J F, Brown C T, Van Eenennaam A L. Genomic and phenotypic analyses of six offspring of a genome-edited hornless bull. Nature Biotechnology, 2020, 38(2): 225–232
CrossRef
Pubmed
Google scholar
|
[112] |
Molteni M A. Cow, a Controversy, and a Dashed Dream of More Humane Farms. Wired 10.08.2019. Available at wired website on February 20, 2020
|
[113] |
Bruce A, Castle D, Gibbs C, Tait J, Whitelaw C B A. Novel GM animal technologies and their governance. Transgenic Research, 2013, 22(4): 681–695
CrossRef
Pubmed
Google scholar
|
[114] |
Bruce A. Genome edited animals: learning from GM crops? Transgenic Research, 2017, 26(3): 385–398
CrossRef
Pubmed
Google scholar
|
[115] |
Wall R J, Kerr D E, Bondioli K R. Transgenic dairy cattle: genetic engineering on a large scale. Journal of Dairy Science, 1997, 80(9): 2213–2224
CrossRef
Pubmed
Google scholar
|
[116] |
Tan W S, Carlson D F, Walton M W, Fahrenkrug S C, Hackett P B. Precision editing of large animal genomes. Advances in Genetics, 2012, 80: 37–97
CrossRef
Pubmed
Google scholar
|
[117] |
Van Eenennaam A L. Genetic modification of food animals. Current Opinion in Biotechnology, 2017, 44: 27–34
CrossRef
Pubmed
Google scholar
|
[118] |
Maga E A, Cullor J S, Smith W, Anderson G B, Murray J D. Human lysozyme expressed in the mammary gland of transgenic dairy goats can inhibit the growth of bacteria that cause mastitis and the cold-spoilage of milk. Foodborne Pathogens and Disease, 2006, 3(4): 384–392
CrossRef
Pubmed
Google scholar
|
[119] |
Cooper C A, Maga E A, Murray J D. Production of human lactoferrin and lysozyme in the milk of transgenic dairy animals: past, present, and future. Transgenic Research, 2015, 24(4): 605–614
CrossRef
Pubmed
Google scholar
|
[120] |
Lai L, Kang J X, Li R, Wang J, Witt W T, Yong H Y, Hao Y, Wax D M, Murphy C N, Rieke A, Samuel M, Linville M L, Korte S W, Evans R W, Starzl T E, Prather R S, Dai Y. Generation of cloned transgenic pigs rich in omega-3 fatty acids. Nature Biotechnology, 2006, 24(4): 435–436
CrossRef
Pubmed
Google scholar
|
[121] |
Pan D, Zhang L, Zhou Y, Feng C, Long C, Liu X, Wan R, Zhang J, Lin A, Dong E, Wang S, Xu H, Chen H. Efficient production of omega-3 fatty acid desaturase (sFat-1)-transgenic pigs by somatic cell nuclear transfer. Science China. Life Sciences, 2010, 53(4): 517–523
CrossRef
Pubmed
Google scholar
|
[122] |
Golovan S P, Meidinger R G, Ajakaiye A, Cottrill M, Wiederkehr M Z, Barney D J, Plante C, Pollard J W, Fan M Z, Hayes M A, Laursen J, Hjorth J P, Hacker R R, Phillips J P, Forsberg C W. Pigs expressing salivary phytase produce low-phosphorus manure. Nature Biotechnology, 2001, 19(8): 741–745
CrossRef
Pubmed
Google scholar
|
[123] |
Zhang C C. Citrus greening is killing the world’s orange trees. Scientists are racing to help. Chemical and Engineering News, 2019, 97(23): 31–35
CrossRef
Google scholar
|
[124] |
Maxmen A. CRISPR might be the banana’s only hope against a deadly fungus. Nature, 2019, 574(7776): 15
CrossRef
Pubmed
Google scholar
|
[125] |
Tait-Burkard C, Doeschl-Wilson A, McGrew M J, Archibald A L, Sang H M, Houston R D, Whitelaw C B, Watson M. Livestock 2.0—genome editing for fitter, healthier, and more productive farmed animals. Genome Biology, 2018, 19(1): 204
CrossRef
Pubmed
Google scholar
|
[126] |
Hackett P B, Fahrenkrug S C, Carlson D F. The promises and challenges of precision gene editing in animals of agricultural importance. In: Eaglesham A, Hardy R W F, eds. New DNA-Editing Approaches: Methods, Applications and Policy for Agriculture. NABC Report 26, 2015, 39–52
|
[127] |
Losey J E, Rayor L S, Carter M E. Transgenic pollen harms monarch larvae. Nature, 1999, 399(6733): 214
CrossRef
Pubmed
Google scholar
|
[128] |
Schurman R, Munro W A. Fighting for the Future of Food. Minneapolis, USA: University of Minnesota Press, 2010
|
[129] |
Hellmich R L, Siegfried B D, Sears M K, Stanley-Horn D E, Daniels M J, Mattila H R, Spencer T, Bidne K G, Lewis L C. Monarch larvae sensitivity to Bacillus thuringiensis-purified proteins and pollen. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98(21): 11925–11930
CrossRef
Pubmed
Google scholar
|
[130] |
Oberhauser K S, Prysby M D, Mattila H R, Stanley-Horn D E, Sears M K, Dively G, Olson E, Pleasants J M, Lam W K F, Hellmich R L. Temporal and spatial overlap between monarch larvae and corn pollen. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98(21): 11913–11918
CrossRef
Pubmed
Google scholar
|
[131] |
Sears M K, Hellmich R L, Stanley-Horn D E, Oberhauser K S, Pleasants J M, Mattila H R, Siegfried B D, Dively G P. Impact of Bt corn pollen on monarch butterfly populations: a risk assessment. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98(21): 11937–11942
CrossRef
Pubmed
Google scholar
|
[132] |
Stanley-Horn D E, Dively G P, Hellmich R L, Mattila H R, Sears M K, Rose R, Jesse L C H, Losey J E, Obrycki J J, Lewis L. Assessing the impact of Cry1Ab-expressing corn pollen on monarch butterfly larvae in field studies. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98(21): 11931–11936
CrossRef
Pubmed
Google scholar
|
[133] |
Zangerl A R, McKenna D, Wraight C L, Carroll M, Ficarello P, Warner R, Berenbaum M R. Effects of exposure to event 176 Bacillus thuringiensis corn pollen on monarch and black swallowtail caterpillars under field conditions. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98(21): 11908–11912
CrossRef
Pubmed
Google scholar
|
[134] |
Hutchison W D, Burkness E C, Mitchell P D, Moon R D, Leslie T W, Fleischer S J, Abrahamson M, Hamilton K L, Steffey K L, Gray M E, Hellmich R L, Kaster L V, Hunt T E, Wright R J, Pecinovsky K, Rabaey T L, Flood B R, Raun E S. Areawide suppression of European corn borer with Bt maize reaps savings to non-Bt maize growers. Science, 2010, 330(6001): 222–225
CrossRef
Pubmed
Google scholar
|
[135] |
Muir W M, Howard R D. Assessment of possible ecological risks and hazards of transgenic fish with implications for other sexually reproducing organisms. Transgenic Research, 2002, 11(2): 101–114
CrossRef
Pubmed
Google scholar
|
[136] |
Devlin R H, Sundström L F, Muir W M. Interface of biotechnology and ecology for environmental risk assessments of transgenic fish. Trends in Biotechnology, 2006, 24(2): 89–97
CrossRef
Pubmed
Google scholar
|
[137] |
Hackett P B. Genetic engineering: what are we fearing? Transgenic Research, 2002, 11(2): 97–99
CrossRef
Pubmed
Google scholar
|
[138] |
Glover K A, Quintela M, Wennevik V, Besnier F, Sørvik A G E, Skaala Ø. Three decades of farmed escapees in the wild: a spatio-temporal analysis of Atlantic salmon population genetic structure throughout Norway. PLoS One, 2012, 7(8): e43129
CrossRef
Pubmed
Google scholar
|
[139] |
Skilbrei O T, Heino M, Svåsand T. Using simulated escape events to assess the annual numbers and destinies of escaped farmed Atlantic salmon of different life stages from farm sites in Norway. ICES Journal of Marine Science, 2014, 72(2): 670–685
CrossRef
Google scholar
|
[140] |
Harvey A C, Skilbrei O T, Besnier F, Solberg M F, Sørvik A E, Glover K A. Implications for introgression: has selection for fast growth altered the size threshold for precocious male maturation in domesticated Atlantic salmon? BMC Evolutionary Biology, 2018, 18(1): 188
CrossRef
Pubmed
Google scholar
|
[141] |
Enserink M. Tough lessons from golden rice. Science, 2008, 320(5875): 468–471
CrossRef
Pubmed
Google scholar
|
[142] |
Owens B. Golden Rice is safe to eat, says FDA. Nature Biotechnology, 2018, 36(7): 559–560
CrossRef
Pubmed
Google scholar
|
[143] |
Washington Post.107 Nobel laureates sign letter blasting Greenpeace over GMOs. Available at Washington Post website on February 20, 2020
|
[144] |
McHughen A. A critical assessment of regulatory triggers for products of biotechnology: product vs. process. GM Crops and Food: Biotechnology in Agriculture and the Food Chain, 2016, 7(3–4): 125–158
CrossRef
Pubmed
Google scholar
|
[145] |
U.S. Food and Drug Administration (FDA). Modernizing the Regulatory System for Plant and Animal Biotechnology Products, 2015. Available at FDA website on February 20, 2020
|
[146] |
Friedrichs S, Takasu Y, Kearns P, Dagallier B, Oshima R, Schofield J, Moreddu C. Meeting report of the OECD conference on genome editing: applications in agriculture—implications for health, environment and regulation. Transgenic Research, 2019, 28(3–4): 419–463
CrossRef
Pubmed
Google scholar
|
[147] |
Carlson D F, Tan W, Hackett P B, Fahrenkrug S C. Editing livestock genomes with site-specific nucleases. Reproduction, Fertility, and Development, 2013, 26(1): 74–82
CrossRef
Pubmed
Google scholar
|
[148] |
Tan W, Carlson D F, Lancto C A, Garbe J R, Webster D A, Hackett P B, Fahrenkrug S C. Efficient nonmeiotic allele introgression in livestock using custom endonucleases. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(41): 16526–16531
CrossRef
Pubmed
Google scholar
|
[149] |
Acevedo-Rocha C.G, Budisa N. Xenomicrobiology: a roadmap for genetic code engineering. Microbial Microbiology, 2016, 9(5): 666–676
|
[150] |
The Economist. The (April 6, 2019) Redesigning life—the promise of synthetic biology. Available at the Economist website on February 20, 2020
|
[151] |
Fong Y, Hackett P B. Acceptance and access to gene editing: science and our obligations to mankind. Molecular Therapy, 2017, 25(1): 1–2
CrossRef
Pubmed
Google scholar
|
[152] |
Bruce A, Bruce D. Genome editing and responsible innovation, can they be reconciled? Journal of Agricultural & Environmental Ethics, 2019, 32(5–6): 769–788
CrossRef
Google scholar
|
[153] |
Wang X, Chen Y, Sonstegard T S, Hackett P B, Fan Z, Li K. Meeting report on the 2019 international symposium of molecular design breeding in animals (Yangling, China) with the consensus on genome-editing agricultural animals and their regulation. Transgenic Research, 2020, 29(2): 263–265
CrossRef
Pubmed
Google scholar
|
[154] |
Genome Writers Guild (GWG). A better future for humanity through genome engineering and public education. Available at GWG website on February 20, 2020
|
/
〈 | 〉 |