Embryo-mediated genome editing for accelerated genetic improvement of livestock

Zachariah MCLEAN, Björn OBACK, Götz LAIBLE

PDF(554 KB)
PDF(554 KB)
Front. Agr. Sci. Eng. ›› 2020, Vol. 7 ›› Issue (2) : 148-160. DOI: 10.15302/J-FASE-2019305
REVIEW
REVIEW

Embryo-mediated genome editing for accelerated genetic improvement of livestock

Author information +
History +

Abstract

Selecting beneficial DNA variants is the main goal of animal breeding. However, this process is inherently inefficient because each animal only carries a fraction of all desirable variants. Genome editing technology with its ability to directly introduce beneficial sequence variants offers new opportunities to modernize animal breeding by overcoming this biological limitation and accelerating genetic gains. To realize rapid genetic gain, precise edits need to be introduced into genomically-selected embryos, which minimizes the genetic lag. However, embryo-mediated precision editing by homology-directed repair (HDR) mechanisms is currently an inefficient process that often produces mosaic embryos and greatly limits the numbers of available edited embryos. This review provides a summary of genome editing in bovine embryos and proposes an embryo-mediated accelerated breeding scheme that overcomes the present efficiency limitations of HDR editing in bovine embryos. It integrates embryo-based genomic selection with precise multi-editing and uses embryonic cloning with elite edited blastomeres or embryonic pluripotent stem cells to resolve mosaicism, enable multiplex editing and multiply rare elite genotypes. Such a breeding strategy would enable a more targeted, accelerated approach for livestock improvement that allows stacking of beneficial variants, even including novel traits from outside the breeding population, in the most recent elite genetic background, essentially within a single generation.

Keywords

animal breeding / cattle / cloning / CRISPR/Cas9 / cytoplasmic injection / embryo / genome editing / germline chimaeras / HDR / livestock improvement / TALENs

Cite this article

Download citation ▾
Zachariah MCLEAN, Björn OBACK, Götz LAIBLE. Embryo-mediated genome editing for accelerated genetic improvement of livestock. Front. Agr. Sci. Eng., 2020, 7(2): 148‒160 https://doi.org/10.15302/J-FASE-2019305

References

[1]
Thornton P K. Livestock production: recent trends, future prospects. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 2010, 365(1554): 2853–2867
CrossRef Google scholar
[2]
Meuwissen T, Hayes B, Goddard M. Genomic selection: a paradigm shift in animal breeding. Animal Frontiers, 2016, 6(1): 6–14
CrossRef Google scholar
[3]
Meuwissen T H E, Hayes B J, Goddard M E. Prediction of total genetic value using genome-wide dense marker maps. Genetics, 2001, 157(4): 1819–1829
[4]
Tait-Burkard C, Doeschl-Wilson A, McGrew M J, Archibald A L, Sang H M, Houston R D, Whitelaw C B, Watson M. Livestock 2.0- genome editing for fitter, healthier, and more productive farmed animals. Genome Biology, 2018, 19(1): 204
CrossRef Google scholar
[5]
Georges M. Towards sequence-based genomic selection of cattle. Nature Genetics, 2014, 46(8): 807–809
CrossRef Google scholar
[6]
Hauschild-Quintern J, Petersen B, Cost G J, Niemann H. Gene knockout and knockin by zinc-finger nucleases: current status and perspectives. Cellular and Molecular Life Sciences, 2013, 70(16): 2969–2983
CrossRef Google scholar
[7]
Mussolino C, Cathomen T. TALE nucleases: tailored genome engineering made easy. Current Opinion in Biotechnology, 2012, 23(5): 644–650
CrossRef Google scholar
[8]
Sander J D, Joung J K. CRISPR-Cas systems for editing, regulating and targeting genomes. Nature Biotechnology, 2014, 32(4): 347–355
CrossRef Google scholar
[9]
Xiao A, Wang Z X, Hu Y Y, Wu Y D, Luo Z, Yang Z P, Zu Y, Li W Y, Huang P, Tong X J, Zhu Z Y, Lin S, Zhang B. Chromosomal deletions and inversions mediated by TALENs and CRISPR/Cas in zebrafish. Nucleic Acids Research, 2013, 41(14): e141
CrossRef Google scholar
[10]
Tan W F, Proudfoot C, Lillico S G, Whitelaw C B A. Gene targeting, genome editing: from Dolly to editors. Transgenic Research, 2016, 25(3): 273–287
CrossRef Google scholar
[11]
Eid A, Alshareef S, Mahfouz M M. CRISPR base editors: genome editing without double-stranded breaks. Biochemical Journal, 2018, 475(11): 1955–1964
[12]
Anzalone A V, Randolph P B, Davis J R, Sousa A A, Koblan L W, Levy J M, Chen P J, Wilson C, Newby G A, Raguram A, Liu D R. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature, 2019, 576(7785): 149–157
CrossRef Google scholar
[13]
Carroll D. Staying on target with CRISPR-Cas. Nature Biotechnology, 2013, 31(9): 807–809
CrossRef Google scholar
[14]
Komor A C, Badran A H, Liu D R. CRISPR-based technologies for the manipulation of eukaryotic genomes. Cell, 2017, 168(1–2): 20–36
CrossRef Google scholar
[15]
Akcakaya P, Bobbin M L, Guo J A, Malagon-Lopez J, Clement K, Garcia S P, Fellows M D, Porritt M J, Firth M A, Carreras A, Baccega T, Seeliger F, Bjursell M, Tsai S Q, Nguyen N T, Nitsch R, Mayr L M, Pinello L, Bohlooly-Y M, Aryee M J, Maresca M, Joung J K. In vivo CRISPR editing with no detectable genome-wide off-target mutations. Nature, 2018, 561(7723): 416–419
CrossRef Google scholar
[16]
Kosicki M, Tomberg K, Bradley A. Repair of double-strand breaks induced by CRISPR-Cas9 leads to large deletions and complex rearrangements. Nature Biotechnology, 2018, 36(8): 765–771
CrossRef Google scholar
[17]
Li C, Zhou S W, Li Y, Li G W, Ding Y G, Li L, Liu J, Qu L, Sonstegard T, Huang X X, Jiang Y, Chen Y L, Petersen B, Wang X L. Trio-based deep sequencing reveals a low incidence of off-target mutations in the offspring of genetically edited goats. Frontiers in Genetics, 2018, 9: 449
[18]
Wang X L, Liu J, Niu Y Y, Li Y, Zhou S W, Li C, Ma B H, Kou Q F, Petersen B, Sonstegard T, Huang X X, Jiang Y, Chen Y L. Low incidence of SNVs and indels in trio genomes of Cas9-mediated multiplex edited sheep. BMC Genomics, 2018, 19(1): 397
CrossRef Google scholar
[19]
Wells D N. Animal cloning: problems and prospects. Revue Scientifique et Technique (International Office of Epizootics), 2005, 24(1): 251–264
CrossRef Google scholar
[20]
Wei J W, Wagner S, Maclean P, Brophy B, Cole S, Smolenski G, Carlson D F, Fahrenkrug S C, Wells D N, Laible G. Cattle with a precise, zygote-mediated deletion safely eliminate the major milk allergen beta-lactoglobulin. Scientific Reports, 2018, 8(1): 7661
CrossRef Google scholar
[21]
Mullaart E, Wells D. Embryo Biopsies for Genomic Selection. In: Niemann H, Wrenzycki C, eds. Animal Biotechnology 2: Emerging Breeding Technologies. Cham: Springer, 2018, 81–94
[22]
Hely F S, Amer P R, Oback B, Wells D N. Integration of IVF technologies with genomic selection to generate high merit AI bulls: a simulation study. Proceedings of the Association for the Advancement of Animal Breeding and Genetics, 2017, 22: 533–536
[23]
Bastiaansen J W M, Bovenhuis H, Groenen M A M, Megens H J, Mulder H A. The impact of genome editing on the introduction of monogenic traits in livestock. Genetics, Selection, Evolution, 2018, 50(1): 18
CrossRef Google scholar
[24]
Jenko J, Gorjanc G, Cleveland M A, Varshney R K, Whitelaw C B A, Woolliams J A, Hickey J M. Potential of promotion of alleles by genome editing to improve quantitative traits in livestock breeding programs. Genetics, Selection, Evolution, 2015, 47(1): 55
CrossRef Google scholar
[25]
Carlson D F, Tan W, Lillico S G, Stverakova D, Proudfoot C, Christian M, Voytas D F, Long C R, Whitelaw C B A, Fahrenkrug S C. Efficient TALEN-mediated gene knockout in livestock. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(43): 17382–17387
CrossRef Google scholar
[26]
Proudfoot C, Carlson D F, Huddart R, Long C R, Pryor J H, King T J, Lillico S G, Mileham A J, McLaren D G, Whitelaw C B A, Fahrenkrug S C. Genome edited sheep and cattle. Transgenic Research, 2015, 24(1): 147–153
CrossRef Google scholar
[27]
Wei J W, Wagner S, Lu D, Maclean P, Carlson D F, Fahrenkrug S C, Laible G. Efficient introgression of allelic variants by embryo-mediated editing of the bovine genome. Scientific Reports, 2015, 5(1): 11735
CrossRef Google scholar
[28]
Bogliotti Y S, Vilarino M, Ross P J. Laser-assisted cytoplasmic microinjection in livestock zygotes. Journal of Visualized Experiments, 2016, 116: e54465
[29]
Bevacqua R J, Fernandez-Martin R, Savy V, Canel N G, Gismondi M I, Kues W A, Carlson D F, Fahrenkrug S C, Niemann H, Taboga O A, Ferraris S, Salamone D F. Efficient edition of the bovine PRNP prion gene in somatic cells and IVF embryos using the CRISPR/Cas9 system. Theriogenology, 2016, 86(8): 1886–1896.e1
CrossRef Google scholar
[30]
Brophy B, Cole S, Gaynor P, Laible G, Oback B, Wei J. Developing the conditions for bovine zygote-mediated genome editing by electroporation. In: Proceedings of the World Congress on Genetics Applied to Livestock Production, Technologies: Gene Editing. World Congress on Genetics Applied to Livestock Production Digital Archive, 2018, 1118
[31]
Daigneault B W, Rajput S, Smith G W, Ross P J. Embryonic POU5F1 is required for expanded bovine blastocyst formation. Scientific Reports, 2018, 8(1): 7753
CrossRef Google scholar
[32]
Miao D Q, Giassetti M I, Ciccarelli M, Lopez-Biladeau B, Oatley J M. Simplified pipelines for genetic engineering of mammalian embryos by CRISPR-Cas9 electroporation. Biology of Reproduction, 2019, 101(1): 177–187
CrossRef Google scholar
[33]
Namula Z, Wittayarat M, Hirata M, Hirano T, Nguyen N T, Le Q A, Fahrudin M, Tanihara F, Otoi T. Genome mutation after the introduction of the gene editing by electroporation of Cas9 protein (GEEP) system into bovine putative zygotes. In vitro Cellular & Developmental Biology - Animal, 2019, 55(8): 598–603
CrossRef Google scholar
[34]
Teboul L, Murray S A, Nolan P M. Phenotyping first-generation genome editing mutants: a new standard? Mammalian Genome, 2017, 28(7–8): 377–382
CrossRef Google scholar
[35]
Young A E, Mansour T A, McNabb B R, Owen J R, Trott J F, Brown C T, Van Eenennaam A L. Genomic and phenotypic analyses of six offspring of a genome-edited hornless bull. Nature Biotechnology, 2019 [Published Online] doi: 10.1038/s41587-019-0266-0
[36]
Kaneko T, Sakuma T, Yamamoto T, Mashimo T. Simple knockout by electroporation of engineered endonucleases into intact rat embryos. Scientific Reports, 2015, 4(1): 6382
CrossRef Google scholar
[37]
Hashimoto M, Yamashita Y, Takemoto T. Electroporation of Cas9 protein/sgRNA into early pronuclear zygotes generates non-mosaic mutants in the mouse. Developmental Biology, 2016, 418(1): 1–9
CrossRef Google scholar
[38]
Hustedt N, Durocher D. The control of DNA repair by the cell cycle. Nature Cell Biology, 2017, 19(1): 1–9
CrossRef Google scholar
[39]
Laurinčík J, Hyttel P, Baran V, Eckert J, Lucas-Hahn A, Pivko J, Niemann H, Brem G, Schellander K. A detailed analysis of pronucleus development in bovine zygotes in vitro: cell-cycle chronology and ultrastructure. Molecular Reproduction and Development, 1998, 50(2): 192–199
CrossRef Google scholar
[40]
Ma H, Marti-Gutierrez N, Park S W, Wu J, Lee Y, Suzuki K, Koski A, Ji D, Hayama T, Ahmed R, Darby H, Van Dyken C, Li Y, Kang E, Park A R, Kim D, Kim S T, Gong J H, Gu Y, Xu X, Battaglia D, Krieg S A, Lee D M, Wu D H, Wolf D P, Heitner S B, Belmonte J C I, Amato P, Kim J S, Kaul S, Mitalipov S. Correction of a pathogenic gene mutation in human embryos. Nature, 2017, 548(7668): 413–419
CrossRef Google scholar
[41]
Riesenberg S, Chintalapati M, Macak D, Kanis P, Maricic T, Pääbo S. Simultaneous precise editing of multiple genes in human cells. Nucleic Acids Research, 2019, 47(19): e116
CrossRef Google scholar
[42]
Wilde J J, Aida T, Wienisch M, Zhang Q G, Qi P M, Feng G P. Efficient zygotic genome editing via RAD51-enhanced interhomolog repair. bioRxiv, 2018 [Preprint] doi: 10.1101/263699
[43]
Song J, Yang D S, Xu J, Zhu T Q, Chen Y E, Zhang J F. RS-1 enhances CRISPR/Cas9- and TALEN-mediated knock-in efficiency. Nature Communications, 2016, 7(1): 10548
CrossRef Google scholar
[44]
Gutschner T, Haemmerle M, Genovese G, Draetta G F, Chin L. Post-translational regulation of Cas9 during G1 enhances homology-directed repair. Cell Reports, 2016, 14(6): 1555–1566
CrossRef Google scholar
[45]
Howden S E, McColl B, Glaser A, Vadolas J, Petrou S, Little M H, Elefanty A G, Stanley E G A. Cas9 variant for efficient generation of indel-free knockin or gene-corrected human pluripotent stem cells. Stem Cell Reports, 2016, 7(3): 508–517
CrossRef Google scholar
[46]
Gu B, Posfai E, Rossant J. Efficient generation of targeted large insertions by microinjection into two-cell-stage mouse embryos. Nature Biotechnology, 2018, 36(7): 632–637
CrossRef Google scholar
[47]
Ma M, Zhuang F F, Hu X B, Wang B L, Wen X Z, Ji J F, Xi J J. Efficient generation of mice carrying homozygous double-floxp alleles using the Cas9-Avidin/Biotin-donor DNA system. Cell Research, 2017, 27(4): 578–581
CrossRef Google scholar
[48]
Aird E J, Lovendahl K N, St. Martin A S, Harris R S, Gordon W R. Increasing Cas9-mediated homology-directed repair efficiency through covalent tethering of DNA repair template. Communications Biology, 2018, 1(1): 54
CrossRef Google scholar
[49]
Quadros R M, Miura H, Harms D W, Akatsuka H, Sato T, Aida T, Redder R, Richardson G P, Inagaki Y, Sakai D, Buckley S M, Seshacharyulu P, Batra S K, Behlke M A, Zeiner S A, Jacobi A M, Izu Y, Thoreson W B, Urness L D, Mansour S L, Ohtsuka M, Gurumurthy C B. Easi-CRISPR: a robust method for one-step generation of mice carrying conditional and insertion alleles using long ssDNA donors and CRISPR ribonucleoproteins. Genome Biology, 2017, 18(1): 92
CrossRef Google scholar
[50]
Gaj T, Epstein B E, Schaffer D V. Genome engineering using adeno-associated virus: basic and clinical research applications. Molecular Therapy, 2016, 24(3): 458–464
CrossRef Google scholar
[51]
Nakade S, Tsubota T, Sakane Y, Kume S, Sakamoto N, Obara M, Daimon T, Sezutsu H, Yamamoto T, Sakuma T, Suzuki K T. Microhomology-mediated end-joining-dependent integration of donor DNA in cells and animals using TALENs and CRISPR/Cas9. Nature Communications, 2014, 5(1): 5560
CrossRef Google scholar
[52]
Yao X, Wang X, Hu X D, Liu Z, Liu J L, Zhou H B, Shen X W, Wei Y, Huang Z J, Ying W Q, Wang Y, Nie Y H, Zhang C C, Li S L, Cheng L P, Wang Q F, Wu Y, Huang P Y, Sun Q, Shi L Y, Yang H. Homology-mediated end joining-based targeted integration using CRISPR/Cas9. Cell Research, 2017, 27(6): 801–814
CrossRef Google scholar
[53]
Suzuki K, Tsunekawa Y, Hernandez-Benitez R, Wu J, Zhu J, Kim E J, Hatanaka F, Yamamoto M, Araoka T, Li Z, Kurita M, Hishida T, Li M, Aizawa E, Guo S C, Chen S, Goebl A, Soligalla R D, Qu J, Jiang T S, Fu X, Jafari M, Esteban C R, Berggren W T, Lajara J, Nuñez-Delicado E, Guillen P, Campistol J M, Matsuzaki F, Liu G H, Magistretti P, Zhang K, Callaway E M, Zhang K, Belmonte J C I. In vivo genome editing via CRISPR/Cas9 mediated homology-independent targeted integration. Nature, 2016, 540(7631): 144–149
CrossRef Google scholar
[54]
Liu X, Wang Y Z, Gao Y P, Su J M, Zhang J C, Xing X P, Zhou C, Yao K Z, An Q, Zhang Y. H3K9 demethylase KDM4E is an epigenetic regulator for bovine embryonic development and a defective factor for nuclear reprogramming. Development, 2018, 145(4): dev158261
CrossRef Google scholar
[55]
Holm P, Shukri N N, Vajta G, Booth P, Bendixen C, Callesen H. Developmental kinetics of the first cell cycles of bovine in vitro produced embryos in relation to their in vitro viability and sex. Theriogenology, 1998, 50(8): 1285–1299
CrossRef Google scholar
[56]
Wrenzycki C. In vitro Production of (Farm) Animal Embryos. In: Niemann H, Wrenzycki C, eds. Animal Biotechnology 1: Reproductive Biotechnologies. Cham: Springer, 2018, 269–304
[57]
Aiken C E M, Swoboda P P L, Skepper J N, Johnson M H. The direct measurement of embryogenic volume and nucleo-cytoplasmic ratio during mouse pre-implantation development. Reproduction, 2004, 128(5): 527–535
CrossRef Google scholar
[58]
Willadsen S M, Polge C. Attempts to produce monozygotic quadruplets in cattle by blastomere separation. Veterinary Record, 1981, 108(10): 211–213
CrossRef Google scholar
[59]
Tu Z C, Yang W L, Yan S, Yin A, Gao J Q, Liu X D, Zheng Y H, Zheng J Z, Li Z J, Yang S H, Li S H, Guo X Y, Li X J. Promoting Cas9 degradation reduces mosaic mutations in non-human primate embryos. Scientific Reports, 2017, 7(1): 42081
CrossRef Google scholar
[60]
Fisher P J, Hyndman D L, Bixley M J, Oback F C, Popovic L, McGowan L T, Berg M C, Wells D N. Brief communication: potential for genomic selection of bovine embryos. Proceedings of the New Zealand Society of Animal Production, 2012, 72: 156–158
[61]
Oback F C, Wei J, Popovic L, McGowan L T, Oliver J E, Delaney S R, Wells D N. Blastocyst bisection to multiply biopsied and vitrified bovine embryos. Reproduction, Fertility, and Development, 2016, 29(1): 154
CrossRef Google scholar
[62]
Evans M J, Kaufman M H. Establishment in culture of pluripotential cells from mouse embryos. Nature, 1981, 292(5819): 154–156
CrossRef Google scholar
[63]
Martin G R. Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proceedings of the National Academy of Sciences of the United States of America, 1981, 78(12): 7634–7638
CrossRef Google scholar
[64]
Capecchi M R. Gene targeting in mice: functional analysis of the mammalian genome for the twenty-first century. Nature Reviews. Genetics, 2005, 6(6): 507–512
CrossRef Google scholar
[65]
Mulas C, Kalkan T, von Meyenn F, Leitch H G, Nichols J, Smith A. Defined conditions for propagation and manipulation of mouse embryonic stem cells. Development, 2019, 146(6): dev173146
CrossRef Google scholar
[66]
Nagy A, Rossant J, Nagy R, Abramow-Newerly W, Roder J C. Derivation of completely cell culture-derived mice from early-passage embryonic stem cells. Proceedings of the National Academy of Sciences of the United States of America, 1993, 90(18): 8424–8428
CrossRef Google scholar
[67]
Nichols J, Smith A. Naïve and primed pluripotent states. Cell Stem Cell, 2009, 4(6): 487–492
CrossRef Google scholar
[68]
Suda Y, Suzuki M, Ikawa Y, Aizawa S. Mouse embryonic stem cells exhibit indefinite proliferative potential. Journal of Cellular Physiology, 1987, 133(1): 197–201
CrossRef Google scholar
[69]
Oback B, Huang B. Pluripotent Stem Cells in Livestock, in Stem Cells: From Basic Research to Therapy. In: Calegari F, Waskow C, eds. Stem Cells: From Basic Research to Therapy, Volume 2: Tissue Homeostasis and Regeneration during Adulthood, Applications, Legislation and Ethics. New York: CRC Press/Taylor & Francis Group, 2014, 305–346
[70]
Gao X F, Nowak-Imialek M, Chen X, Chen D S, Herrmann D, Ruan D, Chen A C H, Eckersley-Maslin M A E, Ahmad S, Lee Y L, Kobayashi T, Ryan D, Zhong J X, Zhu J C, Wu J, Lan G C, Petkov S, Yang J, Antunes L, Campos L S, Fu B Y, Wang S P, Yong Y, Wang X M, Xue S G, Ge L P, Liu Z H, Huang Y, Nie T, Li P, Wu D H, Pei D Q, Zhang Y, Lu L M, Yang F T, Kimber S J, Reik W, Zou X G, Shang Z C, Lai L X, Surani A, Tam P P L, Ahmed A, Yeung W S B, Teichmann S A, Niemann H, Liu P. Establishment of porcine and human expanded potential stem cells. Nature Cell Biology, 2019, 21(6): 687–699
CrossRef Google scholar
[71]
Bogliotti Y S, Wu J, Vilarino M, Okamura D, Soto D A, Zhong C Q, Sakurai M, Sampaio R V, Suzuki K, Izpisua Belmonte J C I, Ross P J. Efficient derivation of stable primed pluripotent embryonic stem cells from bovine blastocysts. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(9): 2090–2095
CrossRef Google scholar
[72]
Buecker C, Chen H H, Polo J M, Daheron L, Bu L, Barakat T S, Okwieka P, Porter A, Gribnau J, Hochedlinger K, Geijsen N. A murine ESC-like state facilitates transgenesis and homologous recombination in human pluripotent stem cells. Cell Stem Cell, 2010, 6(6): 535–546
CrossRef Google scholar
[73]
Hockemeyer D, Soldner F, Beard C, Gao Q, Mitalipova M, DeKelver R C, Katibah G E, Amora R, Boydston E A, Zeitler B, Meng X, Miller J C, Zhang L, Rebar E J, Gregory P D, Urnov F D, Jaenisch R. Highly efficient gene targeting of expressed and silent genes in human ESCs and iPSCs using zinc-finger nucleases. Nature Biotechnology, 2009, 27(9): 851–857
CrossRef Google scholar
[74]
Hockemeyer D, Wang H Y, Kiani S, Lai C S, Gao Q, Cassady J P, Cost G J, Zhang L, Santiago Y, Miller J C, Zeitler B, Cherone J M, Meng X D, Hinkley S J, Rebar E J, Gregory P D, Urnov F D, Jaenisch R. Genetic engineering of human pluripotent cells using TALE nucleases. Nature Biotechnology, 2011, 29(8): 731–734
CrossRef Google scholar
[75]
Hockemeyer D, Jaenisch R. Induced pluripotent stem cells meet genome editing. Cell Stem Cell, 2016, 18(5): 573–586
CrossRef Google scholar
[76]
Heyman Y, Chavatte-Palmer P, LeBourhis D, Camous S, Vignon X, Renard J P. Frequency and occurrence of late-gestation losses from cattle cloned embryos. Biology of Reproduction, 2002, 66(1): 6–13
CrossRef Google scholar
[77]
Misica-Turner P M, Oback F C, Eichenlaub M, Wells D N, Oback B. Aggregating embryonic but not somatic nuclear transfer embryos increases cloning efficiency in cattle. Biology of Reproduction, 2007, 76(2): 268–278
CrossRef Google scholar
[78]
Oback B. Cloning from stem cells: different lineages, different species, same story. Reproduction, Fertility, and Development, 2009, 21(1): 83–94
CrossRef Google scholar
[79]
Eggan K, Rode A, Jentsch I, Samuel C, Hennek T, Tintrup H, Zevnik B, Erwin J, Loring J, Jackson-Grusby L, Speicher M R, Kuehn R, Jaenisch R. Male and female mice derived from the same embryonic stem cell clone by tetraploid embryo complementation. Nature Biotechnology, 2002, 20(5): 455–459
CrossRef Google scholar
[80]
Humpherys D, Eggan K, Akutsu H, Hochedlinger K, Rideout W M 3rd, Biniszkiewicz D, Yanagimachi R, Jaenisch R. Epigenetic instability in ES cells and cloned mice. Science, 2001, 293(5527): 95–97
CrossRef Google scholar
[81]
Ideta A, Yamashita S, Seki-Soma M, Yamaguchi R, Chiba S, Komaki H, Ito T, Konishi M, Aoyagi Y, Sendai Y. Generation of exogenous germ cells in the ovaries of sterile NANOS3-null beef cattle. Scientific Reports, 2016, 6(1): 24983
CrossRef Google scholar
[82]
Tsuda M, Sasaoka Y, Kiso M, Abe K, Haraguchi S, Kobayashi S, Saga Y. Conserved role of nanos proteins in germ cell development. Science, 2003, 301(5637): 1239–1241
CrossRef Google scholar
[83]
Ruggiu M, Speed R, Taggart M, McKay S J, Kilanowski F, Saunders P, Dorin J, Cooke H J. The mouse Dazla gene encodes a cytoplasmic protein essential for gametogenesis. Nature, 1997, 389(6646): 73–77
CrossRef Google scholar
[84]
Park K E, Kaucher A V, Powell A, Waqas M S, Sandmaier S E S, Oatley M J, Park C H, Tibary A, Donovan D M, Blomberg L A, Lillico S G, Whitelaw C B A, Mileham A, Telugu B P, Oatley J M. Generation of germline ablated male pigs by CRISPR/Cas9 editing of the NANOS2 gene. Scientific Reports, 2017, 7(1): 40176
CrossRef Google scholar
[85]
McLean Z, Appleby S J, Wei J W, Snell R G, Oback B. Testes of DAZL null sheep lack spermatogonia and maintain normal somatic cells. bioRxiv, 2019 [Preprint] doi: 10.1101/848036
[86]
Giassetti M I, Ciccarelli M, Oatley J M. Spermatogonial stem cell transplantation: insights and outlook for domestic animals. Annual Review of Animal Biosciences, 2019, 7(1): 385–401
CrossRef Google scholar
[87]
Fehilly C B, Willadsen S M, Tucker E M. Experimental chimaerism in sheep. Journal of Reproduction and Fertility, 1984, 70(1): 347–351
CrossRef Google scholar
[88]
Picard L, Chartrain I, King W A, Betteridge K J. Production of chimaeric bovine embryos and calves by aggregation of inner cell masses with morulae. Molecular Reproduction and Development, 1990, 27(4): 295–304
CrossRef Google scholar
[89]
Brem G, Tenhumberg H, Krausslich H. Chimerism in cattle through microsurgical aggregation of morulae. Theriogenology, 1984, 22(5): 609–613
CrossRef Google scholar
[90]
Nakano K, Watanabe M, Matsunari H, Matsuda T, Honda K, Maehara M, Kanai T, Hayashida G, Kobayashi M, Kuramoto M, Arai Y, Umeyama K, Fujishiro S H, Mizukami Y, Nagaya M, Hanazono Y, Nagashima H. Generating porcine chimeras using inner cell mass cells and parthenogenetic preimplantation embryos. PLoS One, 2013, 8(4): e61900
CrossRef Google scholar
[91]
Onishi A, Takeda K, Komatsu M, Akita T, Kojima T. Production of chimeric pigs and the analysis of chimerism using mitochondrial deoxyribonucleic acid as a cell marker. Biology of Reproduction, 1994, 51(6): 1069–1075
CrossRef Google scholar
[92]
Hayashi K. In vitro reconstitution of germ cell development. Biology of Reproduction, 2019, 101(3): 567–578
CrossRef Google scholar
[93]
Haley C S, Visscher P M. Strategies to utilize marker-quantitative trait loci associations. Journal of Dairy Science, 1998, 81(Supplement 2): 85–97
CrossRef Google scholar
[94]
Friedrichs S, Takasu Y, Kearns P, Dagallier B, Oshima R, Schofield J, Moreddu C. An overview of regulatory approaches to genome editing in agriculture. Biotechnology Research and Innovation, 2019, 3(2): 208–220
CrossRef Google scholar
[95]
Ledford H. CRISPR conundrum: Strict European court ruling leaves food-testing labs without a plan. Nature, 2019, 572(7767): 15
CrossRef Google scholar
[96]
Food and Drug Administration (FDA). Guidance for industry #187: regulation of intentionally altered genomic DNA in animals. Available at the FDA website on September 21, 2019
[97]
Lema M A. Regulatory aspects of gene editing in Argentina. Transgenic Research, 2019, 28(Supplement 2): 147–150
CrossRef Google scholar
[98]
Thygesen P. Clarifying the regulation of genome editing in Australia: situation for genetically modified organisms. Transgenic Research, 2019, 28(Supplement 2): 151–159
CrossRef Google scholar
[99]
Ellens K W, Levac D, Pearson C, Savoie A, Strand N, Louter J, Tibelius C. Canadian regulatory aspects of gene editing technologies. Transgenic Research, 2019, 28(2): 165–168
CrossRef Google scholar
[100]
Wells D N, Oback B, Laible G. Cloning livestock: a return to embryonic cells. Trends in Biotechnology, 2003, 21(10): 428–432
CrossRef Google scholar

Acknowledgements

This work was funded by AgResearch and the Ministry of Business, Innovation and Employment. Figures containing graphic art were created with Biorender.com.

Compliance with ethics guidelines

Zachariah McLean, Björn Oback, and Götz Laible declare that they have no conflicts of interest or financial conflicts to disclose.
This article is a review and does not contain any studies with human or animal subjects performed by any of the authors.

RIGHTS & PERMISSIONS

The Author(s) 2020. Published by Higher Education Press. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0)
AI Summary AI Mindmap
PDF(554 KB)

Accesses

Citations

Detail

Sections
Recommended

/