Livestock breeding for the 21st century: the promise of the editing revolution
Chris PROUDFOOT, Gus MCFARLANE, Bruce WHITELAW, Simon LILLICO
Livestock breeding for the 21st century: the promise of the editing revolution
In recent years there has been a veritable explosion in the use of genome editors to create site-specific changes, both in vitro and in vivo, to the genomes of a multitude of species for both basic research and biotechnology. Livestock, which form a vital component of most societies, are no exception. While selective breeding has been hugely successful at enhancing some production traits, the rate of progress is often slow and is limited to variants that exist within the breeding population. Genome editing provides the potential to move traits between breeds, in a single generation, with no impact on existing productivity or to develop de novo phenotypes that tackle intractable issues such as disease. As such, genome editors provide huge potential for ongoing livestock development programs in light of increased demand and disease challenge. This review will highlight some of the more notable agricultural applications of this technology in livestock.
cattle / pig / sheep / chicken / aquaculture / CRISPR
[1] |
Torres-Perez R, Garcia-Martin J A, Montoliu L, Oliveros J C, Pazos F. WeReview: CRISPR tools—live repository of computational tools for assisting CRISPR/Cas experiments. Bioengineering, 2019, 6(3): 63
CrossRef
Pubmed
Google scholar
|
[2] |
Chaudhary K, Chattopadhyay A, Pratap D. The evolution of CRISPR/Cas9 and their cousins: hope or hype? Biotechnology Letters, 2018, 40(3): 465–477
CrossRef
Pubmed
Google scholar
|
[3] |
Pickar-Oliver A, Gersbach C A. The next generation of CRISPR-Cas technologies and applications. Nature Reviews: Molecular Cell Biology, 2019, 20(8): 490–507
CrossRef
Pubmed
Google scholar
|
[4] |
Christian M, Cermak T, Doyle E L, Schmidt C, Zhang F, Hummel A, Bogdanove A J, Voytas D F. Targeting DNA double-strand breaks with TAL effector nucleases. Genetics, 2010, 186(2): 757–761
CrossRef
Pubmed
Google scholar
|
[5] |
Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna J A, Charpentier E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science, 2012, 337(6096): 816–821
CrossRef
Pubmed
Google scholar
|
[6] |
Cong L, Ran F A, Cox D, Lin S, Barretto R, Habib N, Hsu P D, Wu X, Jiang W, Marraffini L A, Zhang F. Multiplex genome engineering using CRISPR/Cas systems. Science, 2013, 339(6121): 819–823
CrossRef
Pubmed
Google scholar
|
[7] |
Mali P, Yang L, Esvelt K M, Aach J, Guell M, DiCarlo J E, Norville J E, Church G M. RNA-guided human genome engineering via Cas9. Science, 2013, 339(6121): 823–826
CrossRef
Pubmed
Google scholar
|
[8] |
Hauschild J, Petersen B, Santiago Y, Queisser A L, Carnwath J W, Lucas-Hahn A, Zhang L, Meng X, Gregory P D, Schwinzer R, Cost G J, Niemann H. Efficient generation of a biallelic knockout in pigs using zinc-finger nucleases. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(29): 12013–12017
CrossRef
Pubmed
Google scholar
|
[9] |
Lillico S G, Proudfoot C, Carlson D F, Stverakova D, Neil C, Blain C, King T J, Ritchie W A, Tan W, Mileham A J, McLaren D G, Fahrenkrug S C, Whitelaw C B. Live pigs produced from genome edited zygotes. Scientific Reports, 2013, 3(1): 2847
CrossRef
Pubmed
Google scholar
|
[10] |
Park K E, Kaucher A V, Powell A, Waqas M S, Sandmaier S E, Oatley M J, Park C H, Tibary A, Donovan D M, Blomberg L A, Lillico S G, Whitelaw C B, Mileham A, Telugu B P, Oatley J M. Generation of germline ablated male pigs by CRISPR/Cas9 editing of the NANOS2 gene. Scientific Reports, 2017, 7(1): 40176
CrossRef
Pubmed
Google scholar
|
[11] |
He Z, Zhang T, Jiang L, Zhou M, Wu D, Mei J, Cheng Y. Use of CRISPR/Cas9 technology efficiently targetted goat myostatin through zygotes microinjection resulting in double-muscled phenotype in goats. Bioscience Reports, 2018, 38(6): BSR20180742
CrossRef
Pubmed
Google scholar
|
[12] |
Sheets T P, Park C H, Park K E, Powell A, Donovan D M, Telugu B P. Somatic cell nuclear transfer followed by CRIPSR/Cas9 microinjection results in highly efficient genome editing in cloned pigs. International Journal of Molecular Sciences, 2016, 17(12): 2031
CrossRef
Pubmed
Google scholar
|
[13] |
Carlson D F, Lancto C A, Zang B, Kim E S, Walton M, Oldeschulte D, Seabury C, Sonstegard T S, Fahrenkrug S C. Production of hornless dairy cattle from genome-edited cell lines. Nature Biotechnology, 2016, 34(5): 479–481
CrossRef
Pubmed
Google scholar
|
[14] |
Zhou S, Yu H, Zhao X, Cai B, Ding Q, Huang Y, Li Y, Li Y, Niu Y, Lei A, Kou Q, Huang X, Petersen B, Ma B, Chen Y, Wang X. Generation of gene-edited sheep with a defined Booroola fecundity gene (FecBB) mutation in bone morphogenetic protein receptor type 1B (BMPR1B) via clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated (Cas) 9. Reproduction, Fertility, and Development, 2018, 30(12): 1616–1621
CrossRef
Pubmed
Google scholar
|
[15] |
Lillico S G, Proudfoot C, King T J, Tan W, Zhang L, Mardjuki R, Paschon D E, Rebar E J, Urnov F D, Mileham A J, McLaren D G, Whitelaw C B. Mammalian interspecies substitution of immune modulatory alleles by genome editing. Scientific Reports, 2016, 6(1): 21645
CrossRef
Pubmed
Google scholar
|
[16] |
Tan W, Carlson D F, Lancto C A, Garbe J R, Webster D A, Hackett P B, Fahrenkrug S C. Efficient nonmeiotic allele introgression in livestock using custom endonucleases. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(41): 16526–16531
CrossRef
Pubmed
Google scholar
|
[17] |
Young A E, Mansour T A, McNabb B R, Owen J R, Trott J F, Brown C T, van Eenennaam A L. Genomic and phenotypic analyses of six offspring of a genome-edited hornless bull. Nature Biotechnology, 2019 [Published Online] doi: 10.1038/s41587-019-0266-0
Pubmed
|
[18] |
Grobet L, Royo Martin L J, Poncelet D, Pirottin D, Brouwers B, Riquet J, Schoeberlein A, Dunner S, Ménissier F, Massabanda J, Fries R, Hanset R, Georges M. A deletion in the bovine myostatin gene causes the double-muscled phenotype in cattle. Nature Genetics, 1997, 17(1): 71–74
CrossRef
Pubmed
Google scholar
|
[19] |
Clop A, Marcq F, Takeda H, Pirottin D, Tordoir X, Bibé B, Bouix J, Caiment F, Elsen J M, Eychenne F, Larzul C, Laville E, Meish F, Milenkovic D, Tobin J, Charlier C, Georges M. A mutation creating a potential illegitimate microRNA target site in the myostatin gene affects muscularity in sheep. Nature Genetics, 2006, 38(7): 813–818
CrossRef
Pubmed
Google scholar
|
[20] |
Proudfoot C, Carlson D F, Huddart R, Long C R, Pryor J H, King T J, Lillico S G, Mileham A J, McLaren D G, Whitelaw C B A, Fahrenkrug S C. Genome edited sheep and cattle. Transgenic Research, 2015, 24(1): 147–153
CrossRef
Pubmed
Google scholar
|
[21] |
Crispo M, Mulet A P, Tesson L, Barrera N, Cuadro F, dos Santos-Neto P C, Nguyen T H, Crénéguy A, Brusselle L, Anegón I, Menchaca A. Efficient generation of myostatin knock-out sheep using CRISPR/Cas9 technology and microinjection into zygotes. PLoS One, 2015, 10(8): e0136690
CrossRef
Pubmed
Google scholar
|
[22] |
Wang K, Ouyang H, Xie Z, Yao C, Guo N, Li M, Jiao H, Pang D. Efficient generation of myostatin mutations in pigs using the CRISPR/Cas9 system. Scientific Reports, 2015, 5(1): 16623
CrossRef
Pubmed
Google scholar
|
[23] |
Davis G H. Fecundity genes in sheep. Animal Reproduction Science, 2004, 82–83: 247–253
CrossRef
Pubmed
Google scholar
|
[24] |
Yue C, Bai W L, Zheng Y Y, Hui T Y, Sun J M, Guo D, Guo S L, Wang Z Y. Correlation analysis of candidate gene SNP for high-yield in Liaoning cashmere goats with litter size and cashmere performance. Animal Biotechnology, 2019 [Published Online] doi: 10.1080/10495398.2019.1652188
Pubmed
|
[25] |
Wei J, Wagner S, Maclean P, Brophy B, Cole S, Smolenski G, Carlson D F, Fahrenkrug S C, Wells D N, Laible G. Cattle with a precise, zygote-mediated deletion safely eliminate the major milk allergen β-lactoglobulin. Scientific Reports, 2018, 8(1): 7661
CrossRef
Pubmed
Google scholar
|
[26] |
Cui C, Song Y, Liu J, Ge H, Li Q, Huang H, Hu L, Zhu H, Jin Y, Zhang Y. Gene targeting by TALEN-induced homologous recombination in goats directs production of β-lactoglobulin-free, high-human lactoferrin milk. Scientific Reports, 2015, 5(1): 10482
CrossRef
Pubmed
Google scholar
|
[27] |
Zhou W, Wan Y, Guo R, Deng M, Deng K, Wang Z, Zhang Y, Wang F. Generation of β-lactoglobulin knock-out goats using CRISPR/Cas9. PLoS One, 2017, 12(10): e0186056
CrossRef
Pubmed
Google scholar
|
[28] |
Nan Y, Wu C, Gu G, Sun W, Zhang Y J, Zhou E M. Improved vaccine against PRRSV: current progress and future perspective. Frontiers in Microbiology, 2017, 8: 1635
CrossRef
Pubmed
Google scholar
|
[29] |
Calvert J G, Slade D E, Shields S L, Jolie R, Mannan R M, Ankenbauer R G, Welch S K. CD163 expression confers susceptibility to porcine reproductive and respiratory syndrome viruses. Journal of Virology, 2007, 81(14): 7371–7379
CrossRef
Pubmed
Google scholar
|
[30] |
Whitworth K M, Rowland R R, Ewen C L, Trible B R, Kerrigan M A, Cino-Ozuna A G, Samuel M S, Lightner J E, McLaren D G, Mileham A J, Wells K D, Prather R S. Gene-edited pigs are protected from porcine reproductive and respiratory syndrome virus. Nature Biotechnology, 2016, 34(1): 20–22
CrossRef
Pubmed
Google scholar
|
[31] |
Burkard C, Opriessnig T, Mileham A J, Stadejek T, Ait-Ali T, Lillico S G, Whitelaw C B A, Archibald A L. Pigs lacking the scavenger receptor cysteine-rich domain 5 of CD163 are resistant to porcine reproductive and respiratory syndrome virus 1 infection. Journal of Virology, 2018, 92(16): e0045-18
CrossRef
Pubmed
Google scholar
|
[32] |
Delmas B, Gelfi J, L’Haridon R, Vogel L K, Sjöström H, Norén O, Laude H. Aminopeptidase N is a major receptor for the entero-pathogenic coronavirus TGEV. Nature, 1992, 357(6377): 417–420
CrossRef
Pubmed
Google scholar
|
[33] |
Yeager C L, Ashmun R A, Williams R K, Cardellichio C B, Shapiro L H, Look A T, Holmes K V. Human aminopeptidase N is a receptor for human coronavirus 229E. Nature, 1992, 357(6377): 420–422
CrossRef
Pubmed
Google scholar
|
[34] |
Whitworth K M, Rowland R R R, Petrovan V, Sheahan M, Cino-Ozuna A G, Fang Y, Hesse R, Mileham A, Samuel M S, Wells K D, Prather R S. Resistance to coronavirus infection in amino peptidase N-deficient pigs. Transgenic Research, 2019, 28(1): 21–32
CrossRef
Pubmed
Google scholar
|
[35] |
Oh J S, Song D S, Park B K. Identification of a putative cellular receptor 150 kDa polypeptide for porcine epidemic diarrhea virus in porcine enterocytes. Journal of Veterinary Science, 2003, 4(3): 269–275
CrossRef
Pubmed
Google scholar
|
[36] |
Kamau A N, Park J E, Park E S, Yu J E, Rho J, Shin H J. Porcine amino peptidase N domain VII has critical role in binding and entry of porcine epidemic diarrhea virus. Virus Research, 2017, 227: 150–157
CrossRef
Pubmed
Google scholar
|
[37] |
Shirato K, Maejima M, Islam M T, Miyazaki A, Kawase M, Matsuyama S, Taguchi F. Porcine aminopeptidase N is not a cellular receptor of porcine epidemic diarrhea virus, but promotes its infectivity via aminopeptidase activity. Journal of General Virology, 2016, 97(10): 2528–2539
CrossRef
Pubmed
Google scholar
|
[38] |
Li W, Luo R, He Q, van Kuppeveld F J M, Rottier P J M, Bosch B J. Aminopeptidase N is not required for porcine epidemic diarrhea virus cell entry. Virus Research, 2017, 235: 6–13
CrossRef
Pubmed
Google scholar
|
[39] |
Gratacap R L, Wargelius A, Edvardsen R B, Houston R D. Potential of genome editing to improve aquaculture breeding and production. Trends in Genetics, 2019, 35(9): 672–684
CrossRef
Pubmed
Google scholar
|
[40] |
Li M, Yang H, Zhao J, Fang L, Shi H, Li M, Sun Y, Zhang X, Jiang D, Zhou L, Wang D. Efficient and heritable gene targeting in tilapia by CRISPR/Cas9. Genetics, 2014, 197(2): 591–599
CrossRef
Pubmed
Google scholar
|
[41] |
Santos Nassif Lacerda S M, Costa G M J, da Silva M A, Almeida Campos-Junior P H, Segatelli T M, Peixoto M T D, Resende R R, de França L R. Phenotypic characterization and in vitro propagation and transplantation of the Nile tilapia (Oreochromis niloticus) spermatogonial stem cells. General and Comparative Endocrinology, 2013, 192: 95–106
CrossRef
Pubmed
Google scholar
|
[42] |
Khalil K, Elayat M, Khalifa E, Daghash S, Elaswad A, Miller M, Abdelrahman H, Ye Z, Odin R, Drescher D, Vo K, Gosh K, Bugg W, Robinson D, Dunham R. Generation of myostatin gene-edited channel catfish (Ictalurus punctatus) via zygote injection of CRISPR/Cas9 system. Scientific Reports, 2017, 7(1): 7301
|
[43] |
Zhong Z, Niu P, Wang M, Huang G, Xu S, Sun Y, Xu X, Hou Y, Sun X, Yan Y, Wang H. Targeted disruption of sp7 and myostatin with CRISPR-Cas9 results in severe bone defects and more muscular cells in common carp. Scientific Reports, 2016, 6(1): 22953
CrossRef
Pubmed
Google scholar
|
[44] |
Wang C, Chen Y L, Bian W P, Xie S L, Qi G L, Liu L, Strauss P R, Zou J X, Pei D S. Deletion of MSTNa and MSTNb impairs the immune system and affects growth performance in zebrafish. Fish & Shellfish Immunology, 2018, 72: 572–580
CrossRef
Pubmed
Google scholar
|
[45] |
Wargelius A, Leininger S, Skaftnesmo K O, Kleppe L, Andersson E, Taranger G L, Schulz R W, Edvardsen R B. Dnd knockout ablates germ cells and demonstrates germ cell independent sex differentiation in Atlantic salmon. Scientific Reports, 2016, 6(1): 21284
CrossRef
Pubmed
Google scholar
|
[46] |
Zhang J, Song F, Sun Y, Yu K, Xiang J. CRISPR/Cas9-mediated deletion of EcMIH shortens metamorphosis time from mysis larva to postlarva of Exopalaemon carinicauda. Fish & Shellfish Immunology, 2018, 77: 244–251
CrossRef
Pubmed
Google scholar
|
[47] |
Yu H, Li H, Li Q, Xu R, Yue C, Du S. Targeted gene disruption in pacific oyster based on CRISPR/Cas9 ribonucleoprotein complexes. Marine Biotechnology, 2019, 21(3): 301–309
CrossRef
Pubmed
Google scholar
|
[48] |
van de Lavoir M C, Diamond J H, Leighton P A, Mather-Love C, Heyer B S, Bradshaw R, Kerchner A, Hooi L T, Gessaro T M, Swanberg S E, Delany M E, Etches R J. Germline transmission of genetically modified primordial germ cells. Nature, 2006, 441(7094): 766–769
CrossRef
Pubmed
Google scholar
|
[49] |
Taylor L, Carlson D F, Nandi S, Sherman A, Fahrenkrug S C, McGrew M J. Efficient TALEN-mediated gene targeting of chicken primordial germ cells. Development, 2017, 144(5): 928–934
CrossRef
Pubmed
Google scholar
|
[50] |
Woodcock M E, Gheyas A A, Mason A S, Nandi S, Taylor L, Sherman A, Smith J, Burt D W, Hawken R, McGrew M J. Reviving rare chicken breeds using genetically engineered sterility in surrogate host birds. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(42): 20930–20937
CrossRef
Pubmed
Google scholar
|
[51] |
Jenko J, Gorjanc G, Cleveland M A, Varshney R K, Whitelaw C B A, Woolliams J A, Hickey J M. Potential of promotion of alleles by genome editing to improve quantitative traits in livestock breeding programs. Genetics, Selection, Evolution, 2015, 47(1): 55
CrossRef
Pubmed
Google scholar
|
[52] |
Eriksson S, Jonas E, Rydhmer L, Röcklinsberg H. Invited review: breeding and ethical perspectives on genetically modified and genome edited cattle. Journal of Dairy Science, 2018, 101(1): 1–17
CrossRef
Pubmed
Google scholar
|
[53] |
McConnachie E, Hötzel M J, Robbins J A, Shriver A, Weary D M, von Keyserlingk M A G. Public attitudes towards genetically modified polled cattle. PLoS One, 2019, 14(5): e0216542
CrossRef
Pubmed
Google scholar
|
[54] |
Yunes M C, Teixeira D L, von Keyserlingk M A G, Hötzel M J. Is gene editing an acceptable alternative to castration in pigs? PLoS One, 2019, 14(6): e0218176
CrossRef
Pubmed
Google scholar
|
[55] |
McPhetres J, Rutjens B T, Weinstein N, Brisson J A. Modifying attitudes about modified foods: increased knowledge leads to more positive attitudes. Journal of Environmental Psychology, 2019, 64: 21–29
CrossRef
Google scholar
|
/
〈 | 〉 |