Wheat research and breeding in the new era of a high-quality reference genome

Rudi APPELS

PDF(871 KB)
PDF(871 KB)
Front. Agr. Sci. Eng. ›› 2019, Vol. 6 ›› Issue (3) : 225-232. DOI: 10.15302/J-FASE-2019265
REVIEW
REVIEW

Wheat research and breeding in the new era of a high-quality reference genome

Author information +
History +

Abstract

The publications of the International Wheat Genome Sequencing Consortium (IWGSC) released in August 2018 are reviewed and placed into the context of developments arising from the availability of the high-quality wheat genome assembly.

Keywords

assembly technology / molecular markers / polyploidy / transcript networks / wheat genome

Cite this article

Download citation ▾
Rudi APPELS. Wheat research and breeding in the new era of a high-quality reference genome. Front. Agr. Sci. Eng., 2019, 6(3): 225‒232 https://doi.org/10.15302/J-FASE-2019265

References

[1]
The International Wheat Genorne Sequencing Consortium (IWGSC), Appels R, Eversole K, Stein N, Feuillet C, Keller B, Rogers J, Pozniak C J, Choulet F, Distelfeld A, Eversole K, Poland J, Ronen G, Sharpe A G, Barad O, Baruch K, Keeble-Gagnère G, Mascher M, Ben-Zvi G, Josselin A A, Himmelbach A, Balfourier F, Gutierrez-Gonzalez J, Hayden M, Koh C, Muehlbauer G, Pasam R K, Paux E, Rigault P, Tibbits J, Tiwari V, Spannagl M, Lang D, Gundlach H, Haberer G, Mayer K F X, Ormanbekova D, Prade V, Šimková H, Wicker T, Swarbreck D, Rimbert H, Felder M, Guilhot N, Kaithakottil G, Keilwagen J, Leroy P, Lux T, Twardziok S, Venturini L, Juhász A, Abrouk M, Fischer I, Uauy C, Borrill P, Ramirez-Gonzalez R H, Arnaud D, Chalabi S, Chalhoub B, Cory A, Datla R, Davey M W, Jacobs J, Robinson S J, Steuernagel B, van Ex F, Wulff B B H, Benhamed M, Bendahmane A, Concia L, Latrasse D, Bartoš J, Bellec A, Berges H, Doležel J, Frenkel Z, Gill B, Korol A, Letellier T, Olsen O A, Singh K, Valárik M, van der Vossen E, Vautrin S, Weining S, Fahima T, Glikson V, Raats D, Číhalíková J, Toegelová H, Vrána J, Sourdille P, Darrier B, Barabaschi D, Cattivelli L, Hernandez P, Galvez S, Budak H, Jones J D G, Witek K, Yu G, Small I, Melonek J, Zhou R, Belova T, Kanyuka K, King R, Nilsen K, Walkowiak S, Cuthbert R, Knox R, Wiebe K, Xiang D, Rohde A, Golds T, Čížková J, Akpinar B A, Biyiklioglu S, Gao L, N’Daiye A, Kubaláková M, Šafář J, Alfama F, Adam-Blondon A F, Flores R, Guerche C, Loaec M, Quesneville H, Condie J, Ens J, Maclachlan R, Tan Y, Alberti A, Aury J M, Barbe V, Couloux A, Cruaud C, Labadie K, Mangenot S, Wincker P, Kaur G, Luo M, Sehgal S, Chhuneja P, Gupta O P, Jindal S, Kaur P, Malik P, Sharma P, Yadav B, Singh N K, Khurana J P, Chaudhary C, Khurana P, Kumar V, Mahato A, Mathur S, Sevanthi A, Sharma N, Tomar R S, Holušová K, Plíhal O, Clark M D, Heavens D, Kettleborough G, Wright J, Balcárková B, Hu Y, Salina E, Ravin N, Skryabin K, Beletsky A, Kadnikov V, Mardanov A, Nesterov M, Rakitin A, Sergeeva E, Handa H, Kanamori H, Katagiri S, Kobayashi F, Nasuda S, Tanaka T, Wu J, Cattonaro F, Jiumeng M, Kugler K, Pfeifer M, Sandve S, Xun X, Zhan B, Batley J, Bayer P E, Edwards D, Hayashi S, Tulpová Z, Visendi P, Cui L, Du X, Feng K, Nie X, Tong W, Wang L. Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science, 2018, 361(6403): 361–374
Pubmed
[2]
Ramírez-González R H, Borrill P, Lang D, Harrington S A, Brinton J, Venturini L, Davey M, Jacobs J, van Ex F, Pasha A, Khedikar Y, Robinson S J, Cory A T, Florio T, Concia L, Juery C, Schoonbeek H, Steuernagel B, Xiang D, Ridout C J, Chalhoub B, Mayer K F X, Benhamed M, Latrasse D, Bendahmane A, International Wheat Genome Sequencing Consortium, Wulff B B H, Appels R, Tiwari V, Datla R, Choulet F, Pozniak C J, Provart N J, Sharpe A G, Paux E, Spannagl M, Bräutigam A, Uauy C. The transcriptional landscape of polyploid wheat. Science, 2018, 361(6403): eaar6089
[3]
Juhász A, Belova T, Florides C G, Maulis C, Fischer I, Gell G, Birinyi Z, Ong J, Keeble-Gagnère G, Maharajan A, Ma W, Gibson P, Jia J, Lang D, Mayer K F X, Spannagl M, Tye-Din J A, Appels R, Olsen O A. Genome mapping of seed-borne allergens and immunoresponsive proteins in wheat. Science Advances, 2018, 4(8): eaar8602
CrossRef Pubmed Google scholar
[4]
Keeble-Gagnère G, Rigault P, Tibbits J, Pasam R, Hayden M, Forrest K, Frenkel Z, Korol A, Huang B E, Cavanagh C, Taylor J, Abrouk M, Sharpe A, Konkin D, Sourdille P, Darrier B, Choulet F, Bernard A, Rochfort S, Dimech A, Watson-Haigh N, Baumann U, Eckermann P, Fleury D, Juhasz A, Boisvert S, Nolin M A, Doležel J, Šimková H, Toegelová H, Šafář J, Luo M C, Câmara F, Pfeifer M, Isdale D, Nyström-Persson J, Iwgsc, Koo D H, Tinning M, Cui D, Ru Z, Appels R. Optical and physical mapping with local finishing enables megabase-scale resolution of agronomically important regions in the wheat genome. Genome Biology, 2018, 19(1): 112
CrossRef Pubmed Google scholar
[5]
Thind A K, Wicker T, Müller T, Ackermann P M, Steuernagel B, Wulff B B H, Spannagl M, Twardziok S O, Felder M, Lux T, Mayer K F X, Keller B, Krattinger S G. Chromosome-scale comparative sequence analysis unravels molecular mechanisms of genome dynamics between two wheat cultivars. Genome Biology, 2018, 19(1): 104
CrossRef Pubmed Google scholar
[6]
Wicker T, Gundlach H, Spannagl M, Uauy C, Borrill P, Ramírez-González R H, de Oliveira R, Mayer K F X, Paux E, Choulet F. Impact of transposable elements on genome structure and evolution in bread wheat. Genome Biology, 2018, 19(1): 103
CrossRef Pubmed Google scholar
[7]
Alaux M, Rogers J, Letellier T, Flores R, Alfama F, Pommier C, Mohellibi N, Durand S, Kimmel E, Michotey C, Guerche C, Loaec M, Lainé M, Steinbach D, Choulet F, Rimbert H, Leroy P, Guilhot N, Salse J, Feuillet C, Paux E, Eversole K, Adam-Blondon A F, Quesneville H. Linking the International Wheat Genome Sequencing Consortium bread wheat reference genome sequence to wheat genetic and phenomic data. Genome Biology, 2018, 19(1): 111
CrossRef Pubmed Google scholar
[8]
Sears E R. Misdivision of univalents in common wheat. Chromosoma, 1952, 4(6): 535–550
Pubmed
[9]
Sears E R. Chromosome mapping with the aid of telocentrics. Hereditas, 1966, 2: 370–381
[10]
Sears E R, Miller T. The history of Chinese Spring wheat. Cereal Research Communications, 1985, 13: 261–263
[11]
Liu D, Zhang L, Hao M, Ning S, Yuan Z, Shoufen Dai S, Huang L, Wu B, Yan Z, Lan X, Zheng Y. Wheat breeding in the hometown of Chinese Spring. Crop Journal, 2018, 6(1): 82–90
CrossRef Google scholar
[12]
Gill B S, Appels R, Botha-Oberholster A M, Buell C R, Bennetzen J L, Chalhoub B, Chumley F, Dvorák J, Iwanaga M, Keller B, Li W, McCombie W R, Ogihara Y, Quetier F, Sasaki T. A workshop report on wheat genome sequencing: International Genome Research on Wheat Consortium. Genetics, 2004, 168(2): 1087–1096
CrossRef Pubmed Google scholar
[13]
Doležel J, Doleželová M, Suchánková, P, Šafář J, Kovářová P, Bartoš J, Číhalíková J, Šimková H. Flow cytogenetic analysis of the wheat genome. Frontiers of Wheat Bioscience, 2005, Memorial Issue (Wheat Information Service No.100): 3–15
[14]
Clavijo B J, Venturini L, Schudoma C, Accinelli G G, Kaithakottil G, Wright J, Borrill P, Kettleborough G, Heavens D, Chapman H, Lipscombe J, Barker T, Lu F H, McKenzie N, Raats D, Ramirez-Gonzalez R H, Coince A, Peel N, Percival-Alwyn L, Duncan O, Trösch J, Yu G, Bolser D M, Namaati G, Kerhornou A, Spannagl M, Gundlach H, Haberer G, Davey R P, Fosker C, Palma F D, Phillips A L, Millar A H, Kersey P J, Uauy C, Krasileva K V, Swarbreck D, Bevan M W, Clark M D. An improved assembly and annotation of the allohexaploid wheat genome identifies complete families of agronomic genes and provides genomic evidence for chromosomal translocations. Genome Research, 2017, 27(5): 885–896
CrossRef Pubmed Google scholar
[15]
Zimin A V, Puiu D, Hall R, Kingan S, Clavijo B J, Salzberg S L. The first near-complete assembly of the hexaploid bread wheat genome, Triticum aestivum. GigaScience, 2017, 6(11): 1–7
CrossRef Pubmed Google scholar
[16]
Ogihara Y. Genome science of polyploid wheat. Wheat Information Service, 2005, 100: 169–184
[17]
Appels R, Nystrom-Persson J, Keeble-Gagnere G. Advances in genome studies in plants and animals. Functional & Integrative Genomics, 2014, 14(1): 1–9
CrossRef Pubmed Google scholar
[18]
Simonis M, Klous P, Splinter E, Moshkin Y, Willemsen R, de Wit E, van Steensel B, de Laat W. Nuclear organization of active and inactive chromatin domains uncovered by chromosome conformation capture-on-chip (4C). Nature Genetics, 2006, 38(11): 1348–1354
CrossRef Pubmed Google scholar
[19]
Lee E, Helt G A, Reese J T, Munoz-Torres M C, Childers C P, Buels R M, Stein L, Holmes I H, Elsik C G, Lewis S E. Web Apollo: a web-based genomic annotation editing platform. Genome Biology, 2013, 14(8): R93
CrossRef Pubmed Google scholar
[20]
The International Wheat Genome Sequencing Consortium (IWGSC), Mayer K F X, Rogers J, Doležel J, Pozniak C, Eversole K, Feuillet C, Gill B, Friebe B, Lukaszewski A J, Sourdille P, Endo T R, Kubaláková M, Cíhalíková J, Dubská Z, Vrána J, Sperková R, Simková H, Febrer M, Clissold L, McLay K, Singh K, Chhuneja P, Singh N K, Khurana J, Akhunov E, Choulet F, Alberti A, Barbe V, Wincker P, Kanamori H, Kobayashi F, Itoh T, Matsumoto T, Sakai H, Tanaka T, Wu J, Ogihara Y, Handa H, Maclachlan P R, Sharpe A, Klassen D, Edwards D, Batley J, Olsen O A, Sandve S R, Lien S, Steuernagel B, Wulff B, Caccamo M, Ayling S, Ramirez-Gonzalez R H, Clavijo B J, Wright J, Pfeifer M, Spannagl M, Martis M M, Mascher M, Chapman J, Poland J A, Scholz U, Barry K, Waugh R, Rokhsar D S, Muehlbauer G J, Stein N, Gundlach H, Zytnicki M, Jamilloux V, Quesneville H, Wicker T, Faccioli P, Colaiacovo M, Stanca A M, Budak H, Cattivelli L, Glover N, Pingault L, Paux E, Sharma S, Appels R, Bellgard M, Chapman B, Nussbaumer T, Bader K C, Rimbert H, Wang S, Knox R, Kilian A, Alaux M, Alfama F, Couderc L, Guilhot N, Viseux C, Loaec M, Keller B, Praud S. A chromosome-based draft sequence of the hexaploid bread wheat (Triticum aestivum) genome. Science, 2014, 345(6194): 1251788
CrossRef Pubmed Google scholar
[21]
Ogbonnaya F C, Halloran G M, Lagudah E S. D genome of wheat: 60 years on from Kihara, Sears and McFadden. Wheat Information Service, 2005, 100: 205–220
[22]
Bromilow S, Gethings L A, Buckley M, Bromley M, Shewry P R, Langridge J I, Clare Mills E N. A curated gluten protein sequence database to support development of proteomics methods for determination of gluten in gluten-free foods. Journal of Proteomics, 2017, 163: 67–75
CrossRef Pubmed Google scholar
[23]
Altenbach S B, Chang H C, Simon-Buss A, Jang Y R, Denery-Papini S, Pineau F, Gu Y Q, Huo N, Lim S H, Kang C S, Lee J Y. Towards reducing the immunogenic potential of wheat flour: omega gliadins encoded by the D genome of hexaploid wheat may also harbor epitopes for the serious food allergy WDEIA. BMC Plant Biology, 2018, 18(1): 291
CrossRef Pubmed Google scholar
[24]
Kawaura K, Miura M, Kamei Y, Ikeda T M, Ogihara Y. Molecular characterization of gliadins of Chinese Spring wheat in relation to celiac disease elicitors. Genes & Genetic Systems, 2018, 93(1): 9– 20
CrossRef Pubmed Google scholar
[25]
Zhao X C, Batey I L, Sharp P J, Crosbie G, Barclay I, Wilson R, Morell M K, Appels R. A single genetic locus associated with starch granule and noodle quality in wheat. Journal of Cereal Science, 1998, 27(1): 7–13
CrossRef Google scholar
[26]
Wicker T, Gundlach H, Spannagl M, Uauy C, Borrill P, Ramírez-González R H, de Oliveira R, Mayer K F X, Paux E, Choulet F. Impact of transposable elements on genome structure and evolution in bread wheat. Genome Biology, 2018, 19(1): 103
CrossRef Pubmed Google scholar
[27]
Thind A K, Wicker T, Müller T, Ackermann P M, Steuernagel B, Wulff B B H, Spannagl M, Twardziok S O, Felder M, Lux T, Mayer K F X, Keller B, Krattinger S G. Chromosome-scale comparative sequence analysis unravels molecular mechanisms of genome dynamics between two wheat cultivars. Genome Biology, 2018, 19(1): 104
CrossRef Pubmed Google scholar
[28]
Mukai Y. Perspectives in molecular cytogenetics of wheat. Wheat Information Service, 2005, 100: 17–32
[29]
Rasheed A, Hao Y, Xia X, Khan A, Xu Y, Varshney R K, He Z. Crop breeding chips and genotyping platforms: progress, challenges, and perspectives. Molecular Plant, 2017, 10(8): 1047–1064
CrossRef Pubmed Google scholar
[30]
Poland J, Endelman J, Dawson J, Rutkoski J, Wu S, Manes Y, Dreisigacker S, Crossa J, Sánchez-Villeda H, Sorrells M, Jannink J L. Genomic selection in wheat breeding using genotyping-by-sequencing. Plant Genome, 2012, 5(3): 103–113
CrossRef Google scholar
[31]
Manosalva P M, Davidson R M, Liu B, Zhu X, Hulbert S H, Leung H, Leach J E. A germin-like protein gene family functions as a complex quantitative trait locus conferring broad-spectrum disease resistance in rice. Plant Physiology, 2009, 149(1): 286–296
CrossRef Pubmed Google scholar
[32]
Mago R, Tabe L, Vautrin S, Šimková H, Kubaláková M, Upadhyaya N, Berges H, Kong X, Breen J, Doležel J, Appels R, Ellis J G, Spielmeyer W, Spielmeyer W. Major haplotype divergence including multiple germin-like protein genes, at the wheat Sr2 adult plant stem rust resistance locus. BMC Plant Biology, 2014, 14(1): 379
CrossRef Pubmed Google scholar
[33]
Keeble-Gagnere G, Isdale D, Suchecki R, Kruger A, Lomas K, Carroll D, Li S, Whan A, Hayden M, Tibbits J. Integrating past, present and future wheat research with Pretzel. bioRix, 2019 (preprint). doi:10.1101/517953
[34]
Sharma N, Ruelens P, D’hauw M, Maggen T, Dochy N, Torfs S, Kaufmann K, Rohde A, Geuten K. A flowering locus C homolog is a vernalization-regulated repressor in Brachypodium and is cold regulated in wheat. Plant Physiology, 2017, 173(2): 1301–1315
CrossRef Pubmed Google scholar
[35]
Shaw L M, Lyu B, Turner R, Li C, Chen F, Han X, Fu D, Dubcovsky J. FLOWERING LOCUS T2 regulates spike development and fertility in temperate cereals. Journal of Experimental Botany, 2019, 70(1): 193–204
CrossRef Pubmed Google scholar

Acknowledgements

The author is grateful to colleagues in the wheat community for their stimulating insights into the wheat genome.

Compliance with ethics guidelines

Rudi Appels declares that there is no conflict of interest or financial conflict to disclose.
This article is a review and does not contain any studies with human or animal subjects performed by the author.

RIGHTS & PERMISSIONS

The Author(s) 2019. Published by Higher Education Press. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0)
AI Summary AI Mindmap
PDF(871 KB)

Accesses

Citations

Detail

Sections
Recommended

/