The past, present and future of bovine pluripotent stem cells: a brief overview

Xiuchun TIAN

PDF(139 KB)
PDF(139 KB)
Front. Agr. Sci. Eng. ›› 2019, Vol. 6 ›› Issue (1) : 3-7. DOI: 10.15302/J-FASE-2018247
REVIEW
REVIEW

The past, present and future of bovine pluripotent stem cells: a brief overview

Author information +
History +

Abstract

Although the pursuit of bovine embryonic stem cells started more than 26 years ago for the purpose of gene-targeting, true pluripotent stem cells in this economically important species are still elusive. With the rapid advances in genome-editing and cloning using homologously recombined somatic cells, the need for pluripotent stem cells for precise genetic modification in any species became questionable. With the pig being the better model for human regenerative biology, the identification of the commonalities and uniqueness of the pluripotency circuitry across mammalian species may be the main objective for studying pluripotent stem cells in the bovine.

Keywords

bovine / embryonic / induced / pluripotent stem cells

Cite this article

Download citation ▾
Xiuchun TIAN. The past, present and future of bovine pluripotent stem cells: a brief overview. Front. Agr. Sci. Eng., 2019, 6(1): 3‒7 https://doi.org/10.15302/J-FASE-2018247

References

[1]
Saito S, Strelchenko N, Niemann H. Bovine embryonic stem cell-like cell lines cultured over several passages. Roux’s Archives of Developmental Biology, 1992, 201(3): 134–141
CrossRef Pubmed Google scholar
[2]
Li P, Tong C, Mehrian-Shai R, Jia L, Wu N, Yan Y, Maxson R E, Schulze E N, Song H, Hsieh C L, Pera M F, Ying Q L. Germline competent embryonic stem cells derived from rat blastocysts. Cell, 2008, 135(7): 1299–1310
CrossRef Pubmed Google scholar
[3]
West F D, Uhl E W, Liu Y, Stowe H, Lu Y, Yu P, Gallegos-Cardenas A, Pratt S L, Stice S L. Brief report: chimeric pigs produced from induced pluripotent stem cells demonstrate germline transmission and no evidence of tumor formation in young pigs. Stem Cells, 2011, 29(10): 1640–1643
CrossRef Pubmed Google scholar
[4]
Bradley A, Evans M, Kaufman M H, Robertson E. Formation of germ-line chimaeras from embryo-derived teratocarcinoma cell lines. Nature, 1984, 309(5965): 255–256
CrossRef Pubmed Google scholar
[5]
Thomson J A, Itskovitz-Eldor J, Shapiro S S, Waknitz M A, Swiergiel J J, Marshall V S, Jones J M. Embryonic stem cell lines derived from human blastocysts. Science, 1998, 282(5391): 1145–1147
CrossRef Pubmed Google scholar
[6]
Nichols J, Smith A. Naive and primed pluripotent states. Cell Stem Cell, 2009, 4(6): 487–492
[7]
Brons I G, Smithers L E, Trotter M W, Rugg-Gunn P, Sun B, Chuva de Sousa Lopes S M, Howlett S K, Clarkson A, Ahrlund-Richter L, Pedersen R A, Vallier L. Derivation of pluripotent epiblast stem cells from mammalian embryos. Nature, 2007, 448(7150): 191–195
CrossRef Pubmed Google scholar
[8]
Tesar P J, Chenoweth J G, Brook F A, Davies T J, Evans E P, Mack D L, Gardner R L, McKay R D. New cell lines from mouse epiblast share defining features with human embryonic stem cells. Nature, 2007, 448(7150): 196–199
CrossRef Pubmed Google scholar
[9]
James D, Levine A J, Besser D, Hemmati-Brivanlou A. TGFβ/activin/nodal signaling is necessary for the maintenance of pluripotency in human embryonic stem cells. Development, 2005, 132(6): 1273–1282
CrossRef Pubmed Google scholar
[10]
Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 2006, 126(4): 663–676
CrossRef Pubmed Google scholar
[11]
Yu J, Vodyanik M A, Smuga-Otto K, Antosiewicz-Bourget J, Frane J L, Tian S, Nie J, Jonsdottir G A, Ruotti V, Stewart R, Slukvin I I, Thomson J A. Induced pluripotent stem cell lines derived from human somatic cells. Science, 2007, 318(5858): 1917–1920
CrossRef Pubmed Google scholar
[12]
Buecker C, Chen H H, Polo J M, Daheron L, Bu L, Barakat T S, Okwieka P, Porter A, Gribnau J, Hochedlinger K, Geijsen N. A murine ESC-like state facilitates transgenesis and homologous recombination in human pluripotent stem cells. Cell Stem Cell, 2010, 6(6): 535–546
CrossRef Pubmed Google scholar
[13]
Hanna J, Cheng A W, Saha K, Kim J, Lengner C J, Soldner F, Cassady J P, Muffat J, Carey B W, Jaenisch R. Human embryonic stem cells with biological and epigenetic characteristics similar to those of mouse ESCs. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(20): 9222–9227
CrossRef Pubmed Google scholar
[14]
Gafni O, Weinberger L, Mansour A A, Manor Y S, Chomsky E, Ben-Yosef D, Kalma Y, Viukov S, Maza I, Zviran A, Rais Y, Shipony Z, Mukamel Z, Krupalnik V, Zerbib M, Geula S, Caspi I, Schneir D, Shwartz T, Gilad S, Amann-Zalcenstein D, Benjamin S, Amit I, Tanay A, Massarwa R, Novershtern N, Hanna J H. Derivation of novel human ground state naive pluripotent stem cells. Nature, 2013, 504(7479): 282–286
CrossRef Pubmed Google scholar
[15]
Wu J, Platero-Luengo A, Sakurai M, Sugawara A, Gil M A, Yamauchi T, Suzuki K, Bogliotti Y S, Cuello C, Morales Valencia M, Okumura D, Luo J, Vilariño M, Parrilla I, Soto D A, Martinez C A, Hishida T, Sánchez-Bautista S, Martinez-Martinez M L, Wang H, Nohalez A, Aizawa E, Martinez-Redondo P, Ocampo A, Reddy P, Roca J, Maga E A, Esteban C R, Berggren W T, Nuñez Delicado E, Lajara J, Guillen I, Guillen P, Campistol J M, Martinez E A, Ross P J, Izpisua Belmonte J C. Interspecies chimerism with mammalian pluripotent stem cells. Cell, 2017, 168(3): 473–486
CrossRef Pubmed Google scholar
[16]
Yang Y, Liu B, Xu J, Wang J, Wu J, Shi C, Xu Y, Dong J, Wang C, Lai W, Zhu J, Xiong L, Zhu D, Li X, Yang W, Yamauchi T, Sugawara A, Li Z, Sun F, Li X, Li C, He A, Du Y, Wang T, Zhao C, Li H, Chi X, Zhang H, Liu Y, Li C, Duo S, Yin M, Shen H, Belmonte J C I, Deng H. Derivation of pluripotent stem cells with in vivo embryonic and extraembryonic potency. Cell, 2017, 169(2): 243–257
CrossRef Pubmed Google scholar
[17]
Wu X, Song M, Yang X, Liu X, Liu K, Jiao C, Wang J, Bai C, Su G, Liu X, Li G. Establishment of bovine embryonic stem cells after knockdown of CDX2. Scientific Reports, 2016, 6(1): 28343
CrossRef Pubmed Google scholar
[18]
Cibelli J B, Stice S L, Golueke P J, Kane J J, Jerry J, Blackwell C, de León F A P, Robl J M. Transgenic bovine chimeric offspring produced from somatic cell-derived stem-like cells. Nature Biotechnology, 1998, 16(7): 642–646
CrossRef Pubmed Google scholar
[19]
Bogliotti Y S, Wu J, Vilarino M, Okamura D, Soto D A, Zhong C, Sakurai M, Sampaio R V, Suzuki K, Izpisua Belmonte J C, Ross P J. Efficient derivation of stable primed pluripotent embryonic stem cells from bovine blastocysts. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(9): 2090–2095
CrossRef Pubmed Google scholar
[20]
Sumer H, Liu J, Malaver-Ortega L F, Lim M L, Khodadadi K, Verma P J. NANOG is a key factor for induction of pluripotency in bovine adult fibroblasts. Journal of Animal Science, 2011, 89(9): 2708–2716
CrossRef Pubmed Google scholar
[21]
Han X, Han J, Ding F, Cao S, Lim S S, Dai Y, Zhang R, Zhang Y, Lim B, Li N. Generation of induced pluripotent stem cells from bovine embryonic fibroblast cells. Cell Research, 2011, 21(10): 1509–1512
CrossRef Pubmed Google scholar
[22]
Cao H, Yang P, Pu Y, Sun X, Yin H, Zhang Y, Zhang Y, Li Y, Liu Y, Fang F, Zhang Z, Tao Y, Zhang X. Characterization of bovine induced pluripotent stem cells by lentiviral transduction of reprogramming factor fusion proteins. International Journal of Biological Sciences, 2012, 8(4): 498–511
CrossRef Pubmed Google scholar
[23]
Talluri T R, Kumar D, Glage S, Garrels W, Ivics Z, Debowski K, Behr R, Niemann H, Kues W A. Derivation and characterization of bovine induced pluripotent stem cells by transposon-mediated reprogramming. Cellular Reprogramming, 2015, 17(2): 131–140
CrossRef Pubmed Google scholar
[24]
Malaver-Ortega L F, Sumer H, Liu J, Verma P J. Inhibition of JAK-STAT ERK/MAPK and glycogen synthase kinase-3 induces a change in gene expression profile of bovine induced pluripotent stem cells. Stem Cells International, 2016, 2016: 5127984
CrossRef Pubmed Google scholar
[25]
Wang S W, Wang S S, Wu D C, Lin Y C, Ku C C, Wu C C, Chai C Y, Lee J N, Tsai E M, Lin C L, Yang R C, Ko Y C, Yu H S, Huo C, Chuu C P, Murayama Y, Nakamura Y, Hashimoto S, Matsushima K, Jin C, Eckner R, Lin C S, Saito S, Yokoyama K K. Androgen receptor-mediated apoptosis in bovine testicular induced pluripotent stem cells in response to phthalate esters. Cell Death & Disease, 2013, 4(11): e907
CrossRef Pubmed Google scholar
[26]
Lin Y C, Kuo K K, Wuputra K, Lin S H, Ku C C, Yang Y H, Wang S W, Wang S W, Wu D C, Wu C C, Chai C Y, Lin C L, Lin C S, Kajitani M, Miyoshi H, Nakamura Y, Hashimoto S, Matsushima K, Jin C, Huang S K, Saito S, Yokoyama K K. Bovine induced pluripotent stem cells are more resistant to apoptosis than testicular cells in response to mono-(2-ethylhexyl) phthalate. International Journal of Molecular Sciences, 2014, 15(3): 5011–5031
CrossRef Pubmed Google scholar
[27]
Heo Y T, Quan X, Xu Y N, Baek S, Choi H, Kim N H, Kim J. CRISPR/Cas9 nuclease-mediated gene knock-in in bovine-induced pluripotent cells. Stem Cells and Development, 2015, 24(3): 393–402
CrossRef Pubmed Google scholar
[28]
Kawaguchi T, Tsukiyama T, Kimura K, Matsuyama S, Minami N, Yamada M, Imai H. Generation of naïve bovine induced pluripotent stem cells using piggyBac transposition of doxycycline-inducible transcription factors. PLoS One, 2015, 10(8): e0135403
CrossRef Pubmed Google scholar
[29]
Kawaguchi T, Cho D, Hayashi M, Tsukiyama T, Kimura K, Matsuyama S, Minami N, Yamada M, Imai H. Derivation of induced trophoblast cell lines in cattle by doxycycline-inducible piggyBac vectors. PLoS One, 2016, 11(12): e0167550
CrossRef Pubmed Google scholar
[30]
Talbot N C, Sparks W O, Phillips C E, Ealy A D, Powell A M, Caperna T J, Garrett W M, Donovan D M, Blomberg L A. Bovine trophectoderm cells induced from bovine fibroblasts with induced pluripotent stem cell reprogramming factors. Molecular Reproduction and Development, 2017, 84(6): 468–485
CrossRef Pubmed Google scholar
[31]
Ezashi T, Matsuyama H, Telugu B P, Roberts R M. Generation of colonies of induced trophoblast cells during standard reprogramming of porcine fibroblasts to induced pluripotent stem cells. Biology of Reproduction, 2011, 85(4): 779–787
CrossRef Pubmed Google scholar
[32]
Williams T J, Munro R K, Shelton J N. Production of interspecies chimeric calves by aggregation of Bos indicus and Bos taurus demi-embryos. Reproduction, Fertility, and Development, 1990, 2(4): 385–394
CrossRef Pubmed Google scholar
[33]
Boediono A, Suzuki T, Li L Y, Godke R A. Offspring born from chimeras reconstructed from parthenogenetic and in vitro fertilized bovine embryos. Molecular Reproduction and Development, 1999, 53(2): 159–170
CrossRef Pubmed Google scholar
[34]
Hiriart M I, Bevacqua R J, Canel N G, Fernández-Martín R, Salamone D F. Production of chimeric embryos by aggregation of bovine egfp eight-cell stage blastomeres with two-cell fused and asynchronic embryos. Theriogenology, 2013, 80(4): 357–364
CrossRef Pubmed Google scholar
[35]
Simmet K, Reichenbach M, Reichenbach H D, Wolf E. Phytohemagglutinin facilitates the aggregation of blastomere pairs from Day 5 donor embryos with Day 4 host embryos for chimeric bovine embryo multiplication. Theriogenology, 2015, 84(9): 1603–1610
CrossRef Pubmed Google scholar
[36]
Razza E M, Satrapa R A, Emanuelli I P, Barros C M, Nogueira M F. Screening of biotechnical parameters for production of bovine inter-subspecies embryonic chimeras by the aggregation of tetraploid Bos indicus and diploid crossbred Bos taurus embryos. Reproductive Biology, 2016, 16(1): 34–40
CrossRef Pubmed Google scholar
[37]
Saito S, Sawai K, Ugai H, Moriyasu S, Minamihashi A, Yamamoto Y, Hirayama H, Kageyama S, Pan J, Murata T, Kobayashi Y, Obata Y, Yokoyama K K. Generation of cloned calves and transgenic chimeric embryos from bovine embryonic stem-like cells. Biochemical and Biophysical Research Communications, 2003, 309(1): 104–113
CrossRef Pubmed Google scholar
[38]
Iwasaki S, Campbell K H, Galli C, Akiyama K, Iwasaki S. Production of live calves derived from embryonic stem-like cells aggregated with tetraploid embryos. Biology of Reproduction, 2000, 62(2): 470–475
CrossRef Pubmed Google scholar
[39]
Furusawa T, Ohkoshi K, Kimura K, Matsuyama S, Akagi S, Kaneda M, Ikeda M, Hosoe M, Kizaki K, Tokunaga T. Characteristics of bovine inner cell mass-derived cell lines and their fate in chimeric conceptuses. Biology of Reproduction, 2013, 89(2): 28
CrossRef Pubmed Google scholar
[40]
Casal M, Haskins M. Large animal models and gene therapy. European Journal of Human Genetics, 2006, 14(3): 266–272
CrossRef Pubmed Google scholar
[41]
Harper P A, Healy P J, Dennis J A. Animal model of human disease. Citrullinemia (argininosuccinate synthetase deficiency). American Journal of Pathology, 1989, 135(6): 1213–1215
Pubmed

Acknowledgements

This work was supported by grants from the United States Department of Agriculture (1265-31000-091-2S and W317).

Compliance with ethics guidelines

ƒXiuchun Tian declare that he has no conflicts of interest or financial conflicts to disclose.ƒThis article is a review and does not contain any studies with human or animal subjects performed by the author.

RIGHTS & PERMISSIONS

The Author(s) 2018. Published by Higher Education Press. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0)
AI Summary AI Mindmap
PDF(139 KB)

Accesses

Citations

Detail

Sections
Recommended

/