Reprogramming of the pig primordial germ cells into pluripotent stem cells: a brief review

Qijing LEI, Qin PAN, Shuai YU, Na LI, Shulin CHEN, Kuldip SIDHU, Jinlian HUA

PDF(251 KB)
PDF(251 KB)
Front. Agr. Sci. Eng. ›› 2019, Vol. 6 ›› Issue (1) : 28-32. DOI: 10.15302/J-FASE-2018222
REVIEW
REVIEW

Reprogramming of the pig primordial germ cells into pluripotent stem cells: a brief review

Author information +
History +

Abstract

Primordial germ cells (PGCs) are regarded as unipotent cells that can produce only either spermatogonia or oocytes. However, PGCs can be converted into the pluripotent state by first dedifferentiation to embryonic germ cells and then by reprogramming to induce them to become pluripotent stem cells (iPSCs). These two stages can be completely implemented with mouse cells. However, authentic porcine iPSCs have not been established. Here, we discuss recent advances in the stem cell field for obtaining iPSCs from PGCs. This knowledge will provide some clues which will contribute to the regulation of reprogramming to pluripotency in farm species.

Keywords

pig / pluripotent stem cells / primordial germ cells / reprogramming

Cite this article

Download citation ▾
Qijing LEI, Qin PAN, Shuai YU, Na LI, Shulin CHEN, Kuldip SIDHU, Jinlian HUA. Reprogramming of the pig primordial germ cells into pluripotent stem cells: a brief review. Front. Agr. Sci. Eng., 2019, 6(1): 28‒32 https://doi.org/10.15302/J-FASE-2018222

References

[1]
Bertocchini F, Chuva de Sousa Lopes S M. Germline development in amniotes: a paradigm shift in primordial germ cell specification. BioEssays, 2016, 38(8): 791–800
CrossRef Pubmed Google scholar
[2]
Kimura T, Kaga Y, Sekita Y, Fujikawa K, Nakatani T, Odamoto M, Funaki S, Ikawa M, Abe K, Nakano T. Pluripotent stem cells derived from mouse primordial germ cells by small molecule compounds. Stem Cells, 2015, 33(1): 45–55
CrossRef Pubmed Google scholar
[3]
Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell, 2007, 131(5): 861–872
CrossRef Pubmed Google scholar
[4]
Park I H, Zhao R, West J A, Yabuuchi A, Huo H, Ince T A, Lerou P H, Lensch M W, Daley G Q. Reprogramming of human somatic cells to pluripotency with defined factors. Nature, 2008, 451(7175): 141–146
CrossRef Pubmed Google scholar
[5]
Stadtfeld M, Nagaya M, Utikal J, Weir G, Hochedlinger K. Induced pluripotent stem cells generated without viral integration. Science, 2008, 322(5903): 945–949
CrossRef Pubmed Google scholar
[6]
Li Y, Zhang Q, Yin X, Yang W, Du Y, Hou P, Ge J, Liu C, Zhang W, Zhang X, Wu Y, Li H, Liu K, Wu C, Song Z, Zhao Y, Shi Y, Deng H. Generation of iPSCs from mouse fibroblasts with a single gene, Oct4, and small molecules. Cell Research, 2011, 21(1): 196–204
CrossRef Pubmed Google scholar
[7]
Lin T, Ambasudhan R, Yuan X, Li W, Hilcove S, Abujarour R, Lin X, Hahm H S, Hao E, Hayek A, Ding S. A chemical platform for improved induction of human iPSCs. Nature Methods, 2009, 6(11): 805–808
CrossRef Pubmed Google scholar
[8]
Matsui Y, Zsebo K, Hogan B L. Derivation of pluripotential embryonic stem cells from murine primordial germ cells in culture. Cell, 1992, 70(5): 841–847
CrossRef Pubmed Google scholar
[9]
Bazley F A, Liu C F, Yuan X, Hao H, All A H, De Los Angeles A, Zambidis E T, Gearhart J D, Kerr C L. Direct reprogramming of human primordial germ cells into induced pluripotent stem cells: efficient generation of genetically engineered germ cells. Stem Cells and Development, 2015, 24(22): 2634–2648
CrossRef Pubmed Google scholar
[10]
Kobayashi T, Zhang H, Tang W W C, Irie N, Withey S, Klisch D, Sybirna A, Dietmann S, Contreras D A, Webb R, Allegrucci C, Alberio R, Surani M A. Principles of early human development and germ cell program from conserved model systems. Nature, 2017, 546(7658): 416–420
CrossRef Pubmed Google scholar
[11]
McLaren A. Primordial germ cells in the mouse. Developmental Biology, 2003, 262(1): 1–15
CrossRef Pubmed Google scholar
[12]
Ohinata Y, Payer B, O’Carroll D, Ancelin K, Ono Y, Sano M, Barton S C, Obukhanych T, Nussenzweig M, Tarakhovsky A, Saitou M, Surani M A. Blimp1 is a critical determinant of the germ cell lineage in mice. Nature, 2005, 436(7048): 207–213
CrossRef Pubmed Google scholar
[13]
Nagamatsu G, Saito S, Takubo K, Suda T. Integrative analysis of the acquisition of pluripotency in PGCs reveals the mutually exclusive roles of Blimp-1 and AKT signaling. Stem Cell Reports, 2015, 5(1): 111–124
CrossRef Pubmed Google scholar
[14]
Yamaji M, Seki Y, Kurimoto K, Yabuta Y, Yuasa M, Shigeta M, Yamanaka K, Ohinata Y, Saitou M. Critical function of Prdm14 for the establishment of the germ cell lineage in mice. Nature Genetics, 2008, 40(8): 1016–1022
CrossRef Pubmed Google scholar
[15]
Klisch K, Contreras D A, Sun X, Brehm R, Bergmann M, Alberio R. The Sda/GM2-glycan is a carbohydrate marker of porcine primordial germ cells and of a subpopulation of spermatogonia in cattle, pigs, horses and llama. Reproduction, 2011, 142(5): 667–674
CrossRef Pubmed Google scholar
[16]
Zhang Y, Ma J, Li H, Lv J, Wei R, Cong Y, Liu Z. bFGF signaling-mediated reprogramming of porcine primordial germ cells. Cell and Tissue Research, 2016, 364(2): 429–441
CrossRef Pubmed Google scholar
[17]
Goel S, Sugimoto M, Minami N, Yamada M, Kume S, Imai H. Identification, isolation, and in vitro culture of porcine gonocytes. Biology of Reproduction, 2007, 77(1): 127–137
CrossRef Pubmed Google scholar
[18]
Hyldig S M W, Ostrup O, Vejlsted M, Thomsen P D. Changes of DNA methylation level and spatial arrangement of primordial germ cells in embryonic day 15 to embryonic day 28 pig embryos. Biology of Reproduction, 2011, 84(6): 1087–1093
CrossRef Pubmed Google scholar
[19]
Petkov S G, Reh W A, Anderson G B. Methylation changes in porcine primordial germ cells. Molecular Reproduction & Development, 2009, 76(1): 22
[20]
Hyldig S M, Croxall N, Contreras D A, Thomsen P D and Alberio R. Epigenetic reprogramming in the porcine germ line. BMC Developmental Biology, 2011, 11(1): 1–11
Pubmed
[21]
Ruggiu M, Speed R, Taggart M, McKay S J, Kilanowski F, Saunders P, Dorin J, Cooke H J. The mouse Dazla gene encodes a cytoplasmic protein essential for gametogenesis. Nature, 1997, 389(6646): 73–77
CrossRef Pubmed Google scholar
[22]
Tanaka S S, Toyooka Y, Akasu R, Katoh-Fukui Y, Nakahara Y, Suzuki R, Yokoyama M, Noce T. The mouse homolog of Drosophila Vasa is required for the development of male germ cells. Genes & Development, 2000, 14(7): 841–853
Pubmed
[23]
Masui S, Nakatake Y, Toyooka Y, Shimosato D, Yagi R, Takahashi K, Okochi H, Okuda A, Matoba R, Sharov A A, Ko M S, Niwa H. Pluripotency governed by Sox2 via regulation of Oct3/4 expression in mouse embryonic stem cells. Nature Cell Biology, 2007, 9(6): 625–635
CrossRef Pubmed Google scholar
[24]
Silva J, Nichols J, Theunissen T W, Guo G, van Oosten A L, Barrandon O, Wray J, Yamanaka S, Chambers I, Smith A. Nanog is the gateway to the pluripotent ground state. Cell, 2009, 138(4): 722–737
CrossRef Pubmed Google scholar
[25]
Resnick J L, Bixler L S, Cheng L, Donovan P J. Long-term proliferation of mouse primordial germ cells in culture. Nature, 1992, 359(6395): 550–551
CrossRef Pubmed Google scholar
[26]
Lopeziglesias P, Alcaina Y, Tapia N, Sabour D, Arauzobravo M J, Sainz de la Maza D, Berra E, O’Mara A N, Nistal M, Ortega S, Donovan P J, Schöler H R, De Miguel M P, Sainz d l M D, Berra E, Nunezomara A, Nistal M and Ortega S. Hypoxia induces pluripotency in primordial germ cells by HIF1a stabilization and Oct4 deregulation. Antioxidants & Redox Signalling, 2015, 22(3): 205–223
CrossRef Google scholar
[27]
Chen L R, Shiue Y L, Bertolini L, Medrano J F, BonDurant R H, Anderson G B. Establishment of pluripotent cell lines from porcine preimplantation embryos. Theriogenology, 1999, 52(2): 195–212
CrossRef Pubmed Google scholar
[28]
Vassiliev I, Vassilieva S, Beebe L F S, Harrison S J, McIlfatrick S M, Nottle M B. In vitro and in vivo characterization of putative porcine embryonic stem cells. Cellular Reprogramming, 2010, 12(2): 223–230
CrossRef Pubmed Google scholar
[29]
Shim H, Gutiérrez-Adán A, Chen L R, BonDurant R H, Behboodi E, Anderson G B. Isolation of pluripotent stem cells from cultured porcine primordial germ cells. Theriogenology, 1997, 57(5): 1089–1095
CrossRef Pubmed Google scholar
[30]
Piedrahita J A, Moore K, Oetama B, Lee C K, Scales N, Ramsoondar J, Bazer F W, Ott T. Generation of transgenic porcine chimeras using primordial germ cell-derived colonies. Biology of Reproduction, 1998, 58(5): 1321–1329
CrossRef Pubmed Google scholar
[31]
Dong X, Tsung H, Mu Y, Liu L, Chen H, Zhang L, Wang H, Feng S. Generation of chimeric piglets by injection of embryonic germ cells from inbred Wuzhishan miniature pigs into blastocysts. Xenotransplantation, 2014, 21(2): 140–148
CrossRef Pubmed Google scholar
[32]
West F D, Terlouw S L, Kwon D J, Mumaw J L, Dhara S K, Hasneen K, Dobrinsky J R, Stice S L. Porcine induced pluripotent stem cells produce chimeric offspring. Stem Cells and Development, 2010, 19(8): 1211–1220
CrossRef Pubmed Google scholar
[33]
Du X, Feng T, Yu D, Wu Y, Zou H, Ma S, Feng C, Huang Y, Ouyang H, Hu X, Pan D, Li N, Wu S. Barriers for deriving transgenefree pig iPS cells with episomal vectors. Stem Cells, 2015, 33(11): 3228–3238
CrossRef Pubmed Google scholar
[34]
Chakritbudsabong W, Sariya L, Pamonsupornvichit S, Pronarkngver R, Chaiwattanarungruengpaisan S, Ferreira J N, Setthawong P, Phakdeedindan P, Techakumphu M, Tharasanit T, Rungarunlert S. Generation of a pig induced pluripotent stem cell (piPSC) line from embryonic fibroblasts by incorporating LIN28 to the four transcriptional factor-mediated reprogramming: VSMUi001-D. Stem Cell Research, 2017, 24: 21–24
CrossRef Pubmed Google scholar
[35]
Montserrat N, Bahima E G, Batlle L, Häfner S, Rodrigues A M, González F, Izpisúa Belmonte J C. Generation of pig iPS cells: a model for cell therapy. Journal of Cardiovascular Translational Research, 2011, 4(2): 121–130
CrossRef Pubmed Google scholar
[36]
Ezashi T, Telugu B P V L, Alexenko A P, Sachdev S, Sinha S, Roberts R M. Derivation of induced pluripotent stem cells from pig somatic cells. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(27): 10993–10998
CrossRef Pubmed Google scholar
[37]
Wu Y, Li O, He C, Li Y, Li M, Liu X L, Wang Y, He Y. Generation and characterization of induced pluripotent stem cells from guinea pig fetal fibroblasts. Molecular Medicine Reports, 2017, 15(6): 3690–3698
CrossRef Pubmed Google scholar
[38]
Hall V. Porcine embryonic stem cells: a possible source for cell replacement therapy. Stem Cell Reviews, 2008, 4(4): 275–282
CrossRef Pubmed Google scholar
[39]
Onishi A, Iwamoto M, Akita T, Mikawa S, Takeda K, Awata T, Hanada H, Perry A C. Pig cloning by microinjection of fetal fibroblast nuclei. Science, 2000, 289(5482): 1188–1190
CrossRef Pubmed Google scholar
[40]
Polejaeva I A, Chen S H, Vaught T D, Page R L, Mullins J, Ball S, Dai Y, Boone J, Walker S, Ayares D L, Colman A, Campbell K H. Cloned pigs produced by nuclear transfer from adult somatic cells. Nature, 2000, 407(6800): 86–90
CrossRef Pubmed Google scholar
[41]
Maherali N, Sridharan R, Xie W, Utikal J, Eminli S, Arnold K, Stadtfeld M, Yachechko R, Tchieu J, Jaenisch R, Plath K, Hochedlinger K. Directly reprogrammed fibroblasts show global epigenetic remodeling and widespread tissue contribution. Cell Stem Cell, 2007, 1(1): 55–70
CrossRef Pubmed Google scholar
[42]
Wernig M, Meissner A, Foreman R, Brambrink T, Ku M, Hochedlinger K, Bernstein B E, Jaenisch R. In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Nature, 2007, 448(7151): 318–324
CrossRef Pubmed Google scholar
[43]
Pashai N, Hao H, All A, Gupta S, Chaerkady R, De Los Angeles A, Gearhart J D, Kerr C L. Genome-wide profiling of pluripotent cells reveals a unique molecular signature of human embryonic germ cells. PLoS One, 2012, 7(6): e39088
CrossRef Pubmed Google scholar
[44]
Saitou M, Kagiwada S, Kurimoto K. Epigenetic reprogramming in mouse pre-implantation development and primordial germ cells. Development, 2012, 139(1): 15–31
CrossRef Pubmed Google scholar
[45]
Mise N, Fuchikami T, Sugimoto M, Kobayakawa S, Ike F, Ogawa T, Tada T, Kanaya S, Noce T, Abe K. Differences and similarities in the developmental status of embryo-derived stem cells and primordial germ cells revealed by global expression profiling. Genes to Cells, 2008, 13(8): 863–877
CrossRef Pubmed Google scholar
[46]
Niwa H, Miyazaki J, Smith A G. Quantitative expression of Oct-3/4 defines differentiation, dedifferentiation or self-renewal of ES cells. Nature Genetics, 2000, 24(4): 372–376
CrossRef Pubmed Google scholar
[47]
Yamaguchi S, Kimura H, Tada M, Nakatsuji N, Tada T. Nanog expression in mouse germ cell development. Gene Expression Patterns Gep, 2005, 5(5): 639–646
CrossRef Pubmed Google scholar

Acknowledgements

This work was supported by the National Basic Research Program of China (2016YFA0100203) and the National Natural Science Foundation of China (31572399, 31272518).

Compliance with ethics guidelines

Qijing Lei, Qin Pan, Shuai Yu, Na Li, Shulin Chen, Kuldip Sidhu, and Jinlian Hua declare that they have no conflicts of interest or financial conflicts to disclose.
This article is a review and does not contain any studies with human or animal subjects performed by any of the authors.

RIGHTS & PERMISSIONS

The Author(s) 2018. Published by Higher Education Press. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0)
AI Summary AI Mindmap
PDF(251 KB)

Accesses

Citations

Detail

Sections
Recommended

/