Construction of a universal recombinant expression vector that regulates the expression of human lysozyme in milk
Shen LIU, Shengzhe SHANG, Xuezhen YANG, Huihua ZHANG, Dan LU, Ning LI
Construction of a universal recombinant expression vector that regulates the expression of human lysozyme in milk
The mammary gland provides a novel method for producing recombinant proteins in milk of transgenic animals. A key component in the technology is the construction of an efficient milk expression vector. Here, we established a simple method to construct a milk expression vector, by a combination of homologous recombination and digestion-ligation. Our methodology is expected to have the advantages of both plasmid and bacterial artificial chromosome (BAC) vectors. The BAC of mouse whey acidic protein gene (mWAP) was modified twice by homologous recombination to produce a universal expression vector, and the human lysozyme gene (hLZ) was then inserted into the vector by a digestion-ligation method. The final vector containing the 8.5 kb mWAP 5′ promoter, 4.8 kb hLZ genomic DNA, and 8.0 kb mWAP 3′ genomic DNA was microinjected into pronuclei of fertilized mouse embryos, to successfully generate two transgenic mouse lines that expressed recombinant human lysozyme (rhLZ) in milk. The highest expression level of rhLZ was 0.45 g·L−1, and rhLZ exhibited the same antibacterial activity as native hLZ. Our results have provided a simple approach to construct a universal milk expression vector, and demonstrated that the resulting vector regulates the expression of hLZ in milk.
BAC recombinant methods / gene expression / human lysozyme / transgenic mice / milk expression vector
[1] |
Bertolini L R, Meade H, Lazzarotto C R, Martins L T, Tavares K C, Bertolini M, Murray J D. The transgenic animal platform for biopharmaceutical production. Transgenic Research, 2016, 25(3): 329–343
CrossRef
Pubmed
Google scholar
|
[2] |
Romagnolo D, DiAugustine R P. The mammary gland: protein factory of the future. Environmental Health Perspectives, 1994, 102(8): 644–646
CrossRef
Pubmed
Google scholar
|
[3] |
Houdebine L M. Production of pharmaceutical proteins by transgenic animals. Comparative Immunology, Microbiology and Infectious Diseases, 2009, 32(2): 107–121
CrossRef
Pubmed
Google scholar
|
[4] |
Babinet C. Transgenic mice: an irreplaceable tool for the study of mammalian development and biology. Journal of the American Society of Nephrology, 2000, 11(S16): S88–S94
Pubmed
|
[5] |
Monzani P S, Adona P R, Ohashi O M, Meirelles F V, Wheeler M B. Transgenic bovine as bioreactors: challenges and perspectives. Bioengineered, 2016, 7(3): 123–131
CrossRef
Pubmed
Google scholar
|
[6] |
Li G, Shi W, Chen G, Chen H, Jiao H, Yan H, Ji M, Sun H. Construction and in vivo evaluation of a mammary gland-specific expression vector for human lysozyme. Plasmid, 2014, 76: 47–53
CrossRef
Pubmed
Google scholar
|
[7] |
Yu Z, Meng Q, Yu H, Fan B, Yu S, Fei J, Wang L, Dai Y, Li N. Expression and bioactivity of recombinant human lysozyme in the milk of transgenic mice. Journal of Dairy Science, 2006, 89(8): 2911–2918
CrossRef
Pubmed
Google scholar
|
[8] |
Giraldo P, Montoliu L. Size matters: use of YACs, BACs and PACs in transgenic animals. Transgenic Research, 2001, 10(2): 83–103
CrossRef
Pubmed
Google scholar
|
[9] |
Yang P, Wang J, Gong G, Sun X, Zhang R, Du Z, Liu Y, Li R, Ding F, Tang B, Dai Y, Li N. Cattle mammary bioreactor generated by a novel procedure of transgenic cloning for large-scale production of functional human lactoferrin. PLoS One, 2008, 3(10): e3453
CrossRef
Pubmed
Google scholar
|
[10] |
Rival-Gervier S, Viglietta C, Maeder C, Attal J, Houdebine L M. Position-independent and tissue-specific expression of porcine whey acidic protein gene from a bacterial artificial chromosome in transgenic mice. Molecular Reproduction and Development, 2002, 63(2): 161–167
CrossRef
Pubmed
Google scholar
|
[11] |
Zhang Y, Muyrers J P, Testa G, Stewart A F. DNA cloning by homologous recombination in Escherichia coli. Nature Biotech-nology, 2000, 18(12): 1314–1317
CrossRef
Pubmed
Google scholar
|
[12] |
Sharan S K, Thomason L C, Kuznetsov S G, Court D L. Recombineering: a homologous recombination-based method of genetic engineering. Nature Protocols, 2009, 4(2): 206–223
CrossRef
Pubmed
Google scholar
|
[13] |
Liu S, Li X, Lu D, Shang S, Wang M, Zheng M, Zhang R, Tang B, Li Q, Dai Y, Li N. High-level expression of bioactive recombinant human lysozyme in the milk of transgenic mice using a modified human lactoferrin BAC. Transgenic Research, 2012, 21(2): 407–414
CrossRef
Pubmed
Google scholar
|
[14] |
Zhang R, Guo C, Sui S, Yu T, Wang J, Li N. Comprehensive assessment of milk composition in transgenic cloned cattle. PLoS One, 2012, 7(11): e49697
CrossRef
Pubmed
Google scholar
|
[15] |
Hogan B, Constantini F, Lacy E. Manipulating the mouse embryo. A laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, 1986
|
[16] |
Yu H, Chen J, Liu S, Zhang A, Xu X, Wang X, Lu P, Cheng G. Large-scale production of functional human lysozyme in transgenic cloned goats. Journal of Biotechnology, 2013, 168(4): 676–683
CrossRef
Pubmed
Google scholar
|
[17] |
Tong J, Wei H, Liu X, Hu W, Bi M, Wang Y, Li Q, Li N. Production of recombinant human lysozyme in the milk of transgenic pigs. Transgenic Research, 2011, 20(2): 417–419
CrossRef
Pubmed
Google scholar
|
[18] |
Lu D, Li Q, Wu Z, Shang S, Liu S, Wen X, Li Z, Wu F, Li N. High-level recombinant human lysozyme expressed in milk of transgenic pigs can inhibit the growth of Escherichia coli in the duodenum and influence intestinal morphology of sucking pigs. PLoS One, 2014, 9(2): e89130
CrossRef
Pubmed
Google scholar
|
[19] |
Lu D, Liu S, Shang S, Wu F, Wen X, Li Z, Li Y, Hu X, Zhao Y, Li Q, Li N. Production of transgenic-cloned pigs expressing large quantities of recombinant human lysozyme in milk. PLoS One, 2015, 10(5): e0123551
CrossRef
Pubmed
Google scholar
|
[20] |
Lu D, Liu S, Ding F, Wang H, Li J, Li L, Dai Y, Li N. Large-scale production of functional human lysozyme from marker-free transgenic cloned cows. Scientific Reports, 2016, 6(1): 22947
CrossRef
Pubmed
Google scholar
|
[21] |
Jung C J, Ménoret S, Brusselle L, Tesson L, Usal C, Chenouard V, Remy S, Ouisse L H, Poirier N, Vanhove B, de Jong P J, Anegon I. Comparative analysis of piggyBac, CRISPR/Cas9 and TALEN mediated BAC transgenesis in the zygote for the generation of humanized SIRPA rats. Scientific Reports, 2016, 6(1): 31455
CrossRef
Pubmed
Google scholar
|
[22] |
Pittius C W, Hennighausen L, Lee E, Westphal H, Nicols E, Vitale J, Gordon K. A milk protein gene promoter directs the expression of human tissue plasminogen activator cDNA to the mammary gland in transgenic mice. Proceedings of the National Academy of Sciences of the United States of America, 1988, 85(16): 5874–5878
CrossRef
Pubmed
Google scholar
|
[23] |
Wall R J, Pursel V G, Shamay A, McKnight R A, Pittius C W, Hennighausen L. High-level synthesis of a heterologous milk protein in the mammary glands of transgenic swine. Proceedings of the National Academy of Sciences of the United States of America, 1991, 88(5): 1696–1700
CrossRef
Pubmed
Google scholar
|
[24] |
Shi G, Chen H, Wu X, Zhou Y, Liu Z, Zheng T, Huang P. A mWAP-hLF hybrid gene locus gave extremely high level expression of human lactoferrin in the milk of transgenic mice. Transgenic Research, 2009, 18(4): 573–582
CrossRef
Pubmed
Google scholar
|
[25] |
Wu X, Lin Y, Xiong F, Zhou Y, Yu F, Deng J, Huang P, Chen H. The extremely high level expression of human serum albumin in the milk of transgenic mice. Transgenic Research, 2012, 21(6): 1359–1366
CrossRef
Pubmed
Google scholar
|
[26] |
Wu X, Lin Y, Xi Y, Shao Z, Zhou Y, Liu F, Chen H. The development of transgenic mice for the expression of large amounts of human lysozyme in milk. Biotechnology Letters, 2014, 36(6): 1197–1202
CrossRef
Pubmed
Google scholar
|
[27] |
Clark A J, Bissinger P, Bullock D W, Damak S, Wallace R, Whitelaw C B, Yull F. Chromosomal position effects and the modulation of transgene expression. Reproduction, Fertility, and Development, 1994, 6(5): 589–598
CrossRef
Pubmed
Google scholar
|
/
〈 | 〉 |