SALL4 maintains self-renewal of porcine pluripotent stem cells through downregulation of OTX2

Ning WANG, Sile WANG, Yaxian WANG, Yuanxing CAI, Fan YANG, Huayan WANG

PDF(5248 KB)
PDF(5248 KB)
Front. Agr. Sci. Eng. ›› 2019, Vol. 6 ›› Issue (1) : 81-92. DOI: 10.15302/J-FASE-2017180
RESEARCH ARTICLE
RESEARCH ARTICLE

SALL4 maintains self-renewal of porcine pluripotent stem cells through downregulation of OTX2

Author information +
History +

Abstract

Sall4 as one of the spalt family members contains several alternative splicing variants, which are differentially expressed and has a key role in maintaining pluripotent stem cells. However, the molecular features and function of SALL4 have not been well elucidated in porcine induced pluripotent stem cells (piPSCs). In this study, we identified SALL4 splice variants and found two SALL4 splicing variants through analysis of the porcine transcriptome data derived from piPSCs. SALL4A was only detected in piPSCs but SALL4B was globally expressed in porcine tissues and piPSCs. The level of SALL4B was significantly reduced when piPSCs differen-tiation occurred, however, the expression of SALL4A was not affected, indicating that SALL4B may be essential for the maintenance of piPSCs self-renewal. Overexpression of SALL4A and SALL4B in PEF cells could significantly stimulated expression of endogenous pluripotent genes, when SALL4B significantly promoted OCT4 expression. Conversely, SALL4A significantly promoted KLF4 expression. Additionally, both SALL4A and SALL4B could repress OTX2 promoter activity in a dose-dependent manner. Conversely, OTX2 also negatively regulated SALL4 expression. These observations indicate that a negative feedback regulatory mechanism may exist between SALL4 and OTX2, which is useful for the maintenance of the self-renewal of piPSCs.

Keywords

OTX2 / pluripotency / pig / SALL4 / transcription regulation

Cite this article

Download citation ▾
Ning WANG, Sile WANG, Yaxian WANG, Yuanxing CAI, Fan YANG, Huayan WANG. SALL4 maintains self-renewal of porcine pluripotent stem cells through downregulation of OTX2. Front. Agr. Sci. Eng., 2019, 6(1): 81‒92 https://doi.org/10.15302/J-FASE-2017180

References

[1]
Tesar P J, Chenoweth J G, Brook F A, Davies T J, Evans E P, Mack D L, Gardner R L, McKay R D G. New cell lines from mouse epiblast share defining features with human embryonic stem cells. Nature, 2007, 448(7150): 196–199
CrossRef Pubmed Google scholar
[2]
Ezashi T, Telugu B P V L, Alexenko A P, Sachdev S, Sinha S, Roberts R M. Derivation of induced pluripotent stem cells from pig somatic cells. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(27): 10993–10998
CrossRef Pubmed Google scholar
[3]
Wu Z, Chen J, Ren J, Bao L, Liao J, Cui C, Rao L, Li H, Gu Y, Dai H, Zhu H, Teng X, Cheng L, Xiao L. Generation of pig induced pluripotent stem cells with a drug-inducible system. Journal of Molecular Cell Biology, 2009, 1(1): 46–54
CrossRef Pubmed Google scholar
[4]
Cheng D, Guo Y, Li Z, Liu Y, Gao X, Gao Y, Cheng X, Hu J, Wang H. Porcine induced pluripotent stem cells require LIF and maintain their developmental potential in early stage of embryos. PLoS One, 2012, 7(12): e51778
CrossRef Pubmed Google scholar
[5]
Fujishiro S H, Nakano K, Mizukami Y, Azami T, Arai Y, Matsunari H, Ishino R, Nishimura T, Watanabe M, Abe T, Furukawa Y, Umeyama K, Yamanaka S, Ema M, Nagashima H, Hanazono Y. Generation of naive-like porcine-induced pluripotent stem cells capable of contributing to embryonic and fetal development. Stem Cells and Development, 2013, 22(3): 473–482
CrossRef Pubmed Google scholar
[6]
Loh Y H, Wu Q, Chew J L, Vega V B, Zhang W, Chen X, Bourque G, George J, Leong B, Liu J, Wong K Y, Sung K W, Lee C W, Zhao X D, Chiu K P, Lipovich L, Kuznetsov V A, Robson P, Stanton L W, Wei C L, Ruan Y, Lim B, Ng H H. The Oct4 and Nanog transcription network regulates pluripotency in mouse embryonic stem cells. Nature Genetics, 2006, 38(4): 431–440
CrossRef Pubmed Google scholar
[7]
Tan M H, Au K F, Leong D E, Foygel K, Wong W H, Yao M W M. An Oct4-Sall4-Nanog network controls developmental progression in the pre-implantation mouse embryo. Molecular Systems Biology, 2013, 9(1): 632
CrossRef Pubmed Google scholar
[8]
Elling U, Klasen C, Eisenberger T, Anlag K, Treier M. Murine inner cell mass-derived lineages depend on Sall4 function. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(44): 16319–16324
CrossRef Pubmed Google scholar
[9]
Yang J, Corsello T R, Ma Y. Stem cell gene SALL4 suppresses transcription through recruitment of DNA methyltransferases. Journal of Biological Chemistry, 2012, 287(3): 1996–2005
CrossRef Pubmed Google scholar
[10]
Yang J, Gao C, Chai L, Ma Y. A novel SALL4/OCT4 transcriptional feedback network for pluripotency of embryonic stem cells. PLoS One, 2010, 5(5): e10766
CrossRef Pubmed Google scholar
[11]
Yang J, Chai L, Fowles T C, Alipio Z, Xu D, Fink L M, Ward D C, Ma Y. Genome-wide analysis reveals Sall4 to be a major regulator of pluripotency in murine-embryonic stem cells. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(50): 19756–19761
CrossRef Pubmed Google scholar
[12]
Lim C Y, Tam W L, Zhang J, Ang H S, Jia H, Lipovich L, Ng H H, Wei C L, Sung W K, Robson P, Yang H, Lim B. Sall4 regulates distinct transcription circuitries in different blastocyst-derived stem cell lineages. Cell Stem Cell, 2008, 3(5): 543–554
CrossRef Pubmed Google scholar
[13]
Tatetsu H, Kong N R, Chong G, Amabile G, Tenen D G, Chai L. SALL4, the missing link between stem cells, development and cancer. Gene, 2016, 584(2): 111–119
CrossRef Pubmed Google scholar
[14]
Chen X, Xu H, Yuan P, Fang F, Huss M, Vega V B, Wong E, Orlov Y L, Zhang W, Jiang J, Loh Y H, Yeo H C, Yeo Z X, Narang V, Govindarajan K R, Leong B, Shahab A, Ruan Y, Bourque G, Sung W K, Clarke N D, Wei C L, Ng H H. Integration of external signaling pathways with the core transcriptional network in embryonic stem cells. Cell, 2008, 133(6): 1106–1117
CrossRef Pubmed Google scholar
[15]
Wu Q, Chen X, Zhang J, Loh Y H, Low T Y, Zhang W, Zhang W, Sze S K, Lim B, Ng H H. Sall4 interacts with Nanog and co-occupies Nanog genomic sites in embryonic stem cells. Journal of Biological Chemistry, 2006, 281(34): 24090–24094
CrossRef Pubmed Google scholar
[16]
Zhang J, Tam W L, Tong G Q, Wu Q, Chan H Y, Soh B S, Lou Y, Yang J, Ma Y, Chai L, Ng H H, Lufkin T, Robson P, Lim B. Sall4 modulates embryonic stem cell pluripotency and early embryonic development by the transcriptional regulation of Pou5f1. Nature Cell Biology, 2006, 8(10): 1114–1123
CrossRef Pubmed Google scholar
[17]
Buganim Y, Markoulaki S, van Wietmarschen N, Hoke H, Wu T, Ganz K, Akhtar-Zaidi B, He Y, Abraham B J, Porubsky D, Kulenkampff E, Faddah D A, Shi L, Gao Q, Sarkar S, Cohen M, Goldmann J, Nery J R, Schultz M D, Ecker J R, Xiao A, Young R A, Lansdorp P M, Jaenisch R. The developmental potential of iPSCs is greatly influenced by reprogramming factor selection. Cell Stem Cell, 2014, 15(3): 295–309
CrossRef Pubmed Google scholar
[18]
Nichols J, Zevnik B, Anastassiadis K, Niwa H, Klewe-Nebenius D, Chambers I, Schöler H, Smith A. Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4. Cell, 1998, 95(3): 379–391
CrossRef Pubmed Google scholar
[19]
West F D, Terlouw S L, Kwon D J, Mumaw J L, Dhara S K, Hasneen K, Dobrinsky J R, Stice S L. Porcine induced pluripotent stem cells produce chimeric offspring. Stem Cells and Development, 2010, 19(8): 1211–1220
CrossRef Pubmed Google scholar
[20]
Yang F, Zhang J, Liu Y, Cheng D, Wang H. Structure and functional evaluation of porcine NANOG that is a single-exon gene and has two pseudogenes. International Journal of Biochemistry & Cell Biology, 2015, 59: 142–152
CrossRef Pubmed Google scholar
[21]
Yang F, Ren Y, Li H, Wang H. ESRRB plays a crucial role in the promotion of porcine cell reprograming. Journal of Cellular Physiology, 2018, 233(2): 1601–1611
CrossRef Pubmed Google scholar
[22]
Wang N, Wang Y, Xie Y, Wang H.OTX2 impedes self-renewal of porcine iPS cells through downregulation of NANOG expression. Cell Death and Discovery, 2016, 2: 16090
[23]
Chen C, Ai H, Ren J, Li W, Li P, Qiao R, Ouyang J, Yang M, Ma J, Huang L. A global view of porcine transcriptome in three tissues from a full-sib pair with extreme phenotypes in growth and fat deposition by paired-end RNA sequencing. BMC Genomics, 2011, 12(1): 448
CrossRef Pubmed Google scholar
[24]
Xiao S, Xie D, Cao X, Yu P, Xing X, Chen C C, Musselman M, Xie M, West F D, Lewin H A, Wang T, Zhong S. Comparative epigenomic annotation of regulatory DNA. Cell, 2012, 149(6): 1381–1392
CrossRef Pubmed Google scholar
[25]
Langmead B, Trapnell C, Pop M, Salzberg S L. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biology, 2009, 10(3): R25
CrossRef Pubmed Google scholar
[26]
Ma Y, Cui W, Yang J, Qu J, Di C, Amin H M, Lai R, Ritz J, Krause D S, Chai L. SALL4, a novel oncogene, is constitutively expressed in human acute myeloid leukemia (AML) and induces AML in transgenic mice. Blood, 2006, 108(8): 2726–2735
CrossRef Pubmed Google scholar
[27]
Xu K, Chen X, Yang H, Xu Y, He Y, Wang C, Huang H, Liu B, Liu W, Li J, Kou X, Zhao Y, Zhao K, Zhang L, Hou Z, Wang H, Wang H, Li J, Fan H, Wang F, Gao Y, Zhang Y, Chen J, Gao S. Maternal Sall4 Is indispensable for epigenetic maturation of mouse oocytes. Journal of Biological Chemistry, 2017, 292(5): 1798–1807
CrossRef Pubmed Google scholar
[28]
Zhang S, Guo Y, Cui Y, Liu Y, Yu T, Wang H. Generation of intermediate porcine iPS cells under culture condition favorable for mesenchymal-to-epithelial transition. Stem Cell Reviews and Reports, 2015, 11(1): 24–38
CrossRef Pubmed Google scholar
[29]
Larsen K B, Lutterodt M, Rath M F, Møller M. Expression of the homeobox genes PAX6, OTX2, and OTX1 in the early human fetal retina. International Journal of Developmental Neuroscience, 2009, 27(5): 485–492
CrossRef Pubmed Google scholar
[30]
Simeone A, Acampora D, Mallamaci A, Stornaiuolo A, D’Apice M R, Nigro V, Boncinelli E. A vertebrate gene related to orthodenticle contains a homeodomain of the bicoid class and demarcates anterior neuroectoderm in the gastrulating mouse embryo. EMBO Journal, 1993, 12(7): 2735–2747
Pubmed
[31]
Diaczok D, Romero C, Zunich J, Marshall I, Radovick S. A novel dominant negative mutation of OTX2 associated with combined pituitary hormone deficiency. Journal of Clinical Endocrinology and Metabolism, 2008, 93(11): 4351–4359
CrossRef Pubmed Google scholar
[32]
Asadi M H, Khalifeh K, Mowla S J. OCT4 spliced variants are highly expressed in brain cancer tissues and inhibition of OCT4B1 causes G2/M arrest in brain cancer cells. Journal of Neuro-Oncology, 2016, 130(3): 455–463
CrossRef Pubmed Google scholar
[33]
Hwang J Y, Oh J N, Lee D K, Choi K H, Park C H, Lee C K. Identification and differential expression patterns of porcine OCT4 variants. Reproduction, 2015, 149(1): 55–66
CrossRef Pubmed Google scholar
[34]
Li D, Yang Z K, Bu J Y, Xu C Y, Sun H, Tang J B, Lin P, Cheng W, Huang N, Cui R J, Yu X G, Zheng X L. OCT4B modulates OCT4A expression as ceRNA in tumor cells. Oncology Reports, 2015, 33(5): 2622–2630
CrossRef Pubmed Google scholar
[35]
Tan M H, Au K F, Leong D E, Foygel K, Wong W H, Yao M W. An Oct4-Sall4-Nanog network controls developmental progression in the pre-implantation mouse embryo. Molecular Systems Biology, 2013, 9(1): 632
CrossRef Pubmed Google scholar
[36]
Boyer L A, Lee T I, Cole M F, Johnstone S E, Levine S S, Zucker J P, Guenther M G, Kumar R M, Murray H L, Jenner R G, Gifford D K, Melton D A, Jaenisch R, Young R A. Core transcriptional regulatory circuitry in human embryonic stem cells. Cell, 2005, 122(6): 947–956
CrossRef Pubmed Google scholar
[37]
Chen X, Xu H, Yuan P, Fang F, Huss M, Vega V B, Wong E, Orlov Y L, Zhang W, Jiang J, Loh Y H, Yeo H C, Yeo Z X, Narang V, Govindarajan K R, Leong B, Shahab A, Ruan Y, Bourque G, Sung W K, Clarke N D, Wei C L, Ng H H. Integration of external signaling pathways with the core transcriptional network in embryonic stem cells. Cell, 2008, 133(6): 1106–1117
CrossRef Pubmed Google scholar
[38]
Lim C Y, Tam W L, Zhang J, Ang H S, Jia H, Lipovich L, Ng H H, Wei C L, Sung W K, Robson P, Yang H, Lim B. Sall4 regulates distinct transcription circuitries in different blastocyst-derived stem cell lineages. Cell Stem Cell, 2008, 3(5): 543–554
CrossRef Pubmed Google scholar
[39]
[40]
Rao S, Zhen S, Roumiantsev S, McDonald L T, Yuan G C, Orkin S H. Differential roles of Sall4 isoforms in embryonic stem cell pluripotency. Molecular and Cellular Biology, 2010, 30(22): 5364–5380
CrossRef Pubmed Google scholar
[41]
Acampora D, Di Giovannantonio L G, Simeone A. Otx2 is an intrinsic determinant of the embryonic stem cell state and is required for transition to a stable epiblast stem cell condition. Development, 2013, 140(1): 43–55
CrossRef Pubmed Google scholar
[42]
Buecker C, Srinivasan R, Wu Z, Calo E, Acampora D, Faial T, Simeone A, Tan M, Swigut T, Wysocka J. Reorganization of enhancer patterns in transition from naive to primed pluripotency. Cell Stem Cell, 2014, 14(6): 838–853
CrossRef Pubmed Google scholar
[43]
Yang S H, Kalkan T, Morissroe C, Marks H, Stunnenberg H, Smith A, Sharrocks A D. Otx2 and Oct4 drive early enhancer activation during embryonic stem cell transition from naive pluripotency. Cell Reports, 2014, 7(6): 1968–1981
CrossRef Pubmed Google scholar

Supplementary materials

The online version of this article at https://doi.org/10.15302/J-FASE-2017180 contains supplementary materials (Tables S1–S2; Figs. S1–S4).

Acknowledgements

This work was supported by the National Natural Science Foundation of China (31571521 and 31371505).

Compliance with ethics guidelines

Ning Wang, Sile Wang, Yaxian Wang, Yuanxing Cai, Fan Yang, and Huayan Wang declare that they have no conflicts of interests or financial conflicts to disclose.
This article does not contain any studies with human or animal subjects performed by any of the authors.

RIGHTS & PERMISSIONS

The Author(s) 2017. Published by Higher Education Press. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0)
AI Summary AI Mindmap
PDF(5248 KB)

Accesses

Citations

Detail

Sections
Recommended

/