Transcriptomic basis of neutrophil ratio variation induced by poly I:C stimulation in porcine peripheral blood
Haiyan WANG, Qiaoxia ZHANG, Lilin YIN, Xiangdong LIU, Shuhong ZHAO, Mengjin ZHU, Changchun LI
Transcriptomic basis of neutrophil ratio variation induced by poly I:C stimulation in porcine peripheral blood
Neutrophils are vital components of defense mechanisms against invading pathogens and are closely linked with the individual antiviral capacity of pigs and other mammals. Neutrophilia is a well-known clinical characteristic of viral and bacterial infections. Using Affymetrix porcine genome microarrays, we investigated the gene expression profiles associated with neutrophil variation in porcine peripheral blood before and after polyriboinosinic-polyribocytidylic acid stimulation. Transcriptomic analysis showed 796 differentially expressed genes (DEGs) in extreme response (ER) pigs and 192 DEGs in moderate response (MR) pigs. Most DEGs were related to immune responses, included MXD1, CXCR4, CREG1, MyD88, CD14, TLR2, TLR4, IRF3 and IRF7. Gene ontology analysis indicated that the DEGs of both ER and MR pigs were involved in common biological processes, such as cell proliferation, growth regulation, immune response, inflammatory response and cell activation. The ER and MR groups also showed differences in DEGs involved in biological processes. DEGs involved in cell division and cell cycle were specifically found in the ER pigs, whereas DEGs involved in cell migration were specifically found in the MR pigs. The study provides a basic understanding of the molecular basis for the antiviral capacity of pigs and other mammals.
neutrophil / peripheral blood / pig / poly I:C / transcriptome
[1] |
Vissche A H, Janss L L G, Niewold T A, de Greef K H. Disease incidence and immunological traits for the selection of healthy pigs. A review. Veterinary Quarterly, 2002, 24(1): 29–34
CrossRef
Pubmed
Google scholar
|
[2] |
Borregaard N. Neutrophils, from marrow to microbes. Immunity, 2010, 33(5): 657–670
CrossRef
Pubmed
Google scholar
|
[3] |
Mócsai A. Diverse novel functions of neutrophils in immunity, inflammation, and beyond. Journal of Experimental Medicine, 2013, 210(7): 1283–1299
CrossRef
Pubmed
Google scholar
|
[4] |
Segal A W. How neutrophils kill microbes.Annual Review of Immunology , 2005, 23(1): 197–223
CrossRef
Pubmed
Google scholar
|
[5] |
Christopher M J, Link D C. Regulation of neutrophil homeostasis. Current Opinion in Hematology, 2007, 14(1): 3–8
CrossRef
Pubmed
Google scholar
|
[6] |
Cham B, Bonilla M A, Winkelstein J. Neutropenia associated with primary immunodeficiency syndromes.Seminars in Hematology , 2002, 39(2): 107–112
CrossRef
Pubmed
Google scholar
|
[7] |
Rezaei N, Moazzami K, Aghamohammadi A, Klein C. Neutropenia and primary immunodeficiency diseases. International Reviews of Immunology, 2009, 28(5): 335–366
CrossRef
Pubmed
Google scholar
|
[8] |
Stevens B, Maxson J, Tyner J, Smith C A, Gutman J A, Robinson W, Jordan C T, Lee C K, Swisshelm K, Tobin J, Wei Q, Schowinsky J, Rinella S, Lee H G, Pollyea D A. Clonality of neutrophilia associated with plasma cell neoplasms: report of a SETBP1 mutation and analysis of a single institution series. Leukemia & Lymphoma, 2016, 57(4): 927–934
CrossRef
Pubmed
Google scholar
|
[9] |
Su Z, Mao Y P, OuYang P Y, Tang J, Xie F Y. Initial hyperleukocytosis and neutrophilia in nasopharyngeal carcinoma: incidence and prognostic impact. PLoS One, 2015, 10(9): e0136752
CrossRef
Pubmed
Google scholar
|
[10] |
Fei M, Bhatia S, Oriss T B, Yarlagadda M, Khare A, Akira S, Saijo S, Iwakura Y, Fallert Junecko B A, Reinhart T A, Foreman O, Ray P, Kolls J, Ray A. TNF-α from inflammatory dendritic cells (DCs) regulates lung IL-17A/IL-5 levels and neutrophilia versus eosinophilia during persistent fungal infection. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(13): 5360–5365
CrossRef
Pubmed
Google scholar
|
[11] |
Roos A B, Sethi S, Nikota J, Wrona C T, Dorrington M G, Sandén C, Bauer C M, Shen P, Bowdish D, Stevenson C S, Erjefält J S, Stampfli M R. IL-17A and the promotion of neutrophilia in acute exacerbation of chronic obstructive pulmonary disease. American Journal of Respiratory and Critical Care Medicine, 2015, 192(4): 428–437
CrossRef
Pubmed
Google scholar
|
[12] |
Ubags N D, Vernooy J H, Burg E, Hayes C, Bement J, Dilli E, Zabeau L, Abraham E, Poch K R, Nick J A, Dienz O, Zuñiga J, Wargo M J, Mizgerd J P, Tavernier J, Rincón M, Poynter M E, Wouters E F, Suratt B T. The role of leptin in the development of pulmonary neutrophilia in infection and acute lung injury. Critical Care Medicine, 2014, 42(2): e143–e151
CrossRef
Pubmed
Google scholar
|
[13] |
Nedeljkovic M, He S, Szer J, Juneja S. Chronic neutrophilia associated with myeloma: is it clonal? Leukemia & Lymphoma, 2014, 55(2): 439–440
CrossRef
Pubmed
Google scholar
|
[14] |
Kohmura K, Miyakawa Y, Kameyama K, Kizaki M, Ikeda Y. Granulocyte colony stimulating factor-producing multiple myeloma associated with neutrophilia. Leukemia & Lymphoma, 2004, 45(7): 1475–1479
CrossRef
Pubmed
Google scholar
|
[15] |
Fu J J, Baines K J, Wood L G, Gibson P G. Systemic inflammation is associated with differential gene expression and airway neutrophilia in asthma. OMICS: A Journal of Integrative Biology, 2013, 17(4): 187–199
CrossRef
Pubmed
Google scholar
|
[16] |
Biggar W D, Bohn D, Kent G. Neutrophil circulation and release from bone marrow during hypothermia. Infection and Immunity, 1983, 40(2): 708–712
Pubmed
|
[17] |
Chabot-Roy G, Willson P, Segura M, Lacouture S, Gottschalk M. Phagocytosis and killing of Streptococcus suis by porcine neutrophils.Microbial Pathogenesis , 2006, 41(1): 21–32
CrossRef
Pubmed
Google scholar
|
[18] |
Baarsch M J, Foss D L, Murtaugh M P. Pathophysiologic correlates of acute porcine pleuropneumonia. American Journal of Veterinary Research, 2000, 61(6): 684–690
CrossRef
Pubmed
Google scholar
|
[19] |
Ichinohe T, Watanabe I, Ito S, Fujii H, Moriyama M, Tamura S, Takahashi H, Sawa H, Chiba J, Kurata T, Sata T, Hasegawa H. Synthetic double-stranded RNA poly(I:C) combined with mucosal vaccine protects against influenza virus infection. Journal of Virology, 2005, 79(5): 2910–2919
CrossRef
Pubmed
Google scholar
|
[20] |
Fortier M E, Kent S, Ashdown H, Poole S, Boksa P, Luheshi G N. The viral mimic, polyinosinic:polycytidylic acid, induces fever in rats via an interleukin-1-dependent mechanism. Ajp Regulatory Integrative & Comparative Physiology, 2004, 287(4): R759–R766
CrossRef
Pubmed
Google scholar
|
[21] |
Matsumoto M, Seya T. TLR3: interferon induction by double-stranded RNA including poly(I:C). Advanced Drug Delivery Reviews, 2008, 60(7): 805–812
CrossRef
Pubmed
Google scholar
|
[22] |
Wang H, Hou Y, Guo J, Chen H, Liu X, Wu Z, Zhao S, Zhu M. Transcriptomic landscape for lymphocyte count variation in poly I:C-induced porcine peripheral blood. Animal Genetics, 2016, 47(1): 49–61
CrossRef
Pubmed
Google scholar
|
[23] |
Cunningham C, Campion S, Teeling J, Felton L, Perry V H. The sickness behaviour and CNS inflammatory mediator profile induced by systemic challenge of mice with synthetic double-stranded RNA (poly I:C). Brain, Behavior, and Immunity, 2007, 21(4): 490–502
CrossRef
Pubmed
Google scholar
|
[24] |
Farina G A, York M R, Di Marzio M, Collins C A, Meller S, Homey B, Rifkin I R, Marshak-Rothstein A, Radstake T R, Lafyatis R. Poly(I:C) drives type I IFN- and TGFb-mediated inflammation and dermal fibrosis simulating altered gene expression in systemic sclerosis. Journal of Investigative Dermatology, 2010, 130(11): 2583–2593
CrossRef
Pubmed
Google scholar
|
[25] |
Kimura G, Ueda K, Eto S, Watanabe Y, Masuko T, Kusama T, Barnes P J, Ito K, Kizawa Y. Toll-like receptor 3 stimulation causes corticosteroid-refractory airway neutrophilia and hyperresponsiveness in mice. Chest, 2013, 144(1): 99–105
CrossRef
Pubmed
Google scholar
|
[26] |
He J, Lang G, Ding S, Li L. Pathological role of interleukin-17 in poly I:C-induced hepatitis. PLoS One, 2013, 8(9): e73909
CrossRef
Pubmed
Google scholar
|
[27] |
Jovanović B, Goetz F W, Goetz G W, Palić D. Immunological stimuli change expression of genes and neutrophil function in fathead minnow Pimephales promelas Rafinesque. Journal of Fish Biology, 2011, 78(4): 1054–1072
CrossRef
Pubmed
Google scholar
|
[28] |
Brazma A, Hingamp P, Quackenbush J, Sherlock G, Spellman P, Stoeckert C, Aach J, Ansorge W, Ball C A, Causton H C, Gaasterland T, Glenisson P, Holstege F C, Kim I F, Markowitz V, Matese J C, Parkinson H, Robinson A, Sarkans U, Schulze-Kremer S, Stewart J, Taylor R, Vilo J, Vingron M. Minimum information about a microarray experiment (MIAME)-toward standards for microarray data. Nature Genetics, 2001, 29(4): 365–371
CrossRef
Pubmed
Google scholar
|
[29] |
Gautier L, Cope L, Bolstad B M, Irizarry R A. affy--analysis of Affymetrix GeneChip data at the probe level. Bioinformatics, 2004, 20(3): 307–315
CrossRef
Pubmed
Google scholar
|
[30] |
Smyth G K. Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Statistical Applications in Genetics & Molecular Biology, 2004, 3: Article3
|
[31] |
Huang W, Sherman B T, Lempicki R A. Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Research, 2009, 37(1): 1–13
CrossRef
Pubmed
Google scholar
|
[32] |
Oliveros J C. VENNY. An interactive tool for comparing lists with Venn Diagrams. http://bioinfogp.cnb.csic.es/tools/venny/index.html, 2016-2
|
[33] |
Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT Method. Methods, 2001, 25(4): 402–408
CrossRef
Pubmed
Google scholar
|
[34] |
Poortinga G, Hannan K M, Snelling H, Walkley C R, Jenkins A, Sharkey K, Wall M, Brandenburger Y, Palatsides M, Pearson R B, McArthur G A, Hannan R D. MAD1 and c-MYC regulate UBF and rDNA transcription during granulocyte differentiation. EMBO Journal, 2004, 23(16): 3325–3335
CrossRef
Pubmed
Google scholar
|
[35] |
Rottmann S, Menkel A R, Bouchard C, Mertsching J, Loidl P, Kremmer E, Eilers M, Lüscher-Firzlaff J, Lilischkis R, Lüscher B. Mad1 function in cell proliferation and transcriptional repression is antagonized by cyclin E/CDK2. Journal of Biological Chemistry, 2005, 280(16): 15489–15492
CrossRef
Pubmed
Google scholar
|
[36] |
Zhou Z, Wang N, Woodson S E, Dong Q, Wang J, Liang Y, Rijnbrand R, Wei L, Nichols J E, Guo J T, Holbrook M R, Lemon S M, Li K. Antiviral activities of ISG20 in positive-strand RNA virus infections. Virology, 2011, 409(2): 175–188
CrossRef
Pubmed
Google scholar
|
[37] |
Lace M J, Anson J R, Haugen T H, Turek L P. Interferon regulatory factor (IRF)-2 activates the HPV-16 E6-E7 promoter in keratinocytes. Virology, 2010, 399(2): 270–279
CrossRef
Pubmed
Google scholar
|
[38] |
Cui L, Deng Y, Rong Y, Lou W, Mao Z, Feng Y, Xie D, Jin D. IRF-2 is over-expressed in pancreatic cancer and promotes the growth of pancreatic cancer cells. Tumour Biology, 2012, 33(1): 247–255
CrossRef
Pubmed
Google scholar
|
[39] |
Strezoska Z, Pestov D G, Lau L F. Functional inactivation of the mouse nucleolar protein Bop1 inhibits multiple steps in pre-rRNA processing and blocks cell cycle progression. Journal of Biological Chemistry, 2002, 277(33): 29617–29625
CrossRef
Pubmed
Google scholar
|
[40] |
Pestov D G, Strezoska Z, Lau L F. Evidence of p53-dependent cross-talk between ribosome biogenesis and the cell cycle: effects of nucleolar protein Bop1 on G(1)/S transition. Molecular and Cellular Biology, 2001, 21(13): 4246–4255
CrossRef
Pubmed
Google scholar
|
[41] |
Ma Q, Jones D, Springer T A. The chemokine receptor CXCR4 is required for the retention of B lineage and granulocytic precursors within the bone marrow microenvironment. Immunity, 1999, 10(4): 463–471
CrossRef
Pubmed
Google scholar
|
[42] |
Strydom N, Rankin S M. Regulation of circulating neutrophil numbers under homeostasis and in disease. Journal of Innate Immunity, 2013, 5(4): 304–314
CrossRef
Pubmed
Google scholar
|
[43] |
Eash K J, Means J M, White D W, Link D C. CXCR4 is a key regulator of neutrophil release from the bone marrow under basal and stress granulopoiesis conditions. Blood, 2009, 113(19): 4711–4719
CrossRef
Pubmed
Google scholar
|
[44] |
Chen D, Zhang T L, Wang L M. The association of CSF-1 gene polymorphism with chronic periodontitis in the Han Chinese population. Journal of Periodontology, 2014, 85(8): e304–e312
CrossRef
Pubmed
Google scholar
|
[45] |
Yan C, Fang P, Zhang H, Tao J, Tian X, Li Y, Zhang J, Sun M, Li S, Wang H, Han Y. CREG1 promotes angiogenesis and neovascularization. Frontiers in Bioscience, 2014, 19(7): 1151–1161
CrossRef
Pubmed
Google scholar
|
[46] |
Martin C, Burdon P C, Bridger G, Gutierrez-Ramos J C, Williams T J, Rankin S M. Chemokines acting via CXCR2 and CXCR4 control the release of neutrophils from the bone marrow and their return following senescence. Immunity, 2003, 19(4): 583–593
CrossRef
Pubmed
Google scholar
|
[47] |
Burdon P C, Martin C, Rankin S M. The CXC chemokine MIP-2 stimulates neutrophil mobilization from the rat bone marrow in a CD49d-dependent manner. Blood, 2005, 105(6): 2543–2548
CrossRef
Pubmed
Google scholar
|
[48] |
Płóciennikowska A, Hromada-Judycka A, Borzęcka K, Kwiatkowska K. Co-operation of TLR4 and raft proteins in LPS-induced pro-inflammatory signaling. Cellular and Molecular Life Sciences, 2015, 72(3): 557–581
CrossRef
Pubmed
Google scholar
|
[49] |
Akira S, Takeda K, Kaisho T. Toll-like receptors: critical proteins linking innate and acquired immunity. Nature Immunology, 2001, 2(8): 675–680
CrossRef
Pubmed
Google scholar
|
[50] |
Huang Q Q, Pope R M. The role of toll-like receptors in rheumatoid arthritis. Current Rheumatology Reports, 2009, 11(5): 357–364
CrossRef
Pubmed
Google scholar
|
[51] |
Ioannou S, Voulgarelis M. Toll-like receptors, tissue injury, and tumourigenesis. Mediators of Inflammation, 2010, 2010(9629351): 60–68
Pubmed
|
[52] |
Loiarro M, Volpe E, Ruggiero V, Gallo G, Furlan R, Maiorino C, Battistini L, Sette C. Mutational analysis identifies residues crucial for homodimerization of myeloid differentiation factor 88 (MyD88) and for its function in immune cells. Journal of Biological Chemistry, 2013, 288(42): 30210–30222
CrossRef
Pubmed
Google scholar
|
[53] |
Clark S R, Ma A C, Tavener S A, McDonald B, Goodarzi Z, Kelly M M, Patel K D, Chakrabarti S, McAvoy E, Sinclair G D, Keys E M, Allen-Vercoe E, Devinney R, Doig C J, Green F H, Kubes P. Platelet TLR4 activates neutrophil extracellular traps to ensnare bacteria in septic blood. Nature Medicine, 2007, 13(4): 463–469
CrossRef
Pubmed
Google scholar
|
[54] |
McAvoy E F, McDonald B, Parsons S A, Wong C H, Landmann R, Kubes P. The role of CD14 in neutrophil recruitment within the liver microcirculation during endotoxemia. Journal of Immunology, 2011, 186(4): 2592–2601
CrossRef
Pubmed
Google scholar
|
[55] |
Haziot A, Tsuberi B Z, Goyert S M. Neutrophil CD14: biochemical properties and role in the secretion of tumor necrosis factor-alpha in response to lipopolysaccharide. Journal of Immunology, 1993, 150(12): 5556–5565
Pubmed
|
[56] |
Serwacka A, Protaziuk T, Zagozda M, Popow A M, Kierzkiewicz M, Manitius J, Myśliwiec M, Daniewska D, Gołebiewski S, Rydzewska-Rosołowska A, Flisiński M, Stępień K, Rydzewska G, Olszewski W L, Rydzewski A. Lack of effect of the CD14 promoter gene C-159T polymorphism on nutritional status parameters in hemodialysis patients. Medical Science Monitor, 2011, 17(2): CR117–CR121
CrossRef
Pubmed
Google scholar
|
[57] |
Janova H, Böttcher C, Holtman I R, Regen T, van Rossum D, Götz A, Ernst A S, Fritsche C, Gertig U, Saiepour N, Gronke K, Wrzos C, Ribes S, Rolfes S, Weinstein J, Ehrenreich H, Pukrop T, Kopatz J, Stadelmann C, Salinas-Riester G, Weber M S, Prinz M, Brück W, Eggen B J, Boddeke H W, Priller J, Hanisch U K. CD14 is a key organizer of microglial responses to CNS infection and injury. Glia, 2016, 64(4): 635–649
CrossRef
Pubmed
Google scholar
|
[58] |
Neufeld T P, de la Cruz A F, Johnston L A, Edgar B A. Coordination of growth and cell division in the Drosophila wing. Cell, 1998, 93(7): 1183–1193
CrossRef
Pubmed
Google scholar
|
[59] |
Blagosklonny M V, Pardee A B. The restriction point of the cell cycle. Cell Cycle, 2002, 1(2): 102–109
CrossRef
Pubmed
Google scholar
|
[60] |
Raftopoulou M, Hall A. Cell migration: Rho GTPases lead the way. Developmental Biology, 2004, 265(1): 23–32
CrossRef
Pubmed
Google scholar
|
[61] |
Luster A D, Alon R, von Andrian U H. Immune cell migration in inflammation: present and future therapeutic targets. Nature Immunology, 2005, 6(12): 1182–1190
CrossRef
Pubmed
Google scholar
|
[62] |
Lauffenburger D A, Horwitz A F. Cell migration: a physically integrated molecular process. Cell, 1996, 84(3): 359–369
CrossRef
Pubmed
Google scholar
|
[63] |
Nordenfelt P, Tapper H. Phagosome dynamics during phagocytosis by neutrophils. Journal of Leukocyte Biology, 2011, 90(2): 271–284
CrossRef
Pubmed
Google scholar
|
[64] |
Kawasaki T, Kawai T. Toll-like receptor signaling pathways. Frontiers in Immunology, 2014, 5(461): 461
Pubmed
|
[65] |
Akira S. Toll-like receptor signaling. Journal of Biological Chemistry, 2003, 278(40): 38105–38108
CrossRef
Pubmed
Google scholar
|
[66] |
Hiscott J. Triggering the innate antiviral response through IRF-3 activation. Journal of Biological Chemistry, 2007, 282(21): 15325–15329
CrossRef
Pubmed
Google scholar
|
[67] |
Sato M, Suemori H, Hata N, Asagiri M, Ogasawara K, Nakao K, Nakaya T, Katsuki M, Noguchi S, Tanaka N, Taniguchi T. Distinct and essential roles of transcription factors IRF-3 and IRF-7 in response to viruses for IFN-alpha/beta gene induction. Immunity, 2000, 13(4): 539–548
CrossRef
Pubmed
Google scholar
|
[68] |
Kurt-Jones E A, Popova L, Kwinn L, Haynes L M, Jones L P, Tripp R A, Walsh E E, Freeman M W, Golenbock D T, Anderson L J, Finberg R W. Pattern recognition receptors TLR4 and CD14 mediate response to respiratory syncytial virus. Nature Immunology, 2000, 1(5): 398–401
CrossRef
Pubmed
Google scholar
|
[69] |
Zhou J, Zhang X, Liu S, Wang Z, Chen Q, Wu Y, He Z, Huang Z. Genetic association of TLR4 Asp299Gly, TLR4 Thr399Ile, and CD14 C-159T polymorphisms with the risk of severe RSV infection: a meta-analysis. Influenza and Other Respiratory Viruses, 2016, 10(3): 224–233
CrossRef
Pubmed
Google scholar
|
[70] |
Li Q, Shirabe K, Kuwada J Y. Chemokine signaling regulates sensory cell migration in zebrafish. Developmental Biology, 2004, 269(1): 123–136
CrossRef
Pubmed
Google scholar
|
[71] |
Scapini P, Lapinet-Vera J A, Gasperini S, Calzetti F, Bazzoni F, Cassatella M A. The neutrophil as a cellular source of chemokines. Immunological Reviews, 2000, 177(1): 195–203
CrossRef
Pubmed
Google scholar
|
[72] |
Tecchio C, Cassatella M A. Neutrophil-derived chemokines on the road to immunity. Seminars in Immunology, 2016, 28(2): 119–128
CrossRef
Pubmed
Google scholar
|
[73] |
Németh T, Mócsai A, Lowell C A. Neutrophils in animal models of autoimmune disease. Seminars in Immunology, 2016, 28(2): 174–186
CrossRef
Pubmed
Google scholar
|
/
〈 | 〉 |