Genome-wide analysis reveals selection for Chinese Rongchang pigs

Lei CHEN , Shilin TIAN , Long JIN , Zongyi GUO , Dan ZHU , Lan JING , Tiandong CHE , Qianzi TANG , Siqing CHEN , Liang ZHANG , Tinghuan ZHANG , Zuohua LIU , Jinyong WANG , Mingzhou LI

Front. Agr. Sci. Eng. ›› 2017, Vol. 4 ›› Issue (3) : 319 -326.

PDF (1463KB)
Front. Agr. Sci. Eng. ›› 2017, Vol. 4 ›› Issue (3) : 319 -326. DOI: 10.15302/J-FASE-2017161
RESEARCH ARTICLE
RESEARCH ARTICLE

Genome-wide analysis reveals selection for Chinese Rongchang pigs

Author information +
History +
PDF (1463KB)

Abstract

Livestock have undergone domestication and consequently strong selective pressure on genes or genomic regions that control desirable traits. To identify selection signatures in the genome of Chinese Rongchang pigs, we generated a total of about 170 Gb of DNA sequence data with about 6.4-fold coverage for each of six female individuals. By combining these data with the publically available genome data of 10 Asian wild boars, we identified 449 protein-coding genes with selection signatures in Rongchang pigs, which are mainly involved in growth and hormone binding, nervous system development, and drug metabolism. The accelerated evolution of these genes may contribute to the dramatic phenotypic differences between Rongchang pigs and Chinese wild boars. This study illustrated how domestication and subsequent artificial selection have shaped patterns of genetic variation in Rongchang pigs and provides valuable genetic resources that can enhance the use of pigs in agricultural production and biomedical studies.

Keywords

domestication / genome / pig / re-sequencing / selection

Cite this article

Download citation ▾
Lei CHEN, Shilin TIAN, Long JIN, Zongyi GUO, Dan ZHU, Lan JING, Tiandong CHE, Qianzi TANG, Siqing CHEN, Liang ZHANG, Tinghuan ZHANG, Zuohua LIU, Jinyong WANG, Mingzhou LI. Genome-wide analysis reveals selection for Chinese Rongchang pigs. Front. Agr. Sci. Eng., 2017, 4(3): 319-326 DOI:10.15302/J-FASE-2017161

登录浏览全文

4963

注册一个新账户 忘记密码

Introduction

Genome sequencing and assembly for European domestic Duroc pigs has greatly improved the genetic resources available for this important livestock species[1], and has enhanced the potential of this pig as a model organism for biomedical studies. Biological adaptability has enabled development of over 730 current pig breeds or lines that are distributed globally across a wide range of environments[2]. Modern domestic pigs have undergone strong genetic selection in specialized commercial populations; this has led to remarkable phenotypic changes and genetic adaptation, which makes these breeds an important world heritage and scientific resource for comparative genomic studies[3,4]. Recently, a list of ‘domestication genes’ has been compiled for silkworms[5], chickens[6], pigeons[7], rabbits[8], dogs[9], cattle[10] and pigs[1114] by genomic sequencing. Rongchang pigs, a Chinese indigenous breed raised only in Southwest China with a center of production in the Sichuan basin, have been intensively selected for efficient accumulation of muscle and highly prized pork traits (i.e., juiciness, flavor, tenderness, pink hue and heavy marbling). The phenotypes of Rongchang pigs, characterized by their average-size head, concave and wrinkled face, well-developed limbs, concave back, tilted haunch and a big belly, are remarkably different from wild boars.

To identify genomic selection signatures in Rongchang pigs, we performed whole-genome resequencing of six female Rongchang pigs (about 170 Gb in total) and evaluated the genomic regions under selection.

Materials and methods

Animals and genome sequencing

Genomic DNA was extracted from the blood of six female Rongchang pigs from a nucleus herd in Chongqing Municipal Breeding Pig Farm, with no direct and collateral blood relationship within the last three generations among the individuals selected. Sequencing was performed on a HiSeq 2000 platform (Illumina, San Diego, CA, USA). In addition, we downloaded genomic data of 101 pigs worldwide from the EMBL-EBI database (http://www.ebi.ac.uk/) under accession number ERR173 and the NCBI sequence read archive (SRA) under accession number SRA065461, which included 30 European domestic pigs, 20 Chinese domestic pigs, 30 Tibetan wild pigs from China, 10 Asian wild boars, six European wild boars, four other species in the genus Sus, and an African warthog[1,11,15,16].

SNP calling

We first filtered low-quality paired reads, which mainly resulted from base-calling duplicates and adapter contamination. The qualified paired-end reads were mapped to the pig reference genome assembly (Sscrofa10.2)[1] using BWA software[17]. After alignment, we performed SNP calling on a population-scale for two groups (56 domestic pigs and 51 other pigs as detailed above and an African warthog) using a Bayesian approach implemented in SAMtools[18]. The genotype likelihoods from reads for each individual at each genomic location were calculated, and the allele frequencies were estimated. Only the high-quality SNPs (coverage depth≥4 and≤1000, RMS (root mean square) mapping quality≥20, distance of adjacent SNPs≥5 bp and missing ratio of samples within each group<50%) were kept for the subsequent analysis.

Functional enrichment analysis

Functional enrichment analysis of Gene Ontology (GO) terms, pathway, and InterPro domains were identified using the DAVID web server[19]. Genes were mapped to their respective human orthologs, and the lists were submitted to DAVID for enrichment analysis of the significant overrepresentation of GO biological processes (GO-BP), molecular function (GO-MF) terms, and KEGG pathway and InterPro categories. In all tests, all the known genes were assigned as the background, and P values (i.e., EASE score), which indicated significance of overlap between various gene sets, were calculated using Benjamini-corrected modified Fisher’s exact test. Only terms with P<0.05 were considered significant.

Phylogenetic analyses

Phylogenetic relationships were inferred using the package TreeBeST (http://treesoft.sourceforge.net/treebest.shtml) under the p-distance model using SNPs at a population-scale. We performed principle component analysis (PCA) with population-scale SNPs using EIGENSOFT4.2[20]. The significance level of eigenvectors was determined using the Tracy-Widom test[20].

Identification of selected regions

A sliding window approach (100-kb windows with 10-kb steps) was applied to quantify the pooled heterozygosity (Hp), genetic differentiation (FST), and selection statistics (Tajima’s D, which is a measure of selection in the genome) between Rongchang pigs and Asian wild boars. To detect regions with significant selective sweep signatures, we Z-transformed the resultant distributions of Hp scores and FST values, and simultaneously selected windows with low Z(Hp) (<−2) in Rongchang pigs and high Z(FST) (>2) as genomic regions with strong selective sweep signals that could harbor genes under selection.

Results and discussion

Sequencing and SNP calling

We generated a total of about 170 Gb of paired-end reads, of which 85% (144.43 Gb) of high-quality reads were mapped to the pig reference genome assembly (Sscrofa10.2) with about 6.4-fold coverage for each individual (Table S1). In addition, we downloaded about 1037 Gb of genomic data from 101 publically available pig genomes in the EMBL-EBI database and about 659 Gb in the NCBI SRA database[1,11,15,16] (Table S2).

We performed SNP calling on a population-scale and identified 10.13 M SNPs from 107 individuals (Table S3). We then separately pooled and obtained SNP sets for each of two groups, which included 6.74 M from the 56 domestic pigs and 7.76 M from the 51 other individuals. We identified 6.50 M SNPs from six Rongchang pigs, of which 47205 were coding SNPs included 15662 nonsynonymous nucleotide substitutions (15540 missense, 102 stop-gain and 20 stop-loss mutations) that were detected in 6910 genes (Table S4). These nonsynonymous SNP-containing genes in Rongchang pigs were mainly related to the G-protein coupled receptor protein signaling pathway (97 genes, P = 2.14 × 1010), especially sensory perception of chemical stimulus (68 genes, P = 1.02 × 109), smell (61 genes, P = 1.02 × 108), olfactory transduction (56 genes, P = 1.92 × 108) and olfactory receptor (59 genes, P = 5.73 × 108). Pigs have one of the largest repertoires of functional olfactory receptor genes that encode the G-protein coupled receptor superfamily[21]. In previous reports[1], similar rapid evolution of olfactory-related genes with extensive nucleotide variation have been found, reflecting the importance of smell in this scavenging animal and other odor-driven behaviors, such as individual recognition and mating preferences[22,23].

Genome-wide selective sweep signals

It has been well documented that from about 1000000 years ago, European and Chinese pigs diverged from each other, originating independently from different subspecies of ancestral wild boars around 10000 years ago[1,16,24]. To examine relatedness between Rongchang pigs and other pigs, we constructed a neighbor-joining tree (Fig. 1a), and conducted PCA (Fig. 1b; Table S5) using genomic SNPs, both of which revealed a deep phylogenetic split between European and Asian pigs. To accurately detect genomic footprints left by selection in Rongchang pigs and avoid genetic differences that resulted from geographic isolation of Europe from China, we specifically measured the genome-wide variations and frequency spectrum based on 8.32 M SNPs between six Rongchang pigs and 10 Asian wild boars (Table S6).

In total, 229772 100-kb windows with 10-kb steps across the pig genome contained≥100 SNPs within each window and covered 84.4% of the genome and were used to identify the regions that may have been affected by selection during domestication. We empirically chose to set the thresholds at Z(Hp)Rongchang<−2 and Z(FST)>2, because they represent the extreme tails of the distributions and are hence likely enriched for strong selective sweep signals along the genome, which could harbor genes that underwent a selective sweep. From this we identified a total of 44.86 Mb of genomic data (1.61% of the genome containing 449 genes) with strong selective sweep signals in Rongchang pigs (Fig. 2a), which also exhibited significant differences (P<1016, Mann–Whitney U test) based on Z(Hp),Z(FST), and Tajima’s D when compared with the genomic background (Fig. 2b).

We also constructed a phylogenetic neighbor-joining tree (Fig. 2c) and performed PCA (Fig. 2d) exclusively using the SNPs in regions with strong selective sweep signals. Although Rongchang pigs and Asian wild boars are genetically close, based on the 8.32 M SNPs across the whole genome (Fig. 1), they form two distinct clusters with respect to these SNPs (0.62 M, 7.45%), which are potentially under adaptive evolution resulting from industrial agriculture (Fig. 2c, Fig. 2d).

The 449 genes embedded in selected regions were analyzed using DAVID to examine whether these domestic genes were enriched for specific functional gene categories (Table 1). Our findings coincide with previous reports on genes related to pig domestication[14,1115]: genes related to growth and hormone binding, which included seven terms, were observed to be under strong selective sweep in Rongchang pigs, and may have contributed to the rapid growth and enhanced muscle development of domestic pigs.

Of note, 10 genes putatively under selection that are related predominantly to nervous system development, most with a single allele in Rongchang pigs, include CNTN4, DLL3, GHSR, LHX5, MAP1B, MBP, METRN, NUMBL, TNFRSF12A and REST, several of which affect brain development, neuronal functions, and behavior (Fig. 3). This result supports the view that altered behavior (such as reduced fear, higher levels of adult play, and tameness or aggression toward humans), in addition to the obvious dramatic changes in appearance and physiology, was also important during domestication, and that mutations affecting developmental genes may underlie these changes[2529]. In addition, four genes (CYP2A6, GMPS, UPB1 and UPP2) in Rongchang pigs exhibited strong selective sweep signatures enriched for drug metabolism (Fig. S1). Given that alterations in these genes are associated with a variety of drug metabolism associated-diseases[30], their positive selection may be attributed to constant exposure of domestic pigs in modern industry to much higher dosages of chemicals/drugs and an increased number of environmental xenobiotics, which could have accelerated evolution of drug metabolism.

Conclusions

This study examined the genetic relationships among Chinese Rongchang and other pigs, and uncovered genetic footprints of domestication and selection that provide an important resource for further improvements of this important livestock species. We envision that the data presented here will provide a representative example on which to base future deciphering of genomic footprints left by livestock domestication and selection.

References

[1]

Groenen M A MArchibald A LUenishi HTuggle C KTakeuchi YRothschild M FRogel-Gaillard CPark CMilan DMegens H JLi SLarkin D MKim HFrantz L A FCaccamo MAhn HAken B LAnselmo AAnthon CAuvil LBadaoui BBeattie C WBendixen CBerman DBlecha FBlomberg JBolund LBosse MBotti SBujie ZBystrom MCapitanu BCarvalho-Silva DChardon PChen CCheng RChoi S HChow WClark R CClee CCrooijmans R P M ADawson H DDehais PDe Sapio FDibbits BDrou NDu Z QEversole KFadista JFairley SFaraut TFaulkner G JFowler K EFredholm MFritz EGilbert J G RGiuffra EGorodkin JGriffin D KHarrow J LHayward AHowe KHu Z LHumphray S JHunt THornshøj HJeon J TJern PJones MJurka JKanamori HKapetanovic RKim JKim J HKim K WKim T HLarson GLee KLee K TLeggett RLewin H ALi YLiu WLoveland J ELu YLunney J KMa JMadsen OMann KMatthews LMcLaren SMorozumi TMurtaugh M PNarayan JTruong Nguyen DNi POh S JOnteru SPanitz FPark E WPark H SPascal GPaudel YPerez-Enciso MRamirez-Gonzalez RReecy J MRodriguez-Zas SRohrer G ARund LSang YSchachtschneider KSchraiber J GSchwartz JScobie LScott CSearle SServin BSouthey B RSperber GStadler PSweedler J VTafer HThomsen BWali RWang JWang JWhite SXu XYerle MZhang GZhang JZhang JZhao SRogers JChurcher CSchook L B. Analyses of pig genomes provide insight into porcine demography and evolution. Nature2012491(7424): 393–398

[2]

Chen KBaxter TMuir W MGroenen M ASchook L B. Genetic resources, genome mapping and evolutionary genomics of the pig (Sus scrofa). International Journal of Biological Sciences20073(3): 153–165

[3]

Rubin C JMegens H JBarrio A MMaqbool KSayyab SSchwochow DWang CCarlborg OJern PJorgensen C BArchibald A LFredholm MGroenen M A MAndersson L. Strong signatures of selection in the domestic pig genome. Proceedings of the National Academy of Sciences of the United States of America2012109(48): 19529–19536

[4]

Ai HFang XYang BHuang ZChen HMao LZhang FZhang LCui LHe WYang JYao XZhou LHan LLi JSun SXie XLai BSu YLu YYang HHuang TDeng WNielsen RRen JHuang L. Adaptation and possible ancient interspecies introgression in pigs identified by whole-genome sequencing. Nature Genetics201547(3): 217–225

[5]

Xia QGuo YZhang ZLi DXuan ZLi ZDai FLi YCheng DLi RCheng TJiang TBecquet CXu XLiu CZha XFan WLin YShen YJiang LJensen JHellmann ITang SZhao PXu HYu CZhang GLi JCao JLiu SHe NZhou YLiu HZhao JYe CDu ZPan GZhao AShao HZeng WWu PLi CPan MLi JYin XLi DWang JZheng HWang WZhang XLi SYang HLu CNielsen RZhou ZWang JXiang ZWang J. Complete resequencing of 40 genomes reveals domestication events and genes in silkworm (Bombyx). Science2009326(5951): 433–436

[6]

Rubin C JZody M CEriksson JMeadows J RSherwood EWebster M TJiang LIngman MSharpe TKa SHallböök FBesnier FCarlborg OBed’hom BTixier-Boichard MJensen PSiegel PLindblad-Toh KAndersson L. Whole-genome resequencing reveals loci under selection during chicken domestication. Nature2010464(7288): 587–591

[7]

Shapiro M DKronenberg ZLi CDomyan E TPan HCampbell MTan HHuff C DHu HVickrey A INielsen S CStringham S AHu HWillerslev EGilbert M TYandell MZhang GWang J. Genomic diversity and evolution of the head crest in the rock pigeon. Science2013339(6123): 1063–1067

[8]

Carneiro MRubin C JDi Palma FAlbert F WAlföldi JBarrio A MPielberg GRafati NSayyab STurner-Maier JYounis SAfonso SAken BAlves J MBarrell DBolet GBoucher SBurbano H ACampos RChang J LDuranthon VFontanesi LGarreau HHeiman DJohnson JMage R GPeng ZQueney GRogel-Gaillard CRuffier MSearle SVillafuerte RXiong AYoung SForsberg-Nilsson KGood J MLander E SFerrand NLindblad-Toh KAndersson L. Rabbit genome analysis reveals a polygenic basis for phenotypic change during domestication. Science2014345(6200): 1074–1079

[9]

Axelsson ERatnakumar AArendt M LMaqbool KWebster M TPerloski MLiberg OArnemo J MHedhammar ALindblad-Toh K. The genomic signature of dog domestication reveals adaptation to a starch-rich diet. Nature2013495(7441): 360–364

[10]

Daetwyler H DCapitan APausch HStothard Pvan Binsbergen RBrøndum R FLiao XDjari ARodriguez S CGrohs CEsquerré DBouchez ORossignol M NKlopp CRocha DFritz SEggen ABowman P JCoote DChamberlain A JAnderson CVanTassell C PHulsegge IGoddard M EGuldbrandtsen BLund M SVeerkamp R FBoichard D AFries RHayes B J. Whole-genome sequencing of 234 bulls facilitates mapping of monogenic and complex traits in cattle. Nature Genetics201446(8): 858–865

[11]

Li MTian SJin LZhou GLi YZhang YWang TYeung C KChen LMa JZhang JJiang ALi JZhou CZhang JLiu YSun XZhao HNiu ZLou PXian LShen XLiu SZhang SZhang MZhu LShuai SBai LTang GLiu HJiang YMai MXiao JWang XZhou QWang ZStothard PXue MGao XLuo ZGu YZhu HHu XZhao YPlastow G SWang JJiang ZLi KLi NLi XLi R. Genomic analyses identify distinct patterns of selection in domesticated pigs and Tibetan wild boars. Nature Genetics201345(12): 1431–1438

[12]

Li MChen LTian SLin YTang QZhou XLi DYeung C K LChe TJin LFu YMa JWang XJiang ALan JPan QLiu YLuo ZGuo ZLiu HZhu LShuai STang GZhao JJiang YBai LZhang SMai MLi CWang DGu YWang GLu HLi YZhu HLi ZLi MGladyshev V NJiang ZZhao SWang JLi RLi X. Comprehensive variation discovery and recovery of missing sequence in the pig genome using multiple de novo assemblies. Genome Research201727(5): 865–874

[13]

Fu YLi CTang QTian SJin LChen JLi MLi C. Genomic analysis reveals selection in Chinese native black pig. Scientific Reports20166(1): 36354

[14]

Li MTian SYeung C KMeng XTang QNiu LWang XJin LMa JLong KZhou CCao YZhu LBai LTang GGu YJiang ALi XLi R. Whole-genome sequencing of Berkshire (European native pig) provides insights into its origin and domestication. Scientific Reports20144(4): 4678

[15]

Bosse MMegens H JFrantz L AMadsen OLarson GPaudel YDuijvesteijn NHarlizius BHagemeijer YCrooijmans R PGroenen M A. Genomic analysis reveals selection for Asian genes in European pigs following human-mediated introgression. Nature Communications20145: 4392

[16]

Frantz L ASchraiber J GMadsen OMegens H JBosse MPaudel YSemiadi GMeijaard ELi NCrooijmans R PArchibald A LSlatkin MSchook L BLarson GGroenen M A. Genome sequencing reveals fine scale diversification and reticulation history during speciation in Sus. Genome Biology201314(9): R107

[17]

Li HDurbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics200925(14): 1754–1760

[18]

Li HHandsaker BWysoker AFennell TRuan JHomer NMarth GAbecasis GDurbin R. The sequence alignment/map format and SAMtools. Bioinformatics200925(16): 2078–2079

[19]

Huang WSherman B TLempicki R A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nature Protocols20094(1): 44–57

[20]

Patterson NPrice A LReich D. Population structure and eigenanalysis. PLoS Genetics20062(12): e190

[21]

Nguyen D TLee KChoi HChoi M KLe M TSong NKim J HSeo H GOh J WLee KKim T HPark C. The complete swine olfactory subgenome: expansion of the olfactory gene repertoire in the pig genome. BMC Genomics201213(1): 584

[22]

Marchese SPes DScaloni ACarbone VPelosi P. Lipocalins of boar salivary glands binding odours and pheromones. European Journal of Biochemistry1998252(3): 563–568

[23]

Mak G KEnwere E KGregg CPakarainen TPoutanen MHuhtaniemi IWeiss S. Male pheromone-stimulated neurogenesis in the adult female brain: possible role in mating behavior. Nature Neuroscience200710(8): 1003–1011

[24]

Larson GDobney KAlbarella UFang MMatisoo-Smith ERobins JLowden SFinlayson HBrand TWillerslev ERowley-Conwy PAndersson LCooper A. Worldwide phylogeography of wild boar reveals multiple centers of pig domestication. Science2005307(5715): 1618–1621

[25]

Albert F WSomel MCarneiro MAximu-Petri AHalbwax MThalmann OBlanco-Aguiar J APlyusnina I ZTrut LVillafuerte RFerrand NKaiser SJensen PPääbo S. A comparison of brain gene expression levels in domesticated and wild animals. PLoS Genetics20128(9): e1002962

[26]

Amaral A JFerretti LMegens H JCrooijmans R PNie HRamos-Onsins S EPerez-Enciso MSchook L BGroenen M A. Genome-wide footprints of pig domestication and selection revealed through massive parallel sequencing of pooled DNA. PLoS One20116(4): e14782

[27]

Li YVonholdt B MReynolds ABoyko A RWayne R KWu D DZhang Y P. Artificial selection on brain-expressed genes during the domestication of dog. Molecular Biology and Evolution201330(8): 1867–1876

[28]

Hare BPlyusnina IIgnacio NSchepina OStepika AWrangham RTrut L. Social cognitive evolution in captive foxes is a correlated by-product of experimental domestication. Current Biology200515(3): 226–230

[29]

Topál JGergely GErdohegyi ACsibra GMiklósi A. Differential sensitivity to human communication in dogs, wolves, and human infants. Science2009325(5945): 1269–1272

[30]

Meyer U AZanger U MSchwab M. Omics and drug response. Annual Review of Pharmacology and Toxicology201353(53): 475–502

RIGHTS & PERMISSIONS

The Author(s) 2017. Published by Higher Education Press. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0)

AI Summary AI Mindmap
PDF (1463KB)

Supplementary files

FASE-17161-OF-CL_suppl_1

6228

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/