Repeats in the transcribed regions: comprehensive characterization and comparison of Citrus spp.

Manosh Kumar BISWAS, Christoph MAYER, Xiuxin DENG

PDF(1935 KB)
PDF(1935 KB)
Front. Agr. Sci. Eng. ›› 2017, Vol. 4 ›› Issue (4) : 421-432. DOI: 10.15302/J-FASE-2017160
RESEARCH ARTICLE
RESEARCH ARTICLE

Repeats in the transcribed regions: comprehensive characterization and comparison of Citrus spp.

Author information +
History +

Abstract

A large number of expressed sequences tags are available for Citrus spp., which provides an opportunity to understand genomic organization of the transcribed regions. Here, we report a detailed analysis of repetitive elements including tandem repeats (TRs) and transposable elements (TEs) in the transcribed region of the Citrus spp. On average, 22% of the expressed sequence tags (ESTs) contain TRs. The relative density of TR classes is highly taxon-specific. For instance, Citrus limonia has a high relative density of mononucleotide repeats, whereas dinucleotide repeats are rare. The proportions of 2–6, 7–30 and 31–50 bp repeats were almost identical in all studied species except for C. limonia and C. limettioides. We found that<1% of the citrus ESTs have a similarity with transposable elements. Transcriptional activity of transposable element families varied even within the same class of elements. A high proportion of transcriptional activity was observed for gypsy-like TEs compare to other TE classes. While TEs are relatively rare, TRs are abundant elements in ESTs of citrus. The high proportion of TRs that have a unit size longer than 6 bp raises the question about a possible functional or evolutionary role of these elements.

Keywords

Citrus spp. / tandem repeats / transcribed region / transposable elements

Cite this article

Download citation ▾
Manosh Kumar BISWAS, Christoph MAYER, Xiuxin DENG. Repeats in the transcribed regions: comprehensive characterization and comparison of Citrus spp.. Front. Agr. Sci. Eng., 2017, 4(4): 421‒432 https://doi.org/10.15302/J-FASE-2017160

References

[1]
Niranjan N, Navajas-Pérez  R, Mihai P,  Alam M, Ming  R, Andrew H P,  Steven L S. Genome-wide analysis of repetitive elements in papaya. Tropical Plant Biology, 2008, 1(3): 191–201
[2]
Mayer C, Leese  F, Tollrian R. Genome-wide analysis of tandem repeats in Daphnia pulex—a comparative approach. BMC Genomics, 2010, 11(1): 277
CrossRef Pubmed Google scholar
[3]
Li Y C, Korol  A B, Fahima  T, Nevo E. Microsatellites within genes: structure, function, and evolution. Molecular Biology and Evolution, 2004, 21(6): 991–1007
CrossRef Pubmed Google scholar
[4]
Ugarković D,  Plohl M. Variation in satellite DNA profiles--causes and effects. EMBO Journal, 2002, 21(22): 5955–5959
CrossRef Pubmed Google scholar
[5]
Camacho J P, Sharbel  T F, Beukeboom  L W. B-chromosome evolution. Philosophical Transactions of the Royal Society of London.  Series  B,  Biological  Sciences,  2000,  355(1394):  163–178
CrossRef Pubmed Google scholar
[6]
Buard J, Jeffreys  A J. Big, bad minisatellites. Nature Genetics, 1997, 15(4): 327–328
CrossRef Pubmed Google scholar
[7]
Kashi Y, King  D, Soller M. Simple sequence repeats as a source of quantitative genetic variation. Trends in Genetics, 1997, 13(2): 74–78
CrossRef Pubmed Google scholar
[8]
Schlötterer C. Evolutionary dynamics of microsatellite DNA. Chromosoma, 2000, 109(6): 365–371
CrossRef Pubmed Google scholar
[9]
Li Y C, Korol  A B, Fahima  T, Beiles A,  Nevo E. Microsatellites: genomic distribution, putative functions and mutational mechanisms: a review. Molecular Ecology, 2002, 11(12): 2453–2465
CrossRef Pubmed Google scholar
[10]
Riley D E, Krieger  J N. Diverse eukaryotic transcripts suggest short tandem repeats have cellular functions. Biochemical and Biophysical Research Communications, 2002, 298(4): 581–586
CrossRef Pubmed Google scholar
[11]
Riley D E, Krieger  J N. Short tandem repeats are associated with diverse mRNAs encoding membrane-targeted proteins. BioEssays, 2004, 26(4): 434–444
CrossRef Pubmed Google scholar
[12]
Kashi Y, King  D G. Simple sequence repeats as advantageous mutators in evolution. Trends in Genetics , 2006, 22(5): 253–259
CrossRef Pubmed Google scholar
[13]
Dieringer D, Schlötterer  C. Two distinct modes of microsatellite mutation processes: evidence from the complete genomic sequences of nine species. Genome Research, 2003, 13(10): 2242–2251
CrossRef Pubmed Google scholar
[14]
Ellegren H. Microsatellites: simple sequences with complex evolution. Nature Reviews Genetics, 2004, 5(6): 435–445
CrossRef Pubmed Google scholar
[15]
Jeffreys A J, Neumann  R, Wilson V. Repeat unit sequence variation in minisatellites: a novel source of DNA polymorphism for studying variation and mutation by single molecule analysis. Cell, 1990, 60(3): 473–485
CrossRef Pubmed Google scholar
[16]
Bonhomme F, Rivals  E, Orth A,  Grant G R,  Jeffreys A J,  Bois P R. Species-wide distribution of highly polymorphic minisatellite markers suggests past and present genetic exchanges among house mouse subspecies. Genome Biology, 2007, 8(5): R80
CrossRef Pubmed Google scholar
[17]
Qiu L, Yang  C, Tian B,  Yang J B,  Liu A. Exploiting EST databases for the development and characterization of EST-SSR markers in castor bean (Ricinus communis L.). BMC Plant Biology, 2010, 10(1): 278
CrossRef Pubmed Google scholar
[18]
Studer B, Kölliker  R, Muylle H,  Asp T, Frei  U, Roldán-Ruiz I, Barre P,  Tomaszewski C,  Meally H,  Barth S,  Skøt L,  Armstead I P,  Dolstra O,  Lübberstedt T. EST-derived SSR markers used as anchor loci for the construction of a consensus linkage map in ryegrass (Lolium spp.). BMC Plant Biology, 2010, 10(1): 177
CrossRef Pubmed Google scholar
[19]
Vicient C M. Transcriptional activity of transposable elements in maize. BMC Genomics, 2010, 11(1): 601
CrossRef Pubmed Google scholar
[20]
Kidwell M G, Lisch  D. Transposable elements as sources of variation in animals and plants. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94(15): 7704–7711
CrossRef Pubmed Google scholar
[21]
Wicker T, Sabot  F, Hua-Van A,  Bennetzen J L,  Capy P, Chalhoub  B, Flavell A,  Leroy P,  Morgante M,  Panaud O,  Paux E, SanMiguel  P, Schulman A H. A unified classification system for eukaryotic transposable elements. Nature Reviews Genetics, 2007, 8(12): 973–982
CrossRef Pubmed Google scholar
[22]
Biswas M K, Chai  L, Amar M H,  Zhang X,  Deng X X. Comparative analysis of genetic diversity in Citrus germplasm collection using AFLP, SSAP, SAMPL and SSR markers. Scientia Horticulturae, 2011, 129(4): 798–803
CrossRef Google scholar
[23]
Biswas M K, Xu  Q, Deng X. Utility of RAPD, ISSR, IRAP and REMAP markers for the genetic analysis of Citrus spp. Scientia Horticulturae, 2010, 124(2): 254–261
CrossRef Google scholar
[24]
Talon M, Gmitter Jr.  F G.Citrus genomics. International Journal of Plant Genomics, 2008, 2008: 528361
CrossRef Pubmed Google scholar
[25]
Benson G. Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Research, 1999, 27(2): 573–580
CrossRef Pubmed Google scholar
[26]
Volfovsky N, Haas  B J, Salzberg  S L. A clustering method for repeat analysis in DNA sequences. Genome Biology, 2001, 2(8): RESEARCH0027
[27]
Macas J, Mészáros  T, Nouzová M. PlantSat: a specialized database for plant satellite repeats. Bioinformatics, 2002, 18(1): 28–35
CrossRef Pubmed Google scholar
[28]
Wicker T, Matthews  D E, Keller  B. TREP: a database for Triticeae repetitive  elements.  Trends  in  Plant  Science,  2002,  7(12):  561–562
CrossRef Google scholar
[29]
Messing J, Bharti  A K, Karlowski  W M, Gundlach  H, Kim H R,  Yu Y, Wei  F, Fuks G,  Soderlund C A,  Mayer K F,  Wing R A. Sequence composition and genome organization of maize. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(40):14349–14354
[30]
Jurka J, Kapitonov  V V, Pavlicek  A, Klonowski P,  Kohany O,  Walichiewicz J. Repbase Update, a database of eukaryotic repetitive elements. Cytogenetic and Genome Research, 2005, 110(1–4): 462–467
CrossRef Pubmed Google scholar
[31]
Meyers B C, Tingey  S V, Morgante  M. Abundance, distribution, and transcriptional activity of repetitive elements in the maize genome. Genome Research, 2001, 11(10): 1660–1676
CrossRef Pubmed Google scholar
[32]
Du J, Tian  Z, Hans C S,  Laten H M,  Cannon S B,  Jackson S A,  Shoemaker R C,  Ma J. Evolutionary conservation, diversity and specificity of LTR-retrotransposons in flowering plants: insights from genome-wide analysis and multi-specific comparison. Plant Journal, 2010, 63(4): 584–598
CrossRef Pubmed Google scholar
[33]
Chen C, Zhou  P, Choi Y A,  Huang S,  Gmitter F G Jr. Mining and characterizing microsatellites from citrus ESTs. Theoretical and Applied Genetics, 2006, 112(7): 1248–1257
CrossRef Pubmed Google scholar
[34]
Cheng Y, de Vicente  M C, Meng  H, Guo W,  Tao N, Deng  X. A set of primers for analyzing chloroplast DNA diversity in Citrus and related genera. Tree Physiology, 2005, 25(6): 661–672
CrossRef Pubmed Google scholar
[35]
Mayer C. Phobos: a tandem repeat search tool. Distributed by the author, http://www.rub.de/spezzoo/cm, 2007
[36]
Jurka J, Pethiyagoda  C. Simple repetitive DNA sequences from primates: compilation and analysis. Journal of Molecular Evolution, 1995, 40(2): 120–126
CrossRef Pubmed Google scholar
[37]
Tamura K, Peterson  D, Peterson N,  Stecher G,  Nei M, Kumar  S. MEGA5:  molecular  evolutionary  genetics analysis  using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution, 2011, 28(10): 2731–2739
CrossRef Pubmed Google scholar
[38]
Kim T S, Booth  J G, Gauch  H G Jr, Sun  Q, Park J,  Lee Y H,  Lee K. Simple sequence repeats in Neurospora crassa: distribution, polymorphism and evolutionary inference. BMC Genomics, 2008, 9(1): 31
CrossRef Pubmed Google scholar
[39]
Tautz D, Renz  M. Simple sequences are ubiquitous repetitive components of eukaryotic genomes. Nucleic Acids Research, 1984, 12(10): 4127–4138
CrossRef Pubmed Google scholar
[40]
Tóth G, Gáspári  Z, Jurka J. Microsatellites in different eukaryotic genomes: survey and analysis. Genome Research, 2000, 10(7): 967–981
CrossRef Pubmed Google scholar
[41]
Victoria F C, da Maia  L C, de Oliveira  A C. In silico comparative analysis of SSR markers in plants. BMC Plant Biology, 2011, 11(1): 15
CrossRef Pubmed Google scholar
[42]
La Rota M, Kantety  R V, Yu  J K, Sorrells  M E. Nonrandom distribution and frequencies of genomic and EST-derived microsatellite markers in rice, wheat, and barley. BMC Genomics, 2005, 6(1): 23
CrossRef Pubmed Google scholar
[43]
Lawson M J, Zhang  L. Distinct patterns of SSR distribution in the Arabidopsis thaliana and rice genomes. Genome Biology, 2006, 7(2): R14
CrossRef Pubmed Google scholar
[44]
Crane C F. Patterned sequence in the transcriptome of vascular plants. BMC Genomics, 2007, 8(1): 173
CrossRef Pubmed Google scholar
[45]
Feschotte C, Jiang  N, Wessler S R. Plant transposable elements: where genetics meets genomics. Nature Reviews Genetics, 2002, 3(5): 329–341
CrossRef Pubmed Google scholar
[46]
Tanurdzic M, Vaughn  M W, Jiang  H, Lee T J,  Slotkin R K,  Sosinski B,  Thompson W F,  Doerge R W,  Martienssen R A. Epigenomic consequences of immortalized plant cell suspension culture. PLoS Biology, 2008, 6(12): 2880–2895
CrossRef Pubmed Google scholar
[47]
Picault N, Chaparro  C, Piegu B,  Stenger W,  Formey D,  Llauro C,  Descombin J,  Sabot F,  Lasserre E,  Meynard D,  Guiderdoni E,  Panaud O. Identification of an active LTR retrotransposon in rice. Plant Journal, 2009, 58(5): 754–765
CrossRef Pubmed Google scholar
[48]
Pouteau S, Huttner  E, Grandbastien M A,  Caboche M. Specific expression of the tobacco Tnt1 retrotransposon in protoplasts. EMBO Journal, 1991, 10(7): 1911–1918
Pubmed
[49]
Hirochika H. Activation of tobacco retrotransposons during tissue culture. EMBO Journal, 1993, 12(6): 2521–2528
Pubmed
[50]
Mhiri C, Morel  J B, Vernhettes  S, Casacuberta J M,  Lucas H,  Grandbastien M A. The promoter of the tobacco Tnt1 retrotransposon is induced by wounding and by abiotic stress. Plant Molecular Biology, 1997, 33(2): 257–266
CrossRef Pubmed Google scholar
[51]
Ramallo E, Kalendar  R, Schulman A H,  Martínez-Izquierdo J A. Reme1, a Copia retrotransposon in melon, is transcriptionally induced by UV light. Plant Molecular Biology, 2008, 66(1–2): 137–150
CrossRef Pubmed Google scholar
[52]
Asíns M J,  Monforte A J,  Mestre P F,  Carbonell E A. Citrus and Prunuscopia-like retrotransposons. TAG Theoretical and Applied Genetics, 1999, 99(3–4): 503–510
CrossRef Pubmed Google scholar
[53]
Bernet G P, Asíns  M J. Identification and genomic distribution of gypsy like retrotransposons in Citrus and Poncirus. Theoretical and Applied Genetics, 2003, 108(1): 121–130
CrossRef Pubmed Google scholar
[54]
Xu Q, Chen  L L, Ruan  X, Chen D,  Zhu A, Chen  C, Bertrand D,  Jiao W B,  Hao B H,  Lyon M P,  Chen J, Gao  S, Xing F,  Lan H, Chang  J W, Ge  X, Lei Y,  Hu Q, Miao  Y, Wang L,  Xiao S, Biswas  M K, Zeng  W, Guo F,  Cao H, Yang  X, Xu X W,  Cheng Y J,  Xu J, Liu  J H, Luo  O J, Tang  Z, Guo W W,  Kuang H,  Zhang H Y,  Roose M L,  Nagarajan N,  Deng X X,  Ruan Y. The draft genome of sweet orange (Citrus sinensis). Nature Genetics, 2013, 45(1): 59–66
CrossRef Pubmed Google scholar
[55]
Rabinowicz P D, Schutz K, Dedhia N,  Yordan C, Parnell L D, Stein L,  McCombie W R,  Martienssen R A. Differential methylation of genes and retrotransposons facilitates shotgun sequencing of the maize genome. Nature Genetics, 1999, 23(3): 305–308

Supplementary materials

The online version of this article at http://dx.doi.org/10.15302/J-FASE-2017160 contains supplementary materials (Table S1; Fig. S1; Fig. S2).

Acknowledgements

This research was financially supported by the Ministry of Science and Technology of China (2011CB100600, 2011AA100205) and the National Natural Science Foundation of China (NSFC). Authors are grateful to the CSC (China Scholarship Council) and China Post Doc Council for providing the Fellowships.

Compliance with ethics guidelines

Manosh Kumar Biswas, Christoph Mayer, and Xiuxin Deng declare that they have no conflicts of interest or financial conflicts to disclose.
This article does not contain any studies with human or animal subjects performed by any of the authors.

RIGHTS & PERMISSIONS

The Author(s) 2017. Published by Higher Education Press. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0)
AI Summary AI Mindmap
PDF(1935 KB)

Accesses

Citations

Detail

Sections
Recommended

/