Genomic regions under selection for important traits in domestic horse breeds

Xuexue LIU , Yuehui MA , Lin JIANG

Front. Agr. Sci. Eng. ›› 2017, Vol. 4 ›› Issue (3) : 289 -294.

PDF (168KB)
Front. Agr. Sci. Eng. ›› 2017, Vol. 4 ›› Issue (3) : 289 -294. DOI: 10.15302/J-FASE-2017155
REVIEW
REVIEW

Genomic regions under selection for important traits in domestic horse breeds

Author information +
History +
PDF (168KB)

Abstract

Horses were domesticated 5500 years ago, thousands of years later than other domestic animals; however, in this relatively short period, domestic horses have had a great impact on human history by accelerating civilization, revolutionizing warfare and advancing agricultural production. Modern breeding using marker-assisted selection has greatly accelerated breeding progress. Therefore, identification of genetic markers underlying the traits of interest in domestic horses is the basis for the modern breeding system. In this review, we present an overview of genetic mapping studies and genome wide analyses to identify the genomic regions targeted by positive selection for four important aspects of horses, coat color, racing performance, gait and height at withers. The MC1R locus, for example, has been shown to be the main gene responsible for chestnut color, and the MSTN locus has been shown to control the muscle fiber growth in racing breeds. The missense mutation in DMRT3 is the causal mutation for the alternate gaits in horses. Height at withers, a quantitative trait, was mapped to four major loci (3:105547002, 6:81481064, 9:75550059 and 11:232597 32) that can explain 83% of the height variations in domestic horses.

Keywords

horse / coat color / racing performance / gait / height

Cite this article

Download citation ▾
Xuexue LIU, Yuehui MA, Lin JIANG. Genomic regions under selection for important traits in domestic horse breeds. Front. Agr. Sci. Eng., 2017, 4(3): 289-294 DOI:10.15302/J-FASE-2017155

登录浏览全文

4963

注册一个新账户 忘记密码

Introduction

Horses were first domesticated approximately 5500 BP[1], thousands of years later than other domestic animals, such as cattle, dogs, goats, pigs and sheep. In China, domesticated horses have not been widely found at archeological sites before the Late Shang Dynasty (approximately 3300 BP). During this relatively short period, domestic horses have had a great impact on human history by accelerating civilization, revolutionizing warfare and advancing agricultural production. Conversely, human activities have also influenced the recent evolution of domestic horses, especially development of multiple breeds with specific traits through strong selective breeding. Among these phenotypic traits, coat color, locomotion (gaits), racing performance and height at withers are the most important and easily observed domesticated traits. The height at withers was measured from the support surface of the animal to the highest point on its back. Because of the rapid progress in sequencing and genotyping techniques, the horse reference genome assembly was generated from a thoroughbred mare, Twilight[2], and the horse 50K SNP array was developed by the Equine Genome Diversity Consortium[3]. In this review, we focus on the recent advances in horse genomics through the mapping of candidate genomic regions targeted by selection during horse domestication. Positive selection, a force that drives the increase in the prevalence of traits that are advantageous or useful for humans, has played a central role in the domestication of animals[4].

Genes and genomic variations under selection for economically important traits

Coat color variation

Coat color was one of the earliest selection targets during horse domestication. Currently, domestic horses exhibit a wide variation in coat colors ranging from a unified single color to a composite coat (Table 1). Previous genetic studies have shown that coat color variations appeared rapidly during domestication[3], and many genes involved in melanin production and distribution have had an important role in the development of coat color in domesticated animals. MC1R (melanocortin 1 receptor), ASIP (agouti signaling protein), TYRP (tyrosine transporter), and PMEL17 (premelanosome protein) are the candidate genes for coat color, and many mutations in these genes associated with variations in coat colors of chickens[9], sheep[10] and pigs[11] have been identified.

In early 1996, a single nonsynonymous mutation (83Ser-Phe) in the MC1R gene, which created a TaqI restriction site in the chestnut allele, was found to be responsible for the chestnut color in horses[5]. In Morgan and Belgian horse breeds, it was found that the MC1R missense mutation has been fixed, leading to the chestnut-base coat color[12]. The horse 50K SNP array was also used to map the chestnut color in American, Asian and European horses, resulting in identification of a conserved 750 kb haplotype at the MC1R chestnut allele across all breeds[3]. Furthermore, the agouti (ASIP), extension (MC1R), and brown (TYRP) loci were detected in European[13] and Przewalski’s horses[14].

The gray coat color in horses has been mapped to a 4.6-kb duplication in intron 6 of the STX17 gene (syntaxin-17), which is a cis-acting regulatory mutation[6]. The gray horses also carry a loss-of-function mutation in the agouti ASIP locus. Meanwhile, in Arabian and Lippizaner horses, the gray allele is associated with the increased risk of melanoma; further analyses reported a copy number expansion of the STX17 gene in melanoma tissues of gray horses[15,16]. Therefore, increase in the copy number of the STX17 gene was used by researchers as a marker to assess the risk of melanoma in Quarter horses[17], which makes disease prevention at an early stage possible.

Another example of coat color selection in horses is the wild-type dun coloration caused by a 1617-bp insertion in the TBX3 locus on chromosome 8[7]. The dun color is the ancestral coat color of equids. A dun individual is mostly pale in color, but carries intensely pigmented primitive markings, most notably, a dorsal stripe. The dun mutation causes radially asymmetric expression of the transcription factor TBX3 in hair follicles, leading to a circumferential distribution of melanocytes in the individual hairs. Polish Konik horses have been reported to carry two new variants in this locus[18].

There are very few mapping studies of the coat color in native Chinese horses. A missense mutation in exon 2 of the TYRP1 gene was detected in the chestnut color Chinese Mongolian horses[8]. The STX17 duplication has been observed in most Chinese indigenous horses, except Balikun and Guanzhong breeds; however, the frequency of gray coat color in Chinese horses has been found to be relatively low[19].

Racing performance

In the last few hundred years, humans have favored horses with greater strength, racing speed or endurance and have selected specialized horse breeds with excellent racing performance. Racing performance varies among different breeds and is of high economic importance to the modern equine industry. Quarter horses, for example, are famous for their performance in 400 m sprints, and thoroughbreds, which have been introduced around the world, race distances ranging from 1 to 3.2 km. The famous Akhal Teke horses can compete in endurance races over 160 km. A SINE insertion in the promoter region and a SNP (g.66493737C/T) in the first intron of the MSTN (myostatin) gene have been found to be significantly associated with the fiber type proportions and diameter as well as with the muscle fiber composition in quarter horses[12]. Additionally, this mutation was suggested to be more predictive of optimal racing distance in thoroughbreds than a SINE insertion[20]. A SNP (g.66493737C/T) in the MSTN gene showed significant association with racing performance; the C/C genotype horses are better suited to fast but short-distance races, the C/T genotype horses compete favorably in middle-distance races, and the T/T genotype horses have greater stamina for long-distance races[21]. A larger population of 1396 horses was used in another study to validate the gene in a genome-wide association study (GWAS) and an estimated breeding value (EBV) analysis[22]. Notably, the MSTN locus was also found in Chinese horse breeds[23]. All these studies indicate that the MSTN locus has a pivotal role in race horse performance.

In Chinese horse breeds, six SNPs (g.26T>C, g.156T>C, g.587A>G, g.598C>T, g.1485C>T, g.2115A>G) in the MSTN gene were detected by sequencing[23]. Unfortunately, no racing performance association studies have been conducted in these horses and it would, therefore, be meaningful to know whether the MSTN locus is associated with racing performance in Chinese horse breeds.

The MSTN locus is not the only determinant of racing performance in horses. A coevolving gene cluster on chromosome 22 has been subjected to strong artificial selection in Korean thoroughbred racing horses, representing a different mechanism from European thoroughbred breeds. This gene cluster contains the RALGAPA2 gene (Ral GTPase-activating protein catalytic alpha subunit 2), which regulates a variety of cellular processes in signal trafficking. The neighboring genes, INSM1 (insulinoma-associated 1), PLDN (pallid), and RIN2 (ras and rab interactor 2), have similar roles in signal trafficking[24].

Gaits

Horse locomotion has also been recurrently selected, in particular, the ability to perform alternate gaits. The alternate gaits are typical characteristics of horse breeds and can be classified into four categories: pace, regular rhythm ambling, lateral ambling and diagonal ambling, according to the pattern of timing and sequence of footfalls. One of the milestones in the horse gait research was published in the journal Nature in 2012. The authors mapped the gait trait to the DMRT3 gene (doublesex and mab-3 related transcription factor 3). The causal mutation results in a premature stop at codon 301 in DMRT3, which has a substantial effect on the ability to perform alternate gait in horses and locomotion in a knockout mouse model[25]. Further validation of this mutation was performed in the worldwide horse populations[26]. In Finn horses, individuals carrying the AA genotype had better race performance, whereas CC and AC individuals appeared to be better adapted for classical riding disciplines[27]. In Nordic and Standard bred horses, examples with the AA genotype obtained evaluation of breeding values (EBVs) higher than other genotypes in the same pedigree[28]. In Icelandic horses, which are a famous multigaited horse breed, the AA genotype reinforces the coordination of ipsilateral legs, whereas the CA genotype has a negative effect on synchronized movement of diagonal legs[29]. In China, Chakouyi, an ancient post horse with the ability to pace, was reported to have a high frequency (67.2%) of the DMRT3 mutation[30]. In summary, the DMRT3 mutation (the causal mutation for gaits in horses) has practical implications for the breeding and training of multi-gaited horses. Other studies have also reported trot[31], dressage[32] and jump[33] performances of horses.

Height at withers

Height is an easily observed phenotype in the horse and varies markedly in domestic horses, ranging from 80 cm tall at withers in the Shetland pony to more than 2 m in Shire and Percheron horses (Table 2). This intraspecies range in heights is only exceeded by the height variations in domestic dogs[37]. A height of 148 cm at withers is the defined criterion for classifying ponies. Shetland and Debao, two of the most famous pony breeds, have heights less than 100 cm. The heritability of height was estimated to be medium to high in pony breeds. With the development of high-throughput sequencing technology, four loci that can explain 83% of horse size variations were identified, including 3:105547002, 6:81481064, 9:75550059 and 11:23259732, as well as four nearby genes also associated with height, LCORL (ligand dependent nuclear receptor corepressor-like), NCAPG (non-SMC condensing I complex subunit G), HMGA2 (high mobility group AT-hook 2), and ZFAT (zinc finger and AT-hook domain containing)[34]. Of the four, loci 3:105547002 can account for 18% of body size variations[38]. This result was further validated in Franches-Montagnes horses[39]. In German Warmblood horses, the LCORL/NCAPG locus (3:105547002) has a strong association with height at withers[40]. Additionally, the relative expression levels of LCORL demonstrated a significant association with the size of the horses[41], indicating that this gene could become a potential marker for molecular breeding of height at withers. Two recent papers have reported that missense mutations in HMGA2 (c.83G>A; p.G28E) and ACAN (g.94370258G>C) have a strong association with dwarfism in Miniature Shetland ponies[35,42].

In Chinese horse breeds, in addition to the HMGA2 locus, TBX3 (T-box 3) is most substantially associated with small stature of Debao ponies, a native breed in South-west China, which have potentially unique genetic components underlying their small stature[36]. Large deletions in the pseudoautosomal region of chromosome X/Y have been associated with dwarfism in Shetland ponies[43].

Adaption to extreme environments

Animals living on high plateaus have adapted to the high-altitude conditions, such as hypoxia, low temperature, high solar radiation and lack of biological production. The genetic mechanism for adaption to high altitude appears to be more complicated than any other phenotype. In feral Andean horses introduced to the high Andes by the Spanish in the 1500s, EPAS1 (endothelial PAS domain protein 1) coding for a transcription factor involved in the hypoxia-induction-pathway was identified as a significant selection signal[44]. Yakutia is among the coldest regions in the Northern Hemisphere, with winter temperatures dropping below -70°C; Yakutia horses have lived in this region for six to eight centuries. Using comparative genomics analysis, two candidate genes BARX2 (BARX homeobox 2) and PHIP (pleckstrin homology domain interacting protein) associated with hair development and insulin metabolism, respectively, were identified as contributing to the adaptation of Yakutia horses[45].

Conclusions and prospects

Recently high-throughput sequencing has contributed greatly to illustrate the genomic mechanisms underlying a variety of economic traits in horse breeds. Some of the newly discovered causative mutations in association to these economic traits have been applied to the progeny test and selective breeding in horse industry. In future, the application of genome selection in horse breeding and the progress of the accurate phenotypic testing for these economic traits as well as the adaptation traits will facilitate the identification of more reliable candidate genetic markers with the function validation and the improvement of the current horse breeds.

References

[1]

Outram A KStear N ABendrey ROlsen SKasparov AZaibert VThorpe NEvershed R P. The earliest horse harnessing and milking. Science2009323(5919): 1332–1335

[2]

Wade C MGiulotto ESigurdsson SZoli MGnerre SImsland FLear T LAdelson D LBailey EBellone R RBlöcker HDistl OEdgar R CGarber MLeeb TMauceli EMacLeod J NPenedo M CRaison J MSharpe TVogel JAndersson LAntczak D FBiagi TBinns M MChowdhary B PColeman S JDella Valle GFryc SGuérin GHasegawa THill E WJurka JKiialainen ALindgren GLiu JMagnani EMickelson J RMurray JNergadze S GOnofrio RPedroni SPiras M FRaudsepp TRocchi MRøed K HRyder O ASearle SSkow LSwinburne J ESyvänen A CTozaki TValberg S JVaudin MWhite J RZody M CLander E SLindblad-Toh K. Genome sequence, comparative analysis, and population genetics of the domestic horse. Science2009326(5954): 865–867

[3]

McCue M EBannasch D LPetersen J LGurr JBailey EBinns M MDistl OGuérin GHasegawa THill E WLeeb TLindgren GPenedo M CRøed K HRyder O ASwinburne J ETozaki TValberg S JVaudin MLindblad-Toh KWade C MMickelson J R. A high density SNP array for the domestic horse and extant Perissodactyla: utility for association mapping, genetic diversity, and phylogeny studies. PLoS Genetics20128(1): e1002451

[4]

Sabeti P CSchaffner S FFry BLohmueller JVarilly PShamovsky OPalma AMikkelsen T SAltshuler DLander E S. Positive natural selection in the human lineage. Science2006312(5780): 1614–1620

[5]

Marklund LMoller M JSandberg KAndersson L. A missense mutation in the gene for melanocyte-stimulating hormone receptor (MC1R) is associated with the chestnut coat color in horses. Mammalian Genome19967(12): 895–899

[6]

Rosengren Pielberg GGolovko ASundström ECurik ILennartsson JSeltenhammer M HDruml TBinns MFitzsimmons CLindgren GSandberg KBaumung RVetterlein MStrömberg SGrabherr MWade CLindblad-Toh KPontén FHeldin C HSölkner JAndersson L. A cis-acting regulatory mutation causes premature hair graying and susceptibility to melanoma in the horse. Nature Genetics200840(8): 1004–1009

[7]

Imsland FMcGowan KRubin C JHenegar CSundström EBerglund JSchwochow DGustafson UImsland PLindblad-Toh KLindgren GMikko SMillon LWade CSchubert MOrlando LPenedo M CBarsh G SAndersson L. Regulatory mutations in TBX3 disrupt asymmetric hair pigmentation that underlies Dun camouflage color in horses. Nature Genetics201648(2): 152–158

[8]

Li BHe XZhao YZhao QUnierhuBai DManglai D. Tyrosinase-related protein 1 (TYRP1) gene polymorphism and skin differential expression related to coat color in Mongolian horse. Livestock Science2014167: 58–64

[9]

Kerje SLind JSchütz KJensen PAndersson L. Melanocortin 1-receptor (MC1R) mutations are associated with plumage colour in chicken. Animal Genetics200334(4): 241–248

[10]

Fontanesi LDall’Olio SBeretti FPortolano BRusso V. Coat colours in the Massese sheep breed are associated with mutations in the agouti signalling protein (ASIP) and melanocortin 1 receptor (MC1R) genes. Animal20115(1): 8–17

[11]

Kijas J M HWales RTörnsten AChardon PMoller MAndersson L. Melanocortin receptor 1 (MC1R) mutations and coat color in pigs. Genetics1998150(3): 1177–1185

[12]

Petersen J LMickelson J RRendahl A KValberg S JAndersson L SAxelsson JBailey EBannasch DBinns M MBorges A SBrama Pda Câmara Machado ACapomaccio SCappelli KCothran E GDistl OFox-Clipsham LGraves K TGuérin GHaase BHasegawa THemmann KHill E WLeeb TLindgren GLohi HLopes M SMcGivney B AMikko SOrr NPenedo M CPiercy R JRaekallio MRieder SRøed K HSwinburne JTozaki TVaudin MWade C MMcCue M E. Genome-wide analysis reveals selection for important traits in domestic horse breeds. PLoS Genetics20139(1): e1003211

[13]

Rieder STaourit SMariat DLanglois BGuérin G. Mutations in the agouti (ASIP), the extension (MC1R), and the brown (TYRP1) loci and their association to coat color phenotypes in horses (Equus caballus). Mammalian Genome: Official Journal of the International Mammalian Genome Society200112(6): 450–455

[14]

Reissmann MMusa LZakizadeh SLudwig A. Distribution of coat-color-associated alleles in the domestic horse population and Przewalski’s horse. Journal of Applied Genetics201657(4): 519–525

[15]

Sundström EImsland FMikko SWade CSigurdsson SPielberg G RGolovko ACurik ISeltenhammer M HSölkner JLindblad-Toh KAndersson L. Copy number expansion of the STX17 duplication in melanoma tissue from Grey horses. BMC Genomics201213(1): 365

[16]

Jiang LCampagne CSundström ESousa PImran SSeltenhammer MPielberg GOlsson M JEgidy GAndersson LGolovko A. Constitutive activation of the ERK pathway in melanoma and skin melanocytes in Grey horses.BMC Cancer 201414(1): 857

[17]

Teixeira R BRendahl A KAnderson S MMickelson J RSigler DBuchanan B RColeman R JMcCue M E. Coat color genotypes and risk and severity of melanoma in gray quarter horses. Journal of Veterinary Internal Medicine201327(5): 1201–1208

[18]

Stefaniuk-Szmukier MRopka-Molik KPiórkowska KSzmatoła TDługosz BPisarczyk WBugno-Poniewierska M. Variation in TBX3 gene region in dun coat color polish konik horses. Journal of Equine Veterinary Science201749: 60–62

[19]

Gao K XChen N BLiu W JLi RLan X YChen HLei C ZDang R H. Frequency of gray coat color in native Chinese horse breeds. GMR201514(4): 14144–14150

[20]

Petersen J LValberg S JMickelson J RMcCue M E. Haplotype diversity in the equine myostatin gene with focus on variants associated with race distance propensity and muscle fiber type proportions. Animal Genetics201445(6): 827–835

[21]

Hill E WGu JEivers S SFonseca R GMcGivney B AGovindarajan POrr NKatz L MMacHugh D E. A sequence polymorphism in MSTN predicts sprinting ability and racing stamina in thoroughbred horses. PLoS One20105(1): e8645

[22]

Shin D HLee J WPark J EChoi I YOh H SKim H JKim H. Multiple genes related to muscle identified through a joint analysis of a two-stage genome-wide association study for racing performance of 1156 thoroughbreds. Asian-Australasian Journal of Animal Sciences201528(6): 771–781

[23]

Li RLiu D HCao C NWang S QDang R HLan X YChen HZhang TLiu W JLei C Z. Single nucleotide polymorphisms of myostatin gene in Chinese domestic horses. Gene2014538(1): 150–154

[24]

Moon SLee J WShin DShin K YKim JChoi I YKim JKim H. A Genome-wide scan for selective sweeps in racing horses. Asian-Australasian Journal of Animal Sciences201528(11): 1525–1531

[25]

Andersson L SLarhammar MMemic FWootz HSchwochow DRubin C JPatra KArnason TWellbring LHjälm GImsland FPetersen J LMcCue M EMickelson J RCothran GAhituv NRoepstorff LMikko SVallstedt ALindgren GAndersson LKullander K. Mutations in DMRT3 affect locomotion in horses and spinal circuit function in mice. Nature2012488(7413): 642–646

[26]

Promerová MAndersson L SJuras RPenedo M CReissmann MTozaki TBellone RDunner SHořín PImsland FImsland PMikko SModrý DRoed K HSchwochow DVega-Pla J LMehrabani-Yeganeh HYousefi-Mashouf NG Cothran ELindgren GAndersson L. Worldwide frequency distribution of the ‘Gait keeper’ mutation in the DMRT3 gene. Animal Genetics201445(2): 274–282

[27]

Fegraeus K JJohansson LMäenpää MMykkänen AAndersson L SVelie B DAndersson LÁrnason TLindgren G. Different DMRT3 genotypes are best adapted for harness racing and riding in finnhorses. Journal of Heredity2015106(6): 734–740

[28]

Jäderkvist KAndersson L SJohansson A MÁrnason TMikko SEriksson SAndersson LLindgren G. The DMRT3 ‘Gait keeper’ mutation affects performance of Nordic and Standardbred trotters. Journal of Animal Science201492(10): 4279–4286

[29]

Kristjansson TBjornsdottir SSigurdsson AAndersson L SLindgren GHelyar S JKlonowski A MArnason T. The effect of the ‘Gait keeper’ mutation in the DMRT3 gene on gaiting ability in Icelandic horses. Journal of Animal Breeding and Genetics2014131(6): 415–425

[30]

Han HZeng LDang RLan XChen HLei C. The DMRT3 gene mutation in Chinese horse breeds. Animal Genetics201546(3): 341–342

[31]

Revold TMykkänen A KKarlström KIhler C FPösö A REssén-Gustavsson B. Effects of training on equine muscle fibres and monocarboxylate transporters in young Coldblooded Trotters. Equine Veterinary Journal201042(38): 289–295

[32]

Solé MCervantes IGutiérrez J PGómez M DValera M. Estimation of genetic parameters for morphological and functional traits in a Menorca horse population. Spanish Journal of Agricultural Research201412(1): 125

[33]

Brard SRicard A. Genome-wide association study for jumping performances in French sport horses. Animal Genetics201546(1): 78–81

[34]

Makvandi-Nejad SHoffman G EAllen J JChu EGu EChandler A MLoredo A IBellone R RMezey J GBrooks S ASutter N B. Four loci explain 83% of size variation in the horse. PLoS One20127(7): e39929

[35]

Frischknecht MJagannathan VPlattet PNeuditschko MSigner-Hasler HBachmann IPacholewska ADrögemüller CDietschi EFlury CRieder SLeeb T. A non-synonymous HMGA2 variant decreases height in shetland ponies and other small horses. PLoS One201510(10): e0140749

[36]

Kader ALi YDong KIrwin D MZhao QHe XLiu JPu YGorkhali N ALiu XJiang LLi XGuan WZhang YWu D DMa Y. population variation reveals independent selection toward small body size in chinese Debao pony. Genome Biology and Evolution20168(1): 42–50

[37]

Brooks S AMakvandi-Nejad SChu EAllen J JStreeter CGu EMcCleery BMurphy B ABellone RSutter N B. Morphological variation in the horse: defining complex traits of body size and shape. Animal Genetics201041(Suppl 2): 159–165

[38]

Petersen J LMickelson J RRendahl A KValberg S JAndersson L SAxelsson JBailey EBannasch DBinns M MBorges A SBrama Pda Câmara Machado ACapomaccio SCappelli KCothran E GDistl OFox-Clipsham LGraves K TGuérin GHaase BHasegawa THemmann KHill E WLeeb TLindgren GLohi HLopes M SMcGivney B AMikko SOrr NPenedo M CPiercy R JRaekallio MRieder SRøed K HSwinburne JTozaki TVaudin MWade C MMcCue M E. Genome-wide analysis reveals selection for important traits in domestic horse breeds. PLoS Genetics20139(1): e1003211

[39]

Signer-Hasler HFlury CHaase BBurger DSimianer HLeeb TRieder S. A genome-wide association study reveals loci influencing height and other conformation traits in horses. PLoS One20127(5): e37282

[40]

Tetens JWidmann PKühn CThaller G. A genome-wide association study indicates LCORL/NCAPG as a candidate locus for withers height in German Warmblood horses. Animal Genetics201344(4): 467–471

[41]

Metzger JSchrimpf RPhilipp UDistl O. Expression levels of LCORL are associated with body size in horses. PLoS One20138(2): e56497

[42]

Metzger JGast A CSchrimpf RRau JEikelberg DBeineke AHellige MDistl O. Whole-genome sequencing reveals a potential causal mutation for dwarfism in the Miniature Shetland pony. Mammalian genome:Official Journal of the International Mammalian Genome Society201728(3–4): 143–151

[43]

Rafati NAndersson L SMikko SFeng CRaudsepp TPettersson JJanecka JWattle OAmeur AThyreen GEberth JHuddleston JMalig MBailey EEichler E EDalin GChowdary BAndersson LLindgren GRubin C J. Large deletions at the SHOX locus in the pseudoautosomal region are associated with skeletal atavism in Shetland Ponies. G3: Genes, Genomes, Genetics, 20166(7): 2213–2223 doi:10.1534/g3.116.029645

[44]

Hendrickson S L. A genome wide study of genetic adaptation to high altitude in feral Andean Horses of the páramo. BMC Evolutionary Biology201313(1): 273

[45]

Librado PDer Sarkissian CErmini L, Schubert MJónsson HAlbrechtsen AFumagalli MYang M AGamba CSeguin-Orlando AMortensen C DPetersen BHoover C ALorente-Galdos BNedoluzhko ABoulygina ETsygankova SNeuditschko MJagannathan VThèves CAlfarhan A HAlquraishi S AAl-Rasheid K ASicheritz-Ponten TPopov RGrigoriev SAlekseev A NRubin E MMcCue MRieder SLeeb TTikhonov ACrubézy ESlatkin MMarques-Bonet TNielsen RWillerslev EKantanen JProkhortchouk EOrlando L. Tracking the origins of Yakutian horses and the genetic basis for their fast adaptation to subarctic environments. Proceedings of the National Academy of Sciences of the United States of America2015112(50): E6889–E6897

RIGHTS & PERMISSIONS

The Author(s) 2017. Published by Higher Education Press. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0)

AI Summary AI Mindmap
PDF (168KB)

7411

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/