Genomics and genetic breeding in aquatic animals: progress and prospects

Wenteng XU, Songlin CHEN

PDF(320 KB)
PDF(320 KB)
Front. Agr. Sci. Eng. ›› 2017, Vol. 4 ›› Issue (3) : 305-318. DOI: 10.15302/J-FASE-2017154
REVIEW
REVIEW

Genomics and genetic breeding in aquatic animals: progress and prospects

Author information +
History +

Abstract

Genomics focuses on dissection of genome structure and function to provide a molecular basis for understanding the genetic background. In a pivotal step, the expense of whole genome sequencing has been largely eliminated by the rapid updating of sequencing technology, leading to increasing numbers of decoded genomes of aquatic organisms, driving the aquaculture industry into the genomic era. Multiple aquatic areas have been influenced by these findings, such as accelerated generation shift in the seed industry and the process of breeding improved lines. In this article, we have summarized the latest domestic and international progress of aquatic animals in nine aspects, including WGS and fine mapping, construction of high density genetic/physical maps, trait-related marker/genes screening, as well as sex control, genome editing, and other molecular breeding technologies. Finally, the existing problems in this field have been discussed and five future counter measures have been proposed accordingly.

Keywords

aquaculture / genomics / genetic breeding / progress

Cite this article

Download citation ▾
Wenteng XU, Songlin CHEN. Genomics and genetic breeding in aquatic animals: progress and prospects. Front. Agr. Sci. Eng., 2017, 4(3): 305‒318 https://doi.org/10.15302/J-FASE-2017154

References

[1]
Aparicio S, Chapman J, Stupka E, Putnam N, Chia J M, Dehal P, Christoffels A, Rash S, Hoon S, Smit A, Gelpke M D, Roach J, Oh T, Ho I Y, Wong M, Detter C, Verhoef F, Predki P, Tay A, Lucas S, Richardson P, Smith S F, Clark M S, Edwards Y J, Doggett N, Zharkikh A, Tavtigian S V, Pruss D, Barnstead M, Evans C, Baden H, Powell J, Glusman G, Rowen L, Hood L, Tan Y H, Elgar G, Hawkins T, Venkatesh B, Rokhsar D, Brenner S. Whole-genome shotgun assembly and analysis of the genome of Fugu rubripes. Science, 2002, 297(5585): 1301–1310
CrossRef Pubmed Google scholar
[2]
Star B, Nederbragt A J, Jentoft S, Grimholt U, Malmstrøm M, Gregers T F, Rounge T B, Paulsen J, Solbakken M H, Sharma A, Wetten O F, Lanzén A, Winer R, Knight J, Vogel J H, Aken B, Andersen O, Lagesen K, Tooming-Klunderud A, Edvardsen R B, Tina K G, Espelund M, Nepal C, Previti C, Karlsen B O, Moum T, Skage M, Berg P R, Gjøen T, Kuhl H, Thorsen J, Malde K, Reinhardt R, Du L, Johansen S D, Searle S, Lien S, Nilsen F, Jonassen I, Omholt S W, Stenseth N C, Jakobsen K S. The genome sequence of Atlantic cod reveals a unique immune system. Nature, 2011, 477(7363): 207–210
CrossRef Pubmed Google scholar
[3]
Jones F C, Grabherr M G, Chan Y F, Russell P, Mauceli E, Johnson J, Swofford R, Pirun M, Zody M C, White S, Birney E, Searle S, Schmutz J, Grimwood J, Dickson M C, Myers R M, Miller C T, Summers B R, Knecht A K, Brady S D, Zhang H, Pollen A A, Howes T, Amemiya C, Baldwin J, Bloom T, Jaffe D B, Nicol R, Wilkinson J, Lander E S, Di Palma F, Lindblad-Toh K, Kingsley D M. The genomic basis of adaptive evolution in threespine sticklebacks. Nature, 2012, 484(7392): 55–61
CrossRef Pubmed Google scholar
[4]
Howe K, Clark M D, Torroja C F, Torrance J, Berthelot C, Muffato M, Collins J E, Humphray S, McLaren K, Matthews L, McLaren S, Sealy I, Caccamo M, Churcher C, Scott C, Barrett J C, Koch R, Rauch G J, White S, Chow W, Kilian B, Quintais L T, Guerra-Assunção J A, Zhou Y, Gu Y, Yen J, Vogel J H, Eyre T, Redmond S, Banerjee R, Chi J, Fu B, Langley E, Maguire S F, Laird G K, Lloyd D, Kenyon E, Donaldson S, Sehra H, Almeida-King J, Loveland J, Trevanion S, Jones M, Quail M, Willey D, Hunt A, Burton J, Sims S, McLay K, Plumb B, Davis J, Clee C, Oliver K, Clark R, Riddle C, Elliot D, Threadgold G, Harden G, Ware D, Begum S, Mortimore B, Kerry G, Heath P, Phillimore B, Tracey A, Corby N, Dunn M, Johnson C, Wood J, Clark S, Pelan S, Griffiths G, Smith M, Glithero R, Howden P, Barker N, Lloyd C, Stevens C, Harley J, Holt K, Panagiotidis G, Lovell J, Beasley H, Henderson C, Gordon D, Auger K, Wright D, Collins J, Raisen C, Dyer L, Leung K, Robertson L, Ambridge K, Leongamornlert D, McGuire S, Gilderthorp R, Griffiths C, Manthravadi D, Nichol S, Barker G, Whitehead S, Kay M, Brown J, Murnane C, Gray E, Humphries M, Sycamore N, Barker D, Saunders D, Wallis J, Babbage A, Hammond S, Mashreghi-Mohammadi M, Barr L, Martin S, Wray P, Ellington A, Matthews N, Ellwood M, Woodmansey R, Clark G, Cooper J, Tromans A, Grafham D, Skuce C, Pandian R, Andrews R, Harrison E, Kimberley A, Garnett J, Fosker N, Hall R, Garner P, Kelly D, Bird C, Palmer S, Gehring I, Berger A, Dooley C M, Ersan-Ürün Z, Eser C, Geiger H, Geisler M, Karotki L, Kirn A, Konantz J, Konantz M, Oberländer M, Rudolph-Geiger S, Teucke M, Lanz C, Raddatz G, Osoegawa K, Zhu B, Rapp A, Widaa S, Langford C, Yang F, Schuster S C, Carter N P, Harrow J, Ning Z, Herrero J, Searle S M, Enright A, Geisler R, Plasterk R H, Lee C, Westerfield M, de Jong P J, Zon L I, Postlethwait J H, Nüsslein-Volhard C, Hubbard T J, Roest Crollius H, Rogers J, Stemple D L. The zebrafish reference genome sequence and its relationship to the human genome. Nature, 2013, 496(7446): 498–503
CrossRef Pubmed Google scholar
[5]
Berthelot C, Brunet F, Chalopin D, Juanchich A, Bernard M, Noël B, Bento P, Da Silva C, Labadie K, Alberti A, Aury J M, Louis A, Dehais P, Bardou P, Montfort J, Klopp C, Cabau C, Gaspin C, Thorgaard G H, Boussaha M, Quillet E, Guyomard R, Galiana D, Bobe J, Volff J N, Genêt C, Wincker P, Jaillon O, Crollius H R, Guiguen Y. The rainbow trout genome provides novel insights into evolution after whole-genome duplication in vertebrates. Nature Communications, 2014, 5: 3657
CrossRef Pubmed Google scholar
[6]
Lien S, Koop B F, Sandve S R, Miller J R, Kent M P, Nome T, Hvidsten T R, Leong J S, Minkley D R, Zimin A, Grammes F, Grove H, Gjuvsland A, Walenz B, Hermansen R A, von Schalburg K, Rondeau E B, Di Genova A, Samy J K A, Olav Vik J, Vigeland M D, Caler L, Grimholt U, Jentoft S, Inge Våge D, de Jong P, Moen T, Baranski M, Palti Y, Smith D R, Yorke J A, Nederbragt A J, Tooming-Klunderud A, Jakobsen K S, Jiang X, Fan D, Hu Y, Liberles D A, Vidal R, Iturra P, Jones S J M, Jonassen I, Maass A, Omholt S W, Davidson W S. The Atlantic salmon genome provides insights into rediploidization. Nature, 2016, 533(7602): 200–205
CrossRef Pubmed Google scholar
[7]
Zhang G, Fang X, Guo X, Li L, Luo R, Xu F, Yang P, Zhang L, Wang X, Qi H, Xiong Z, Que H, Xie Y, Holland P W, Paps J, Zhu Y, Wu F, Chen Y, Wang J, Peng C, Meng J, Yang L, Liu J, Wen B, Zhang N, Huang Z, Zhu Q, Feng Y, Mount A, Hedgecock D, Xu Z, Liu Y, Domazet-Lošo T, Du Y, Sun X, Zhang S, Liu B, Cheng P, Jiang X, Li J, Fan D, Wang W, Fu W, Wang T, Wang B, Zhang J, Peng Z, Li Y, Li N, Wang J, Chen M, He Y, Tan F, Song X, Zheng Q, Huang R, Yang H, Du X, Chen L, Yang M, Gaffney P M, Wang S, Luo L, She Z, Ming Y, Huang W, Zhang S, Huang B, Zhang Y, Qu T, Ni P, Miao G, Wang J, Wang Q, Steinberg C E, Wang H, Li N, Qian L, Zhang G, Li Y, Yang H, Liu X, Wang J, Yin Y, Wang J. The oyster genome reveals stress adaptation and complexity of shell formation. Nature, 2012, 490(7418): 49–54
CrossRef Pubmed Google scholar
[8]
Chen S, Zhang G, Shao C, Huang Q, Liu G, Zhang P, Song W, An N, Chalopin D, Volff J N, Hong Y, Li Q, Sha Z, Zhou H, Xie M, Yu Q, Liu Y, Xiang H, Wang N, Wu K, Yang C, Zhou Q, Liao X, Yang L, Hu Q, Zhang J, Meng L, Jin L, Tian Y, Lian J, Yang J, Miao G, Liu S, Liang Z, Yan F, Li Y, Sun B, Zhang H, Zhang J, Zhu Y, Du M, Zhao Y, Schartl M, Tang Q, Wang J. Whole-genome sequence of a flatfish provides insights into ZW sex chromosome evolution and adaptation to a benthic lifestyle. Nature Genetics, 2014, 46(3): 253–260
CrossRef Pubmed Google scholar
[9]
Xu P, Zhang X, Wang X, Li J, Liu G, Kuang Y, Xu J, Zheng X, Ren L, Wang G, Zhang Y, Huo L, Zhao Z, Cao D, Lu C, Li C, Zhou Y, Liu Z, Fan Z, Shan G, Li X, Wu S, Song L, Hou G, Jiang Y, Jeney Z, Yu D, Wang L, Shao C, Song L, Sun J, Ji P, Wang J, Li Q, Xu L, Sun F, Feng J, Wang C, Wang S, Wang B, Li Y, Zhu Y, Xue W, Zhao L, Wang J, Gu Y, Lv W, Wu K, Xiao J, Wu J, Zhang Z, Yu J, Sun X. Genome sequence and genetic diversity of the common carp, Cyprinus carpio. Nature Genetics, 2014, 46(11): 1212–1219
CrossRef Pubmed Google scholar
[10]
Wu C, Zhang D, Kan M, Lv Z, Zhu A, Su Y, Zhou D, Zhang J, Zhang Z, Xu M, Jiang L, Guo B, Wang T, Chi C, Mao Y, Zhou J, Yu X, Wang H, Weng X, Jin J G, Ye J, He L, Liu Y. The draft genome of the large yellow croaker reveals well-developed innate immunity. Nature Communications, 2014, 5: 5227
CrossRef Pubmed Google scholar
[11]
Wang Y, Lu Y, Zhang Y, Ning Z, Li Y, Zhao Q, Lu H, Huang R, Xia X, Feng Q, Liang X, Liu K, Zhang L, Lu T, Huang T, Fan D, Weng Q, Zhu C, Lu Y, Li W, Wen Z, Zhou C, Tian Q, Kang X, Shi M, Zhang W, Jang S, Du F, He S, Liao L, Li Y, Gui B, He H, Ning Z, Yang C, He L, Luo L, Yang R, Luo Q, Liu X, Li S, Huang W, Xiao L, Lin H, Han B, Zhu Z. The draft genome of the grass carp (Ctenopharyngodon idellus) provides insights into its evolution and vegetarian adaptation. Nature Genetics, 2015, 47(6): 625–631
CrossRef Pubmed Google scholar
[12]
Jaillon O, Aury J M, Brunet F, Petit J L, Stange-Thomann N, Mauceli E, Bouneau L, Fischer C, Ozouf-Costaz C, Bernot A, Nicaud S, Jaffe D, Fisher S, Lutfalla G, Dossat C, Segurens B, Dasilva C, Salanoubat M, Levy M, Boudet N, Castellano S, Anthouard V, Jubin C, Castelli V, Katinka M, Vacherie B, Biémont C, Skalli Z, Cattolico L, Poulain J, De Berardinis V, Cruaud C, Duprat S, Brottier P, Coutanceau J P, Gouzy J, Parra G, Lardier G, Chapple C, McKernan K J, McEwan P, Bosak S, Kellis M, Volff J N, Guigó R, Zody M C, Mesirov J, Lindblad-Toh K, Birren B, Nusbaum C, Kahn D, Robinson-Rechavi M, Laudet V, Schachter V, Quétier F, Saurin W, Scarpelli C, Wincker P, Lander E S, Weissenbach J, Roest Crollius H. Genome duplication in the teleost fish Tetraodon nigroviridis reveals the early vertebrate proto-karyotype. Nature, 2004, 431(7011): 946–957
CrossRef Pubmed Google scholar
[13]
Kasahara M, Naruse K, Sasaki S, Nakatani Y, Qu W, Ahsan B, Yamada T, Nagayasu Y, Doi K, Kasai Y, Jindo T, Kobayashi D, Shimada A, Toyoda A, Kuroki Y, Fujiyama A, Sasaki T, Shimizu A, Asakawa S, Shimizu N, Hashimoto S, Yang J, Lee Y, Matsushima K, Sugano S, Sakaizumi M, Narita T, Ohishi K, Haga S, Ohta F, Nomoto H, Nogata K, Morishita T, Endo T, Shin-I T, Takeda H, Morishita S, Kohara Y. The medaka draft genome and insights into vertebrate genome evolution. Nature, 2007, 447(7145): 714–719
CrossRef Pubmed Google scholar
[14]
Liu Z, Liu S, Yao J, Bao L, Zhang J, Li Y, Jiang C, Sun L, Wang R, Zhang Y, Zhou T, Zeng Q, Fu Q, Gao S, Li N, Koren S, Jiang Y, Zimin A, Xu P, Phillippy A M, Geng X, Song L, Sun F, Li C, Wang X, Chen A, Jin Y, Yuan Z, Yang Y, Tan S, Peatman E, Lu J, Qin Z, Dunham R, Li Z, Sonstegard T, Feng J, Danzmann R G, Schroeder S, Scheffler B, Duke M V, Ballard L, Kucuktas H, Kaltenboeck L, Liu H, Armbruster J, Xie Y, Kirby M L, Tian Y, Flanagan M E, Mu W, Waldbieser G C. The channel catfish genome sequence provides insights into the evolution of scale formation in teleosts. Nature Communications, 2016, 7: 11757
CrossRef Pubmed Google scholar
[15]
Takeuchi T, Kawashima T, Koyanagi R, Gyoja F, Tanaka M, Ikuta T, Shoguchi E, Fujiwara M, Shinzato C, Hisata K, Fujie M, Usami T, Nagai K, Maeyama K, Okamoto K, Aoki H, Ishikawa T, Masaoka T, Fujiwara A, Endo K, Endo H, Nagasawa H, Kinoshita S, Asakawa S, Watabe S, Satoh N. Draft genome of the pearl oyster Pinctada fucata: a platform for understanding bivalve biology. DNA Research, 2012, 19(2): 117–130
CrossRef Pubmed Google scholar
[16]
Smith J J, Kuraku S, Holt C, Sauka-Spengler T, Jiang N, Campbell M S, Yandell M D, Manousaki T, Meyer A, Bloom O E, Morgan J R, Buxbaum J D, Sachidanandam R, Sims C, Garruss A S, Cook M, Krumlauf R, Wiedemann L M, Sower S A, Decatur W A, Hall J A, Amemiya C T, Saha N R, Buckley K M, Rast J P, Das S, Hirano M, McCurley N, Guo P, Rohner N, Tabin C J, Piccinelli P, Elgar G, Ruffier M, Aken B L, Searle S M, Muffato M, Pignatelli M, Herrero J, Jones M, Brown C T, Chung-Davidson Y W, Nanlohy K G, Libants S V, Yeh C Y, McCauley D W, Langeland J A, Pancer Z, Fritzsch B, de Jong P J, Zhu B, Fulton L L, Theising B, Flicek P, Bronner M E, Warren W C, Clifton S W, Wilson R K, Li W.Sequencing of the sea lamprey (Petromyzon marinus) genome provides insights into vertebrate evolution. Nature Genetics, 2013, 45(4): 415–421, 421e411–412
[17]
Amemiya C T, Alföldi J, Lee A P, Fan S, Philippe H, Maccallum I, Braasch I, Manousaki T, Schneider I, Rohner N, Organ C, Chalopin D, Smith J J, Robinson M, Dorrington R A, Gerdol M, Aken B, Biscotti M A, Barucca M, Baurain D, Berlin A M, Blatch G L, Buonocore F, Burmester T, Campbell M S, Canapa A, Cannon J P, Christoffels A, De Moro G, Edkins A L, Fan L, Fausto A M, Feiner N, Forconi M, Gamieldien J, Gnerre S, Gnirke A, Goldstone J V, Haerty W, Hahn M E, Hesse U, Hoffmann S, Johnson J, Karchner S I, Kuraku S, Lara M, Levin J Z, Litman G W, Mauceli E, Miyake T, Mueller M G, Nelson D R, Nitsche A, Olmo E, Ota T, Pallavicini A, Panji S, Picone B, Ponting C P, Prohaska S J, Przybylski D, Saha N R, Ravi V, Ribeiro F J, Sauka-Spengler T, Scapigliati G, Searle S M, Sharpe T, Simakov O, Stadler P F, Stegeman J J, Sumiyama K, Tabbaa D, Tafer H, Turner-Maier J, van Heusden P, White S, Williams L, Yandell M, Brinkmann H, Volff J N, Tabin C J, Shubin N, Schartl M, Jaffe D B, Postlethwait J H, Venkatesh B, Di Palma F, Lander E S, Meyer A, Lindblad-Toh K. The African coelacanth genome provides insights into tetrapod evolution. Nature, 2013, 496(7445): 311–316
CrossRef Pubmed Google scholar
[18]
Nakamura Y, Mori K, Saitoh K, Oshima K, Mekuchi M, Sugaya T, Shigenobu Y, Ojima N, Muta S, Fujiwara A, Yasuike M, Oohara I, Hirakawa H, Chowdhury V S, Kobayashi T, Nakajima K, Sano M, Wada T, Tashiro K, Ikeo K, Hattori M, Kuhara S, Gojobori T, Inouye K. Evolutionary changes of multiple visual pigment genes in the complete genome of Pacific bluefin tuna. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(27): 11061–11066
CrossRef Pubmed Google scholar
[19]
Schartl M, Walter R B, Shen Y, Garcia T, Catchen J, Amores A, Braasch I, Chalopin D, Volff J N, Lesch K P, Bisazza A, Minx P, Hillier L, Wilson R K, Fuerstenberg S, Boore J, Searle S, Postlethwait J H, Warren W C. The genome of the platyfish, Xiphophorus maculatus, provides insights into evolutionary adaptation and several complex traits. Nature Genetics, 2013, 45(5): 567–572
CrossRef Pubmed Google scholar
[20]
Wang Z, Pascual-Anaya J, Zadissa A, Li W, Niimura Y, Huang Z, Li C, White S, Xiong Z, Fang D, Wang B, Ming Y, Chen Y, Zheng Y, Kuraku S, Pignatelli M, Herrero J, Beal K, Nozawa M, Li Q, Wang J, Zhang H, Yu L, Shigenobu S, Wang J, Liu J, Flicek P, Searle S, Wang J, Kuratani S, Yin Y, Aken B, Zhang G, Irie N. The draft genomes of soft-shell turtle and green sea turtle yield insights into the development and evolution of the turtle-specific body plan. Nature Genetics, 2013, 45(6): 701–706
CrossRef Pubmed Google scholar
[21]
Venkatesh B, Lee A P, Ravi V, Maurya A K, Lian M M, Swann J B, Ohta Y, Flajnik M F, Sutoh Y, Kasahara M, Hoon S, Gangu V, Roy S W, Irimia M, Korzh V, Kondrychyn I, Lim Z W, Tay B H, Tohari S, Kong K W, Ho S, Lorente-Galdos B, Quilez J, Marques-Bonet T, Raney B J, Ingham P W, Tay A, Hillier L W, Minx P, Boehm T, Wilson R K, Brenner S, Warren W C. Elephant shark genome provides unique insights into gnathostome evolution. Nature, 2014, 505(7482): 174–179
CrossRef Pubmed Google scholar
[22]
Shin S C, Ahn D H, Kim S J, Pyo C W, Lee H, Kim M K, Lee J, Lee J E, Detrich H W, Postlethwait J H, Edwards D, Lee S G, Lee J H, Park H. The genome sequence of the Antarctic bullhead notothen reveals evolutionary adaptations to a cold environment. Genome Biology, 2014, 15(9): 468
CrossRef Pubmed Google scholar
[23]
You X, Bian C, Zan Q, Xu X, Liu X, Chen J, Wang J, Qiu Y, Li W, Zhang X, Sun Y, Chen S, Hong W, Li Y, Cheng S, Fan G, Shi C, Liang J, Tom Tang Y, Yang C, Ruan Z, Bai J, Peng C, Mu Q, Lu J, Fan M, Yang S, Huang Z, Jiang X, Fang X, Zhang G, Zhang Y, Polgar G, Yu H, Li J, Liu Z, Zhang G, Ravi V, Coon S L, Wang J, Yang H, Venkatesh B, Wang J, Shi Q. Mudskipper genomes provide insights into the terrestrial adaptation of amphibious fishes. Nature Communications, 2014, 5: 5594
CrossRef Pubmed Google scholar
[24]
Ao J, Mu Y, Xiang L X, Fan D, Feng M, Zhang S, Shi Q, Zhu L Y, Li T, Ding Y, Nie L, Li Q, Dong W R, Jiang L, Sun B, Zhang X, Li M, Zhang H Q, Xie S, Zhu Y, Jiang X, Wang X, Mu P, Chen W, Yue Z, Wang Z, Wang J, Shao J Z, Chen X. Genome sequencing of the perciform fish Larimichthys crocea provides insights into molecular and genetic mechanisms of stress adaptation. PLoS Genetics, 2015, 11(4): e1005118
CrossRef Pubmed Google scholar
[25]
Gao Y, Gao Q, Zhang H, Wang L, Zhang F, Yang C, Song L. Draft sequencing and analysis of the genome of pufferfish Takifugu flavidus. DNA Research, 2014, 21(6): 627–637
CrossRef Pubmed Google scholar
[26]
Reichwald K, Petzold A, Koch P, Downie B R, Hartmann N, Pietsch S, Baumgart M, Chalopin D, Felder M, Bens M, Sahm A, Szafranski K, Taudien S, Groth M, Arisi I, Weise A, Bhatt S S, Sharma V, Kraus J M, Schmid F, Priebe S, Liehr T, Görlach M, Than M E, Hiller M, Kestler H A, Volff J N, Schartl M, Cellerino A, Englert C, Platzer M. Insights into sex chromosome evolution and aging from the genome of a short-lived fish. Cell, 2015, 163(6): 1527–1538
CrossRef Pubmed Google scholar
[27]
AlMomin S, Kumar V, Al-Amad S, Al-Hussaini M, Dashti T, Al-Enezi K, Akbar A, Golding B. Draft genome sequence of the silver pomfret fish, Pampus argenteus. Genome, 2016, 59(1): 51–58
CrossRef Pubmed Google scholar
[28]
Braasch I, Gehrke A R, Smith J J, Kawasaki K, Manousaki T, Pasquier J, Amores A, Desvignes T, Batzel P, Catchen J, Berlin A M, Campbell M S, Barrell D, Martin K J, Mulley J F, Ravi V, Lee A P, Nakamura T, Chalopin D, Fan S, Wcisel D, Cañestro C, Sydes J, Beaudry F E, Sun Y, Hertel J, Beam M J, Fasold M, Ishiyama M, Johnson J, Kehr S, Lara M, Letaw J H, Litman G W, Litman R T, Mikami M, Ota T, Saha N R, Williams L, Stadler P F, Wang H, Taylor J S, Fontenot Q, Ferrara A, Searle S M, Aken B, Yandell M, Schneider I, Yoder J A, Volff J N, Meyer A, Amemiya C T, Venkatesh B, Holland P W, Guiguen Y, Bobe J, Shubin N H, Di Palma F, Alföldi J, Lindblad-Toh K, Postlethwait J H. The spotted gar genome illuminates vertebrate evolution and facilitates human-teleost comparisons. Nature Genetics, 2016, 48(4): 427–437
CrossRef Pubmed Google scholar
[29]
Song W, Pang R, Niu Y, Gao F, Zhao Y, Zhang J, Sun J, Shao C, Liao X, Wang L, Tian Y, Chen S. Construction of high-density genetic linkage maps and mapping of growth-related quantitative trail loci in the Japanese flounder (Paralichthys olivaceus). PLoS One, 2012, 7(11): e50404
CrossRef Pubmed Google scholar
[30]
Shao C, Niu Y, Rastas P, Liu Y, Xie Z, Li H, Wang L, Jiang Y, Tai S, Tian Y, Sakamoto T, Chen S. Genome-wide SNP identification for the construction of a high-resolution genetic map of Japanese flounder (Paralichthys olivaceus): applications to QTL mapping of Vibrio anguillarum disease resistance and comparative genomic analysis. DNA Research, 2015, 22(2): 161–170
CrossRef Pubmed Google scholar
[31]
Song W, Li Y, Zhao Y, Liu Y, Niu Y, Pang R, Miao G, Liao X, Shao C, Gao F, Chen S. Construction of a high-density microsatellite genetic linkage map and mapping of sexual and growth-related traits in half-smooth tongue sole (Cynoglossus semilaevis). PLoS One, 2012, 7(12): e52097
CrossRef Pubmed Google scholar
[32]
Zhang X, Zhang Y, Zheng X, Kuang Y, Zhao Z, Zhao L, Li C, Jiang L, Cao D, Lu C, Xu P, Sun X. A consensus linkage map provides insights on genome character and evolution in common carp (Cyprinus carpio L.). Marine Biotechnology, 2013, 15(3): 275–312
CrossRef Pubmed Google scholar
[33]
Li Y, Liu S, Qin Z, Waldbieser G, Wang R, Sun L, Bao L, Danzmann R G, Dunham R, Liu Z. Construction of a high-density, high-resolution genetic map and its integration with BAC-based physical map in channel catfish. DNA Research, 2015, 22(1): 39–52
CrossRef Pubmed Google scholar
[34]
Guyomard R, Boussaha M, Krieg F, Hervet C, Quillet E. A synthetic rainbow trout linkage map provides new insights into the salmonid whole genome duplication and the conservation of synteny among teleosts. BMC Genetics, 2012, 13(1): 15
CrossRef Pubmed Google scholar
[35]
Bouza C, Hermida M, Pardo B G, Vera M, Fernández C, de la Herrán R, Navajas-Pérez R, Álvarez-Dios J A, GÁmez-Tato A, Martínez P. An Expressed Sequence Tag (EST)-enriched genetic map of turbot (Scophthalmus maximus): a useful framework for comparative genomics across model and farmed teleosts. BMC Genetics, 2012, 13(1): 54
CrossRef Pubmed Google scholar
[36]
Wang W, Hu Y, Ma Y, Xu L, Guan J, Kong J. High-density genetic linkage mapping in turbot (Scophthalmus maximus L.) based on SNP markers and major sex- and growth-related regions detection. PLoS One, 2015, 10(3): e0120410
CrossRef Pubmed Google scholar
[37]
Xia J, Wan Z, Ng Z, Wang L, Fu G, Lin G, Liu F, Yue G. Genome-wide discovery and in silico mapping of gene-associated snps in Nile tilapia. Aquaculture, 2014, 432: 67–73
CrossRef Google scholar
[38]
Gonen S, Lowe N R, Cezard T, Gharbi K, Bishop S C, Houston R D. Linkage maps of the Atlantic salmon (Salmo salar) genome derived from RAD sequencing. BMC Genomics, 2014, 15(1): 166
CrossRef Pubmed Google scholar
[39]
Ao J, Li J, You X, Mu Y, Ding Y, Mao K, Bian C, Mu P, Shi Q, Chen X. Construction of the high-density genetic linkage map and chromosome map of large yellow croaker (Larimichthys crocea). International Journal of Molecular Sciences, 2015, 16(11): 26237–26248
CrossRef Pubmed Google scholar
[40]
Xiao S, Wang P, Zhang Y, Fang L, Liu Y, Li J T, Wang Z Y. Gene map of large yellow croaker (Larimichthys crocea) provides insights into teleost genome evolution and conserved regions associated with growth. Scientific Reports, 2015, 5(1): 18661
CrossRef Pubmed Google scholar
[41]
Guo W J, Tong J G, Yu X M, Zhu C K, Feng X, Fu B D, He S P, Zeng F Z, Wang X H, Liu H Y, Liu L S. A second generation genetic linkage map for silver carp (Hypophthalmichehys molitrix) using microsatellite markers. Aquaculture, 2013, 412: 97–106
CrossRef Google scholar
[42]
Zhu C, Tong J, Yu X, Guo W, Wang X, Liu H, Feng X, Sun Y, Liu L, Fu B. A second-generation genetic linkage map for bighead carp (Aristichthys nobilis) based on microsatellite markers. Animal Genetics, 2014, 45(5): 699–708
CrossRef Pubmed Google scholar
[43]
You X, Shu L, Li S, Chen J, Luo J, Lu J, Mu Q, Bai J, Xia Q, Chen Q, Cai Y, Zhang H, Chen G, Lin H, Zhang Y, Shi Q. Construction of high-density genetic linkage maps for orange-spotted grouper Epinephelus coioides using multiplexed shotgun genotyping. BMC Genetics, 2013, 14(1): 113
CrossRef Pubmed Google scholar
[44]
Palaiokostas C, Bekaert M, Taggart J B, Gharbi K, McAndrew B J, Chatain B, Penman D J, Vandeputte M. A new SNP-based vision of the genetics of sex determination in European sea bass (Dicentrarchus labrax). Genetics, Selection, Evolution, 2015, 47(1): 68
CrossRef Pubmed Google scholar
[45]
Hollenbeck C M, Portnoy D S, Gold J R. A genetic linkage map of red drum (Sciaenops ocellatus) and comparison of chromosomal syntenies with four other fish species. Aquaculture, 2015, 435: 265–274
CrossRef Google scholar
[46]
Li H, Liu X, Zhang G. A consensus microsatellite-based linkage map for the hermaphroditic bay scallop (Argopecten irradians) and its application in size-related QTL analysis. PLoS One, 2012, 7(10): e46926
CrossRef Pubmed Google scholar
[47]
Jiao W, Fu X, Dou J, Li H, Su H, Mao J, Yu Q, Zhang L, Hu X, Huang X, Wang Y, Wang S, Bao Z. High-resolution linkage and quantitative trait locus mapping aided by genome survey sequencing: building up an integrative genomic framework for a bivalve mollusc. DNA Research, 2014, 21(1): 85–101
CrossRef Pubmed Google scholar
[48]
Yu Y, Zhang X, Yuan J, Li F, Chen X, Zhao Y, Huang L, Zheng H, Xiang J. Genome survey and high-density genetic map construction provide genomic and genetic resources for the Pacific White Shrimp Litopenaeus vannamei. Scientific Reports, 2015, 5: 15612
CrossRef Pubmed Google scholar
[49]
Geng X, Sha J, Liu S, Bao L, Zhang J, Wang R, Yao J, Li C, Feng J, Sun F, Sun L, Jiang C, Zhang Y, Chen A, Dunham R, Zhi D, Liu Z. A genome-wide association study in catfish reveals the presence of functional hubs of related genes within QTLs for columnaris disease resistance. BMC Genomics, 2015, 16(1): 196
CrossRef Pubmed Google scholar
[50]
Xia J H, Feng F, Lin G, Wang C M, Yue G H. A first generation BAC-based physical map of the Asian seabass (Lates calcarifer). PLoS One, 2010, 5(8): e11974
CrossRef Pubmed Google scholar
[51]
Ng S H, Artieri C G, Bosdet I E, Chiu R, Danzmann R G, Davidson W S, Ferguson M M, Fjell C D, Hoyheim B, Jones S J, de Jong P J, Koop B F, Krzywinski M I, Lubieniecki K, Marra M A, Mitchell L A, Mathewson C, Osoegawa K, Parisotto S E, Phillips R B, Rise M L, von Schalburg K R, Schein J E, Shin H, Siddiqui A, Thorsen J, Wye N, Yang G, Zhu B. A physical map of the genome of Atlantic salmon, Salmo salar. Genomics, 2005, 86(4): 396–404
CrossRef Pubmed Google scholar
[52]
Quiniou S M, Waldbieser G C, Duke M V. A first generation BAC-based physical map of the channel catfish genome. BMC Genomics, 2007, 8(1): 40
CrossRef Pubmed Google scholar
[53]
Xu P, Wang S, Liu L, Thorsen J, Kucuktas H, Liu Z. A BAC-based physical map of the channel catfish genome. Genomics, 2007, 90(3): 380–388
CrossRef Pubmed Google scholar
[54]
Xu P, Wang J, Wang J, Cui R, Li Y, Zhao Z, Ji P, Zhang Y, Li J, Sun X. Generation of the first BAC-based physical map of the common carp genome. BMC Genomics, 2011, 12(1): 537
CrossRef Pubmed Google scholar
[55]
Zhang J, Shao C, Zhang L, Liu K, Gao F, Dong Z, Xu P, Chen S. A first generation BAC-based physical map of the half-smooth tongue sole (Cynoglossus semilaevis) genome. BMC Genomics, 2014, 15(1): 215
CrossRef Pubmed Google scholar
[56]
Palti Y, Luo M C, Hu Y, Genet C, You F M, Vallejo R L, Thorgaard G H, Wheeler P A, Rexroad C E 3rd. A first generation BAC-based physical map of the rainbow trout genome. BMC Genomics, 2009, 10(1): 462
CrossRef Pubmed Google scholar
[57]
Khorasani M Z, Hennig S, Imre G, Asakawa S, Palczewski S, Berger A, Hori H, Naruse K, Mitani H, Shima A, Lehrach H, Wittbrodt J, Kondoh H, Shimizu N, Himmelbauer H. A first generation physical map of the medaka genome in BACs essential for positional cloning and clone-by-clone based genomic sequencing. Mechanisms of Development, 2004, 121(7-8): 903–913
CrossRef Pubmed Google scholar
[58]
Kingsley D M, Baoli Z, Osoegawa K, De Jong P J, Jacqueline S, Marra M, Catherine P, Amemiya C, Schluter D, Balabhadra S, Brian F, Yee Man C, Dickson M, Grimwood J, Schmutz J, Talbot W S, Myers R. New genomic tools for molecular studies of evolutionary change in threespine sticklebacks. Behaviour, 2004, 141(11–12): 1331–1344
CrossRef Google scholar
[59]
Katagiri T, Kidd C, Tomasino E, Davis J T, Wishon C, Stern J E, Carleton K L, Howe A E, Kocher T D. A BAC-based physical map of the Nile tilapia genome. BMC Genomics, 2005, 6(1): 89
CrossRef Pubmed Google scholar
[60]
Zhang X, Zhao C, Huang C, Duan H, Huan P, Liu C, Zhang X, Zhang Y, Li F, Zhang H B, Xiang J. A BAC-based physical map of Zhikong scallop (Chlamys farreri Jones et Preston). PLoS One, 2011, 6(11): e27612
CrossRef Pubmed Google scholar
[61]
Xiao S, Li J, Ma F, Fang L, Xu S, Chen W, Wang Z Y. Rapid construction of genome map for large yellow croaker (Larimichthys crocea) by the whole-genome mapping in BioNano Genomics Irys system. BMC Genomics, 2015, 16(1): 670
CrossRef Pubmed Google scholar
[62]
Hattori R S, Murai Y, Oura M, Masuda S, Majhi S K, Sakamoto T, Fernandino J I, Somoza G M, Yokota M, Strüssmann C A. A Y-linked anti-Müllerian hormone duplication takes over a critical role in sex determination. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(8): 2955–2959
CrossRef Pubmed Google scholar
[63]
Santerre C, Sourdaine P, Adeline B, Martinez A S. Cg-SoxE and Cg-b-catenin, two new potential actors of the sex-determining pathway in a hermaphrodite lophotrochozoan, the Pacific oyster Crassostrea gigas. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 2014, 167: 68–76
CrossRef Pubmed Google scholar
[64]
Shen Z G, Wang H P. Molecular players involved in temperature-dependent sex determination and sex differentiation in Teleost fish. Genetics, Selection, Evolution, 2014, 46(1): 26
CrossRef Pubmed Google scholar
[65]
Takehana Y, Matsuda M, Myosho T, Suster M L, Kawakami K, Shin-I T, Kohara Y, Kuroki Y, Toyoda A, Fujiyama A, Hamaguchi S, Sakaizumi M, Naruse K. Co-option of Sox3 as the male-determining factor on the Y chromosome in the fish Oryzias dancena. Nature Communications, 2014, 5: 4157
CrossRef Pubmed Google scholar
[66]
Yano A, Guyomard R, Nicol B, Jouanno E, Quillet E, Klopp C, Cabau C, Bouchez O, Fostier A, Guiguen Y. An immune-related gene evolved into the master sex-determining gene in rainbow trout, Oncorhynchus mykiss. Current Biology, 2012, 22(15): 1423–1428
CrossRef Pubmed Google scholar
[67]
Kamiya T, Kai W, Tasumi S, Oka A, Matsunaga T, Mizuno N, Fujita M, Suetake H, Suzuki S, Hosoya S, Tohari S, Brenner S, Miyadai T, Venkatesh B, Suzuki Y, Kikuchi K. A trans-species missense SNP in Amhr2 is associated with sex determination in the tiger pufferfish, Takifugu rubripes (fugu). PLoS Genetics, 2012, 8(7): e1002798
CrossRef Pubmed Google scholar
[68]
Kikuchi K, Hamaguchi S. Novel sex-determining genes in fish and sex chromosome evolution. Developmental Dynamics, 2013, 242(4): 339–353
CrossRef Pubmed Google scholar
[69]
Shao C, Li Q, Chen S, Zhang P, Lian J, Hu Q, Sun B, Jin L, Liu S, Wang Z, Zhao H, Jin Z, Liang Z, Li Y, Zheng Q, Zhang Y, Wang J, Zhang G. Epigenetic modification and inheritance in sexual reversal of fish. Genome Research, 2014, 24(4): 604–615
CrossRef Pubmed Google scholar
[70]
Chen S L, Cui Z K, Zheng H Q, Liu Y, Wang N, Li Y Z, Shao C W. A genome-editing based method for germplasm construction in marine flatfish and its application. China Patent ZL201610162019.5, 2016
[71]
Li M H, Yang H H, Li M R, Sun Y L, Jiang X L, Xie Q P, Wang T R, Shi H J, Sun L N, Zhou L Y, Wang D S. Antagonistic roles of Dmrt1 and Foxl2 in sex differentiation via estrogen production in tilapia as demonstrated by TALENs. Endocrinology, 2013, 154(12): 4814–4825
CrossRef Pubmed Google scholar
[72]
Wang N, Wang X, Yang C, Zhao X, Zhang Y, Wang T, Chen S. Molecular cloning and multifunctional characterization of GRIM-19 (gene associated with retinoid-interferon-induced mortality 19) homologue from turbot (Scophthalmus maximus). Developmental and Comparative Immunology, 2014, 43(1): 96–105
CrossRef Pubmed Google scholar
[73]
Yang C G, Liu S S, Sun B, Wang X L, Wang N, Chen S L. Iron-metabolic function and potential antibacterial role of Hepcidin and its correlated genes (Ferroportin 1 and Transferrin Receptor) in turbot (Scophthalmus maximus). Fish & Shellfish Immunology, 2013, 34(3): 744–755
CrossRef Pubmed Google scholar
[74]
Zeng Y, Xiang J, Lu Y, Chen Y, Wang T, Gong G, Wang L, Li X, Chen S, Sha Z. sghC1q, a novel C1q family member from half-smooth tongue sole (Cynoglossus semilaevis): identification, expression and analysis of antibacterial and antiviral activities. Developmental and Comparative Immunology, 2015, 48(1): 151–163
CrossRef Pubmed Google scholar
[75]
Sha Z, Gong G, Wang S, Lu Y, Wang L, Wang Q, Chen S. Identification and characterization of Cynoglossus semilaevis microRNA response to Vibrio anguillarum infection through high-throughput sequencing. Developmental and Comparative Immunology, 2014, 44(1): 59–69
CrossRef Pubmed Google scholar
[76]
Hu G B, Lou H M, Dong X Z, Liu Q M, Zhang S C. Characteristics of the interferon regulatory factor 5 (IRF5) and its expression in response to LCDV and poly I:C challenges in Japanese flounder, Paralichthys olivaceus. Developmental and Comparative Immunology, 2012, 38(2): 377–382
CrossRef Pubmed Google scholar
[77]
Huang Y, Tan J M, Wang Z, Yin S W, Huang X, Wang W, Ren Q. Cloning and characterization of two different L-type lectin genes from the Chinese mitten crab Eriocheir sinensis. Developmental and Comparative Immunology, 2014, 46(2): 255–266
CrossRef Pubmed Google scholar
[78]
Liu Y, Zhang Y B, Liu T K, Gui J F. Lineage-specific expansion of IFIT gene family: an insight into coevolution with IFN gene family. PLoS One, 2013, 8(6): e66859
CrossRef Pubmed Google scholar
[79]
Wang B, Zhang Y B, Liu T K, Shi J, Sun F, Gui J F. Fish viperin exerts a conserved antiviral function through RLR-triggered IFN signaling pathway. Developmental and Comparative Immunology, 2014, 47(1): 140–149
CrossRef Pubmed Google scholar
[80]
Yao C L, Kong P, Wang Z Y, Ji P F, Liu X D, Cai M Y, Han X Z. Molecular cloning and expression of MyD88 in large yellow croaker, Pseudosciaena crocea. Fish & Shellfish Immunology, 2009, 26(2): 249–255
CrossRef Pubmed Google scholar
[81]
Huang X N, Wang Z Y, Yao C L. Characterization of Toll-like receptor 3 gene in large yellow croaker, Pseudosciaena crocea. Fish & Shellfish Immunology, 2011, 31(1): 98–106
CrossRef Pubmed Google scholar
[82]
Han F, Wang X Q, Yao C L, Wang Z Y. Molecular characterization of Ran gene up-regulated in large yellow croaker (Pseudosciaena crocea) immunity. Fish & Shellfish Immunology, 2010, 29(2): 327–333
CrossRef Pubmed Google scholar
[83]
Han F, Wang X, Yang Q, Cai M, Wang Z Y. Characterization of a RacGTPase up-regulated in the large yellow croaker Pseudosciaena crocea immunity. Fish & Shellfish Immunology, 2011, 30(2): 501–508
CrossRef Pubmed Google scholar
[84]
Mu Y, Wang K, Ao J, Chen X. Molecular characterization and biological effects of a CXCL8 homologue in large yellow croaker (Larimichthys crocea). Fish & Shellfish Immunology, 2015, 44(2): 462–470
CrossRef Pubmed Google scholar
[85]
Ao J, Mu Y, Wang K, Sun M, Wang X, Chen X. Identification and characterization of a novel Toll-like receptor 2 homologue in the large yellow croaker Larimichthys crocea. Fish & Shellfish Immunology, 2016, 48: 221–227
CrossRef Pubmed Google scholar
[86]
Wu S, Li B, Lin H, Li W. Stimulatory effects of neuropeptide Y on the growth of orange-spotted grouper (Epinephelus coioides). General and Comparative Endocrinology, 2012, 179(2): 159–166
CrossRef Pubmed Google scholar
[87]
Ji X S, Chen S L, Jiang Y L, Xu T J, Yang J F, Tian Y S. Growth differences and differential expression analysis of pituitary adenylate cyclase activating polypeptide (PACAP) and growth hormone-releasing hormone (GHRH) between the sexes in half-smooth tongue sole Cynoglossus semilaevis. General and Comparative Endocrinology, 2011, 170(1): 99–109
CrossRef Pubmed Google scholar
[88]
Ji X S, Liu H W, Chen S L, Jiang Y L, Tian Y S. Growth differences and dimorphic expression of growth hormone (GH) in female and male Cynoglossus semilaevis after male sexual maturation. Marine Genomics, 2011, 4(1): 9–16
CrossRef Pubmed Google scholar
[89]
Ma Q, Liu S, Zhuang Z, Lin L, Sun Z, Liu C, Ma H, Su Y, Tang Q. Genomic structure, polymorphism and expression analysis of the growth hormone (GH) gene in female and male Half-smooth tongue sole (Cynoglossus semilaevis). Gene, 2012, 493(1): 92–104
CrossRef Pubmed Google scholar
[90]
Ma Q, Liu S F, Zhuang Z M, Sun Z Z, Liu C L, Tang Q S. The co-existence of two growth hormone receptors and their differential expression profiles between female and male tongue sole (Cynoglossus semilaevis). Gene, 2012, 511(2): 341–352
CrossRef Pubmed Google scholar
[91]
Qi X, Zhou W, Li S, Lu D, Yi S, Xie R, Liu X, Zhang Y, Lin H. Evidences for the regulation of GnRH and GTH expression by GnIH in the goldfish, Carassius auratus. Molecular and Cellular Endocrinology, 2013, 366(1): 9–20
CrossRef Pubmed Google scholar
[92]
Meng L, Zhu Y, Zhang N, Liu W, Liu Y, Shao C, Wang N, Chen S. Cloning and characterization of tesk1, a novel spermatogenesis-related gene, in the tongue sole (Cynoglossus semilaevis). PLoS One, 2014, 9(10): e107922
CrossRef Pubmed Google scholar
[93]
Xu W, Li H, Dong Z, Cui Z, Zhang N, Meng L, Zhu Y, Liu Y, Li Y, Guo H, Ma J, Wei Z, Zhang N, Yang Y, Chen S. Ubiquitin ligase gene neurl3 plays a role in spermatogenesis of half-smooth tongue sole (Cynoglossus semilaevis) by regulating testis protein ubiquitination. Gene, 2016, 592(1): 215–220
CrossRef Pubmed Google scholar
[94]
Chen S L, Ji X S, Shao C W, Li W L, Yang J F, Liang Z, Liao X L, Xu G B, Xu Y, Song W T. Induction of mitogynogenetic diploids and identification of WW super-female using sex-specific SSR markers in half-smooth tongue sole (Cynoglossus semilaevis). Marine Biotechnology, 2012, 14(1): 120–128
CrossRef Pubmed Google scholar
[95]
Langefors A, Lohm J, Grahn M, Andersen O, von Schantz T. Association between major histocompatibility complex class IIB alleles and resistance to Aeromonas salmonicida in Atlantic salmon. Proceedings: Biological Sciences, 2001, 268(1466): 479–485
CrossRef Pubmed Google scholar
[96]
Rodríguez-Ramilo S T, Fernández J, Toro M A, Bouza C, Hermida M, Fernández C, Pardo B G, Cabaleiro S, Martínez P. Uncovering QTL for resistance and survival time to Philasterides dicentrarchi in turbot (Scophthalmus maximus). Animal Genetics, 2013, 44(2): 149–157
CrossRef Pubmed Google scholar
[97]
Dutta S, Biswas S, Mukherjee K, Chakrabarty U, Mallik A, Mandal N. Identification of RAPD-SCAR marker linked to white spot syndrome virus resistance in populations of giant black tiger shrimp, Penaeus monodon Fabricius. Journal of Fish Diseases, 2014, 37(5): 471–480
CrossRef Pubmed Google scholar
[98]
Dutta S, Chakrabarty U, Mallik A, Mandal N. Experimental evidence for white spot syndrome virus (WSSV) susceptibility linked to a microsatellite DNA marker in giant black tiger shrimp, Penaeus monodon (Fabricius). Journal of Fish Diseases, 2013, 36(6): 593–597
CrossRef Pubmed Google scholar
[99]
Campbell N R, LaPatra S E, Overturf K, Towner R, Narum S R. Association mapping of disease resistance traits in rainbow trout using restriction site associated DNA sequencing. G3: Genes, Genomes, Gnetics, 2014, 4(12): 2473–2481
[100]
Wang L, Fan C, Liu Y, Zhang Y, Liu S, Sun D, Deng H, Xu Y, Tian Y, Liao X, Xie M, Li W, Chen S. A genome scan for quantitative trait loci associated with Vibrio anguillarum infection resistance in Japanese flounder (Paralichthys olivaceus) by bulked segregant analysis. Marine Biotechnology, 2014, 16(5): 513–521
CrossRef Pubmed Google scholar
[101]
Nie Q, Yue X, Chai X, Wang H, Liu B. Three vibrio-resistance related EST-SSR markers revealed by selective genotyping in the clam Meretrix meretrix. Fish & Shellfish Immunology, 2013, 35(2): 421–428
CrossRef Pubmed Google scholar
[102]
Chen S L. Fish Sex Control and Cell Engineering Breeding. Beijing: Science Press, 2013 (in Chinese)
[103]
Hu Q, Zhu Y, Liu Y, Wang N, Chen S. Cloning and characterization of wnt4a gene and evidence for positive selection in half-smooth tongue sole (Cynoglossus semilaevis). Scientific Reports, 2014, 4: 7167
CrossRef Pubmed Google scholar
[104]
Navarro-Martín L, Viñas J, Ribas L, Díaz N, Gutiérrez A, Di Croce L, Piferrer F. DNA methylation of the gonadal aromatase (cyp19a) promoter is involved in temperature-dependent sex ratio shifts in the European sea bass. PLoS Genetics, 2011, 7(12): e1002447
CrossRef Pubmed Google scholar
[105]
Su B, Shang M, Grewe P M, Patil J G, Peatman E, Perera D A, Cheng Q, Li C, Weng C C, Li P, Liu Z, Dunham R A. Suppression and restoration of primordial germ cell marker gene expression in channel catfish, Ictalurus punctatus, using knockdown constructs regulated by copper transport protein gene promoters: potential for reversible transgenic sterilization. Theriogenology, 2015, 84(9): 1499–1512
CrossRef Pubmed Google scholar
[106]
Lillehammer M, Meuwissen T H, Sonesson A K. A low-marker density implementation of genomic selection in aquaculture using within-family genomic breeding values. Genetics, Selection, Evolution, 2013, 45(1): 39
CrossRef Pubmed Google scholar
[107]
Nirea K G, Sonesson A K, Woolliams J A, Meuwissen T H. Strategies for implementing genomic selection in family-based aquaculture breeding schemes: double haploid sib test populations. Genetics, Selection, Evolution, 2012, 44(1): 30
CrossRef Pubmed Google scholar
[108]
Taylor J F. Implementation and accuracy of genomic selection. Aquaculture, 2014, 420: S8–S14
CrossRef Google scholar
[109]
Liu S, Sun L, Li Y, Sun F, Jiang Y, Zhang Y, Zhang J, Feng J, Kaltenboeck L, Kucuktas H, Liu Z. Development of the catfish 250K SNP array for genome-wide association studies. BMC Research Notes, 2014, 7(1): 135
CrossRef Pubmed Google scholar
[110]
Xu J, Zhao Z, Zhang X, Zheng X, Li J, Jiang Y, Kuang Y, Zhang Y, Feng J, Li C, Yu J, Li Q, Zhu Y, Liu Y, Xu P, Sun X. Development and evaluation of the first high-throughput SNP array for common carp (Cyprinus carpio). BMC Genomics, 2014, 15(1): 307
CrossRef Pubmed Google scholar
[111]
Ansai S, Kinoshita M. Targeted mutagenesis using CRISPR/Cas system in medaka. Biology Open, 2014, 3(5): 362–371
CrossRef Pubmed Google scholar
[112]
Chang N, Sun C, Gao L, Zhu D, Xu X, Zhu X, Xiong J W, Xi J J. Genome editing with RNA-guided Cas9 nuclease in zebrafish embryos. Cell Research, 2013, 23(4): 465–472
CrossRef Pubmed Google scholar
[113]
Edvardsen R B, Leininger S, Kleppe L, Skaftnesmo K O, Wargelius A. Targeted mutagenesis in Atlantic salmon (Salmo salar L.) using the CRISPR/Cas9 system induces complete knockout individuals in the F0 generation. PLoS One, 2014, 9(9): e108622
CrossRef Pubmed Google scholar
[114]
Li M, Yang H, Zhao J, Fang L, Shi H, Li M, Sun Y, Zhang X, Jiang D, Zhou L, Wang D. Efficient and heritable gene targeting in tilapia by CRISPR/Cas9. Genetics, 2014, 197(2): 591–599
CrossRef Pubmed Google scholar
[115]
Dong L, Xiao S, Wang Q, Wang Z. Comparative analysis of the GBLUP, emBayesB, and GWAS algorithms to predict genetic values in large yellow croaker (Larimichthys crocea). BMC Genomics, 2016, 17(1): 460
CrossRef Pubmed Google scholar
[116]
Dong L, Xiao S, Chen J, Wan L, Wang Z. Genomic selection using extreme phenotypes and pre-selection of SNPs in large yellow croaker (Larimichthys crocea). Marine Biotechnology, 2016, 18(5): 575–583
CrossRef Pubmed Google scholar

Acknowledgements

We thank Prof. Qisheng Tang for his correction of this paper. This work was supported by grants from the National Natural Science Foundation of China (31461163005, 31530078) and the Taishan Scholar Climbing Project Fund of Shandong of China.

Compliance with ethics guidelines

Wenteng Xu and Songlin Chen declare that they have no conflicts of interest or financial conflicts to disclose.
This article is a review and does not contain any studies with human or animal subjects performed by any of the authors.

RIGHTS & PERMISSIONS

The Author(s) 2017. Published by Higher Education Press. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0)
AI Summary AI Mindmap
PDF(320 KB)

Accesses

Citations

Detail

Sections
Recommended

/