Genome-wide association analysis reveals genetic loci and candidate genes associated with intramuscular fat in Duroc pigs
Xingwang WANG, Rongrong DING, Jianping QUAN, Linxue YANG, Ming YANG, Enqin ZHENG, Dewu LIU, Gengyuan CAI, Zhenfang WU, Jie YANG
Genome-wide association analysis reveals genetic loci and candidate genes associated with intramuscular fat in Duroc pigs
Intramuscular fat (IMF) is a major meat-quality trait in pigs. The content of IMF is directly associated with the taste and flavor of pork. As a complex trait, there could be multiple genes affecting IMF content in pork. Genome-wide association study is a powerful tool to detect genomic regions associated with phenotypic variations. The objectives of the present study were to identify or refine the positions of genomic regions affecting IMF, and to characterize candidate genes and pathways that may influence this trait. Of note, we identified a significant region in longissium dorsi muscle in a Duroc pig population for IMF content with PorcineSNP60 v2 BeadChip. This region spans 1.24 Mb on chromosome 8 and had been identified as a quantitative trait locus for IMF in Pietrain, Large White, Landrace, and Leicoma pigs. In this region, eight SNPs were significantly associated with IMF content. Three genes proximal to these significant SNPs were considered candidate genes, including ZDHHC16, LOC102162218 and PCDH7. Our results confirm several previous findings and highlight several genes that may contribute to IMF variation in Duroc pigs.
Duroc pigs / genome-wide association analysis / intramuscular fat
[1] |
Park G B, Moon S S, Ko Y D, Ha J K, Lee J G, Chang H H, Joo S T. Influence of slaughter weight and sex on yield and quality grades of Hanwoo (Korean native cattle) carcasses. Journal of Animal Science, 2002, 80(1): 129–136
CrossRef
Pubmed
Google scholar
|
[2] |
Bosi P, Russo V. The production of the heavy pig for high quality processed products. Italian Journal of Animal Science, 2004, 3(4): 309–321
CrossRef
Google scholar
|
[3] |
Cabling M M, Kang H S, Lopez B M, Jang M, Kim H S, Nam K C, Choi J G, Seo K S. Estimation of genetic associations between production and meat quality traits in Duroc pigs. Asian-Australasian Journal of Animal Sciences, 2015, 28(8): 1061–1065
CrossRef
Pubmed
Google scholar
|
[4] |
Ntawubizi M, Colman E, Janssens S, Raes K, Buys N, De Smet S. Genetic parameters for intramuscular fatty acid composition and metabolism in pigs. Journal of Animal Science, 2010, 88(4): 1286–1294
CrossRef
Pubmed
Google scholar
|
[5] |
Bolormaa S, Neto L R, Zhang Y D, Bunch R J, Harrison B E, Goddard M E, Barendse W. A genome-wide association study of meat and carcass traits in Australian cattle. Journal of Animal Science, 2011, 89(8): 2297–2309
CrossRef
Pubmed
Google scholar
|
[6] |
Moloney A P, Mooney M T, Kerry J P, Stanton C, O’Kiely P. Colour of fat, and colour, fatty acid composition and sensory characteristics of muscle from heifers offered alternative forages to grass silage in a finishing ration. Meat Science, 2013, 95(3): 608–615
CrossRef
Pubmed
Google scholar
|
[7] |
Pietro Lo Fiego D, Macchioni P, Minelli G, Santoro P. Lipid composition of covering and intramuscular fat in pigs at different slaughter age. Italian Journal of Animal Science, 2010, 9(2): e39
|
[8] |
Casellas J, Vidal O, Pena R N, Gallardo D, Manunza A, Quintanilla R, Amills M. Genetics of serum and muscle lipids in pigs. Animal Genetics, 2013, 44(6): 609–619
CrossRef
Pubmed
Google scholar
|
[9] |
Muñoz M, Rodríguez M C, Alves E, Folch J M, Ibañez-Escriche N, Silió L, Fernández A I. Genome-wide analysis of porcine backfat and intramuscular fat fatty acid composition using high-density genotyping and expression data. BMC Genomics, 2013, 14(1): 845
CrossRef
Pubmed
Google scholar
|
[10] |
Edwards D B, Ernst C W, Raney N E, Doumit M E, Hoge M D, Bates R O. Quantitative trait locus mapping in an F2 Duroc x Pietrain resource population: II. Carcass and meat quality traits. Journal of Animal Science, 2008, 86(2): 254–266
CrossRef
Pubmed
Google scholar
|
[11] |
Cristina Ó, Oliver A, Noguera J, Clop A, Barragán C, Varona L, Rodríguez C, Toro M, Sánchez A, Pérez-Enciso M, Silió L. Test for positional candidate genes for body composition on pig chromosome 6. Genetics, Selection, Evolution., 2002, 34(4): 465–479
CrossRef
Pubmed
Google scholar
|
[12] |
Grindflek E, Szyda J, Liu Z, Lien S. Detection of quantitative trait loci for meat quality in a commercial slaughter pig cross. Mammalian Genome, 2001, 12(4): 299–304
CrossRef
Pubmed
Google scholar
|
[13] |
Aslan O, Hamill R M, Davey G, McBryan J, Mullen A M, Gispert M, Sweeney T. Variation in the IGF2 gene promoter region is associated with intramuscular fat content in porcine skeletal muscle. Molecular Biology Reports, 2012, 39(4): 4101–4110
CrossRef
Pubmed
Google scholar
|
[14] |
Ramos A M, Crooijmans R P, Affara N A, Amaral A J, Archibald A L, Beever J E, Bendixen C, Churcher C, Clark R, Dehais P, Hansen M S, Hedegaard J, Hu Z L, Kerstens H H, Law A S, Megens H J, Milan D, Nonneman D J, Rohrer G A, Rothschild M F, Smith T P, Schnabel R D, Van Tassell C P, Taylor J F, Wiedmann R T, Schook L B, Groenen M A. Design of a high density SNP genotyping assay in the pig using SNPs identified and characterized by next generation sequencing technology. PLoS One, 2009, 4(8): e6524
CrossRef
Pubmed
Google scholar
|
[15] |
Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira M A, Bender D, Maller J, Sklar P, de Bakker P I, Daly M J, Sham P C. PLINK: a tool set for whole-genome association and population-based linkage analyses. American Journal of Human Genetics, 2007, 81(3): 559–575
CrossRef
Pubmed
Google scholar
|
[16] |
Yu J, Pressoir G, Briggs W H, Vroh Bi I, Yamasaki M, Doebley J F, McMullen M D, Gaut B S, Nielsen D M, Holland J B, Kresovich S, Buckler E S. A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nature Genetics, 2006, 38(2): 203–208
CrossRef
Pubmed
Google scholar
|
[17] |
Aulchenko Y S, Ripke S, Isaacs A, van Duijn C M. GenABEL: an R library for genome-wide association analysis. Bioinformatics, 2007, 23(10): 1294–1296
CrossRef
Pubmed
Google scholar
|
[18] |
Yang Q, Cui J, Chazaro I, Cupples L A, Demissie S. Power and type I error rate of false discovery rate approaches in genome-wide association studies. BMC Genetics, 2005, 6(Suppl. 1): S134
CrossRef
Pubmed
Google scholar
|
[19] |
Xiong X, Liu X, Zhou L, Yang J, Yang B, Ma H, Xie X, Huang Y, Fang S, Xiao S, Ren J, Chen C, Ma J, Huang L. Genome-wide association analysis reveals genetic loci and candidate genes for meat quality traits in Chinese Laiwu pigs. Mammalian Genome, 2015, 26(3-4): 181–190
CrossRef
Pubmed
Google scholar
|
[20] |
Burton P R, Clayton D G, Cardon L R, Craddock N, Deloukas P, Duncanson A, Kwiatkowski D P, McCarthy M I, Ouwehand W H, Samani N J, Todd J A, Donnelly P, Barrett J C, Burton P R, Davison D, Donnelly P, Easton D, Evans D, Leung H T, Marchini J L, Morris A P, Spencer C C A, Tobin M D, Cardon L R, Clayton D G, Attwood A P, Boorman J P, Cant B, Everson U, Hussey J M, Jolley J D, Knight A S, Koch K, Meech E, Nutland S, Prowse C V, Stevens H E, Taylor N C, Walters G R, Walker N M, Watkins N A, Winzer T, Todd J A, Ouwehand W H, Jones R W, McArdle W L, Ring S M, Strachan D P, Pembrey M, Breen G, St Clair D, Caesar S, Gordon-Smith K, Jones L, Fraser C, Green E K, Grozeva D, Hamshere M L, Holmans P A, Jones I R, Kirov G, Moskvina V, Nikolov I, O’Donovan M C, Owen M J, Craddock N, Collier D A, Elkin A, Farmer A, Williamson R, McGuffin P, Young A H, Ferrier I N, Ball S G, Balmforth A J, Barrett J H, Bishop D T, Iles M M, Maqbool A, Yuldasheva N, Hall A S, Braund P S, Burton P R, Dixon R J, Mangino M, Stevens S, Tobin M D, Thompson J R, Samani N J, Bredin F, Tremelling M, Parkes M, Drummond H, Lees C W, Nimmo E R, Satsangi J, Fisher S A, Forbes A, Lewis C M, Onnie C M, Prescott N J, Sanderson J, Mathew C G, Barbour J, Mohiuddin M K, Todhunter C E, Mansfield J C, Ahmad T, Cummings F R, Jewell D P, Webster J, Brown M J, Clayton D G, Lathrop G M, Connell J, Dominiczak A, Samani N J, Marcano C A B, Burke B, Dobson R, Gungadoo J, Lee K L, Munroe P B, Newhouse S J, Onipinla A, Wallace C, Xue M, Caulfield M, Farrall M, Barton A, and Genomics (BRAGGS) T B R A G, Bruce I N, Donovan H, Eyre S, Gilbert P D, Hider S L, Hinks A M, John S L, Potter C, Silman A J, Symmons D P M, Thomson W, Worthington J, Clayton D G, Dunger D B, Nutland S, Stevens H E, Walker N M, Widmer B, Todd J A, Frayling T M, Freathy R M, Lango H, Perry J R B, Shields B M, Weedon M N, Hattersley A T, Hitman G A, Walker M, Elliott K S, Groves C J, Lindgren C M, Rayner N W, Timpson N J, Zeggini E, McCarthy M I, Newport M, Sirugo G, Lyons E, Vannberg F, Hill A V S, Bradbury L A, Farrar C, Pointon J J, Wordsworth P, Brown M A, Franklyn J A, Heward J M, Simmonds M J, Gough S C L, Seal S, Susceptibility Collaboration (UK) B C, Stratton M R, Rahman N, Ban M, Goris A, Sawcer S J, Compston A, Conway D, Jallow M, Newport M, Sirugo G, Rockett K A, Kwiatkowski D P, Bumpstead S J, Chaney A, Downes K, Ghori M J R, Gwilliam R, Hunt S E, Inouye M, Keniry A, King E, McGinnis R, Potter S, Ravindrarajah R, Whittaker P, Widden C, Withers D, Deloukas P, Leung H T, Nutland S, Stevens H E, Walker N M, Todd J A, Easton D, Clayton D G, Burton P R, Tobin M D, Barrett J C, Evans D, Morris A P, Cardon L R, Cardin N J, Davison D, Ferreira T, Pereira-Gale J, Hallgrimsdóttir I B, Howie B N, Marchini J L, Spencer C C A, Su Z, Teo Y Y, Vukcevic D, Donnelly P, Bentley D, Brown M A, Cardon L R, Caulfield M, Clayton D G, Compston A, Craddock N, Deloukas P, Donnelly P, Farrall M, Gough S C L, Hall A S, Hattersley A T, Hill A V S, Kwiatkowski D P, Mathew C G, McCarthy M I, Ouwehand W H, Parkes M, Pembrey M, Rahman N, Samani N J, Stratton M R, Todd J A, Worthington J. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature, 2007, 447(7145): 661–678
CrossRef
Pubmed
Google scholar
|
[21] |
Hu Z L, Park C A, Wu X L, Reecy J M. Animal QTLdb: an improved database tool for livestock animal QTL/association data dissemination in the post-genome era. Nucleic Acids Research, 2013, 41(D1): D871–D879
CrossRef
Pubmed
Google scholar
|
[22] |
Shapiro S S, Wilk M B. An analysis of variance test for normality (complete samples). Biometrika, 1965, 52(3/4): 591–611
CrossRef
Google scholar
|
[23] |
Duthie C, Simm G, Doeschl-Wilson A, Kalm E, Knap P W, Roehe R. Quantitative trait loci for chemical body composition traits in pigs and their positional associations with body tissues, growth and feed intake. Animal Genetics, 2008, 39(2): 130–140
CrossRef
Pubmed
Google scholar
|
[24] |
Putilina T, Wong P, Gentleman S. The DHHC domain: a new highly conserved cysteine-rich motif. Molecular and Cellular Biochemistry, 1999, 195(1): 219–226
CrossRef
Pubmed
Google scholar
|
[25] |
Ren W, Sun Y, Du K. DHHC17 palmitoylates ClipR-59 and modulates ClipR-59 association with the plasma membrane. Molecular and Cellular Biology, 2013, 33(21): 4255–4265
CrossRef
Pubmed
Google scholar
|
[26] |
Ren W, Jhala U S, Du K. Proteomic analysis of protein palmitoylation in adipocytes. Adipocyte, 2013, 2(1): 17–27
CrossRef
Pubmed
Google scholar
|
[27] |
Abdel-Ghany M, Sharp G W, Straub S G. Glucose stimulation of protein acylation in the pancreatic b-cell. Life Sciences, 2010, 87(23-26): 667–671160;doi:10.1016/j.lfs.2010.09.021
Pubmed
|
[28] |
Pandey N R, Zhou X, Qin Z, Zaman T, Gomez-Smith M, Keyhanian K, Anisman H, Brunel J M, Stewart A F, Chen H H. The LIM domain only 4 protein is a metabolic responsive inhibitor of protein tyrosine phosphatase 1B that controls hypothalamic leptin signaling. Journal of Neuroscience, 2013, 33(31): 12647–12655
CrossRef
Pubmed
Google scholar
|
[29] |
Berchtold L A, Storling Z M, Ortis F, Lage K, Bang-Berthelsen C, Bergholdt R, Hald J, Brorsson C A, Eizirik D L, Pociot F, Brunak S, Storling J. Huntingtin-interacting protein 14 is a type 1 diabetes candidate protein regulating insulin secretion and β. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(37): E681–E688
CrossRef
Pubmed
Google scholar
|
[30] |
Matakatsu H, Blair S S. The DHHC palmitoyltransferase approximated regulates Fat signaling and Dachs localization and activity. Current Biology, 2008, 18(18): 1390–1395
CrossRef
Pubmed
Google scholar
|
[31] |
D’Errico I, Gadaleta G, Saccone C. Pseudogenes in metazoa: origin and features. Briefings in Functional Genomics & Proteomics, 2004, 3(2): 157–167
CrossRef
Pubmed
Google scholar
|
[32] |
Tam O H, Aravin A A, Stein P, Girard A, Murchison E P, Cheloufi S, Hodges E, Anger M, Sachidanandam R, Schultz R M, Hannon G J. Pseudogene-derived small interfering RNAs regulate gene expression in mouse oocytes. Nature, 2008, 453(7194): 534–538
CrossRef
Pubmed
Google scholar
|
[33] |
Pink R C, Wicks K, Caley D P, Punch E K, Jacobs L, Francisco Carter D R. Pseudogenes: pseudo-functional or key regulators in health and disease? RNA, 2011, 17(5): 792–798
CrossRef
Pubmed
Google scholar
|
[34] |
Watanabe T, Cheng E C, Zhong M, Lin H. Retrotransposons and pseudogenes regulate mRNAs and lncRNAs via the piRNA pathway in the germline. Genome Research, 2015, 25(3): 368–380
CrossRef
Pubmed
Google scholar
|
[35] |
Yoshida K, Yoshitomo-Nakagawa K, Seki N, Sasaki M, Sugano S. Cloning, expression analysis, and chromosomal localization of BH-protocadherin (PCDH7), a novel member of the cadherin superfamily. Genomics, 1998, 49(3): 458–461
CrossRef
Pubmed
Google scholar
|
[36] |
Liu R, Sun Y, Zhao G, Wang F, Wu D, Zheng M, Chen J, Zhang L, Hu Y, Wen J. Genome-wide association study identifies Loci and candidate genes for body composition and meat quality traits in Beijing-You chickens. PLoS One, 2013, 8(4): e61172
CrossRef
Pubmed
Google scholar
|
[37] |
Zhang Y, Guo J, Gao Y, Niu S, Yang C, Bai C, Yu X, Zhao Z. Genome-wide methylation changes are associated with muscle fiber density and drip loss in male three-yellow chickens. Molecular Biology Reports, 2014, 41(5): 3509–3516
CrossRef
Pubmed
Google scholar
|
[38] |
Zhou G, Wang S, Wang Z, Zhu X, Shu G, Liao W, Yu K, Gao P, Xi Q, Wang X, Zhang Y, Yuan L, Jiang Q. Global comparison of gene expression profiles between intramuscular and subcutaneous adipocytes of neonatal landrace pig using microarray. Meat Science, 2010, 86(2): 440–450
CrossRef
Pubmed
Google scholar
|
[39] |
Mariman E C, Bouwman F G, Aller E E, van Baak M A, Wang P. High frequency of rare variants with a moderate-to-high predicted biological effect in protocadherin genes of extremely obese. Genes & Nutrition, 2014, 9(3): 399
CrossRef
Pubmed
Google scholar
|
[40] |
Su H, Marcheva B, Meng S, Liang F A, Kohsaka A, Kobayashi Y, Xu A W, Bass J, Wang X. Gamma-protocadherins regulate the functional integrity of hypothalamic feeding circuitry in mice. Developmental Biology, 2010, 339(1): 38–50
CrossRef
Pubmed
Google scholar
|
/
〈 | 〉 |