Recent advances in understanding genetic variants associated with economically important traits in sheep (Ovis aries) revealed by high-throughput screening technologies

Song-Song XU, Meng-Hua LI

PDF(391 KB)
PDF(391 KB)
Front. Agr. Sci. Eng. ›› 2017, Vol. 4 ›› Issue (3) : 279-288. DOI: 10.15302/J-FASE-2017151
REVIEW
REVIEW

Recent advances in understanding genetic variants associated with economically important traits in sheep (Ovis aries) revealed by high-throughput screening technologies

Author information +
History +

Abstract

Sheep are one of the most economically important domesticated animals for human society. However, genetic improvements for the key traits associated with meat, growth, milk, wool, reproduction, horns and tails progress slowly using conventional crossbreeding methods. With the development and utilization of high-throughput screening technologies over the last decade, a list of functional genes and genetic variants associated with these traits has been identified. This review covers recent genome-wide studies on sheep productive traits using high-throughput screening technologies, including those based on single-nucleotide polymorphisms and copy number variants at the whole-genome level (e.g., genome-wide association studies), transcriptome and DNA methylation sequences. Additionally, comprehensive information on functional genes and genetic variants associated with economically important traits in sheep is provided.

Keywords

sheep / high-throughput screening / productive traits / genome-wide studies

Cite this article

Download citation ▾
Song-Song XU, Meng-Hua LI. Recent advances in understanding genetic variants associated with economically important traits in sheep (Ovis aries) revealed by high-throughput screening technologies. Front. Agr. Sci. Eng., 2017, 4(3): 279‒288 https://doi.org/10.15302/J-FASE-2017151

References

[1]
LarsonG, Piperno D R, AllabyR G , PuruggananM D, Andersson L, Arroyo-KalinM , BartonL, Climer Vigueira C, DenhamT , DobneyK, DoustA N, GeptsP, Gilbert M T P, GremillionK J , LucasL, LukensL, MarshallF B , OlsenK M, PiresJ C, RichersonP J , Rubio de CasasR, Sanjur O I, ThomasM G , FullerD Q. Current perspectives and the future of domestication studies.Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(17): 6139–6146
CrossRef Google scholar
[2]
GorkhaliN A, DongK Z, YangM, Song S, KaderA , ShresthaB S, HeX H, ZhaoQ J, Pu Y B, LiX C , KijasJ, GuanW J, HanJ L, Jiang L, MaY H . Genomic analysis identified a potential novel molecular mechanism for high-altitude adaptation in sheep at the Himalayas.Scientific Reports, 2016, 6(1): 29963
CrossRef Google scholar
[3]
LvF H, PengW F, YangJ, Zhao Y X, LiW R , LiuM J, MaY H, ZhaoQ J, Yang G L, WangF , LiJ Q, LiuY G, ShenZ Q, Zhao S G, HehuaE E , GorkhaliN A, Farhad Vahidi S M, MuladnoM , NaqviA N, TabellJ, Iso-TouruT, Bruford M W, KantanenJ , HanJ L, LiM H.Mitogenomic meta-analysis identifies two phases of migration in the history of Eastern Eurasian Sheep.Molecular Biology and Evolution, 2015, 32(10): 2515–2533
CrossRef Google scholar
[4]
SafariE, Fogarty N M, GilmourA R . A review of genetic parameter estimates for wool, growth, meat and reproduction traits in sheep.Livestock Production Science, 2005, 92(3): 271–289
CrossRef Google scholar
[5]
ThorntonP K. Livestock production: recent trends, future prospects. Philosophical Transactions of the Royal Society B: Biological Sciences, 2010, 365(1554): 2853–2867
[6]
NiemannH, KuesW A. Application of transgenesis in livestock for agriculture and biomedicine.Animal Reproduction Science, 2003, 79(3–4): 291–317
CrossRef Google scholar
[7]
GoddardM E, HayesB J. Mapping genes for complex traits in domestic animals and their use in breeding programmes.Nature Reviews Genetics, 2009, 10(6): 381–391
CrossRef Google scholar
[8]
WangS H, ZhangK, DaiY P. Advances in genetic engineering of domestic animals.Frontiers of Agricultural Science & Engineering, 2016, 3(1): 1–10
CrossRef Google scholar
[9]
ZhangH, WangZ P, WangS Z, Li H. Progress of genome wide association study in domestic animals.Journal of Animal Science and Biotechnology, 2012, 3(1): 26
CrossRef Google scholar
[10]
JiangY, XieM, ChenW B, Talbot R, MaddoxJ F , FarautT, WuC H, MuznyD M, Li Y X, ZhangW G , StantonJ A, Brauning R, BarrisW C , HourlierT, AkenB L, SearleS M J , AdelsonD L, BianC, CamG R, Chen Y L, ChengS F , DeSilvaU, DixenK, DongY, Fan G Y, FranklinI R , FuS Y, Fuentes-Utrilla P, GuanR , HighlandM A, HolderM E, HuangG D, Ingham A B, JhangianiS N , KalraD, KovarC L, LeeS L, Liu W Q, LiuX , LuC X, LvT, MathewT, McWilliam S, MenziesM , PanS K, Robelin D, ServinB , TownleyD, WangW L, WeiB, White S N, YangX H , YeC, YueY J, ZengP, Zhou Q, HansenJ B , KristiansenK, GibbsR A, FlicekP, Warkup C C, JonesH E , OddyV H, Nicholas F W, McEwanJ C , KijasJ W, WangJ, WorleyK C, Archibald A L, CockettN , XuX, WangW, DalrympleB P . The sheep genome illuminates biology of the rumen and lipid metabolism.Science, 2014, 344(6188): 1168–1173
CrossRef Google scholar
[11]
KijasJ W, Lenstra J A, HayesB , BoitardS, Porto Neto L R, San CristobalM , ServinB, McCulloch R, WhanV , GietzenK, PaivaS, BarendseW, Ciani E, RaadsmaH , McEwanJ, Dalrymple B. Genome-wide analysis of the world’s sheep breeds reveals high levels of historic mixture and strong recent selection.PLoS Biology, 2012, 10(2): e1001258
CrossRef Google scholar
[12]
JohnsonP L, Van Stijn T C, HenryH , McLeanN J, LeeM. Genome wide association study using the ovine SNP50 BeadChip and lambs selected for extremes for carcass lean meat yield.Association for the Advancement of Animal Breeding and Genetics, 2013, 20: 495–498
[13]
WangH H, ZhangL, CaoJ X, Wu M M, MaX M , LiuZ, LiuR Z, ZhaoF P , WeiC H, DuL X. Genome-Wide Specific Selection in Three Domestic Sheep Breeds.PLoS ONE, 2015, 10(6): e0128688
CrossRef Google scholar
[14]
BolormaaS, van der Werf J H J, HayesB J , GoddardM E, Daetwyler H D. Pleiotropic multi-trait genome-wide association reveals putative candidate genes for fatty acid composition in Australian sheep.Association for the Advancement of Animal Breeding and Genetics, 2015, 21: 49–52
[15]
BolormaaS, HayesB J, van der WerfJ H J , PethickD, Goddard M E, DaetwylerH D . Detailed phenotyping identifies genes with pleiotropic effects on body composition.BMC Genomics, 2016, 17(1): 224
CrossRef Google scholar
[16]
MatikaO, RiggioV, Anselme-MoizanM , LawA S, Pong-Wong R, ArchibaldA L , BishopS C. Genome-wide association reveals QTL for growth, bone and in vivo carcass traits as assessed by computed tomography in Scottish Blackface lambs.Genetics, Selection, Evolution, 2016, 48(1): 11
CrossRef Google scholar
[17]
WangX L, ZhouG X, XuX C, Geng R Q, ZhouJ P , YangY X, YangZ X, ChenY L. Transcriptome profile analysis of adipose tissues from fat and short-tailed sheep.Gene, 2014, 549(2): 252–257
CrossRef Google scholar
[18]
MiaoX Y, LuoQ M, QinX Y, Guo Y T. Genome-wide analysis of microRNAs identifies the lipid metabolism pathway to be a defining factor in adipose tissue from different sheep.Scientific Reports, 2015, 5(1): 18470
CrossRef Google scholar
[19]
MiaoX, LuoQ, QinX. Genome-wide analysis reveals the differential regulations of mRNAs and miRNAs in Dorset and Small Tail Han sheep muscles.Gene, 2015, 562(2): 188–196
CrossRef Google scholar
[20]
MiaoX Y, LuoQ M, QinX Y, Guo Y T, ZhaoH J . Genome-wide mRNA-seq profiling reveals predominant down-regulation of lipid metabolic processes in adipose tissues of Small Tail Han than Dorset sheep.Biochemical and Biophysical Research Communications, 2015, 467(2): 413–420
CrossRef Google scholar
[21]
LvX Y, SunW, YinJ F, Ni R, SuR , WangQ Z, GaoW, BaoJ J, Yu J R, WangL H , ChenL. An integrated analysis of microRNA and mRNA expression profiles to identify RNA expression signatures in Lambskin Hair Follicles in Hu Sheep.PLoS ONE, 2016, 11(7): e0157463
CrossRef Google scholar
[22]
SunL M, BaiM, XiangL J, Zhang G S, MaW , JiangH Z. Comparative transcriptome profiling of longissimus muscle tissues from Qianhua Mutton Merino and Small Tail Han sheep.Scientific Reports, 2016, 6(1): 33586
CrossRef Google scholar
[23]
CouldreyC, Brauning R, BracegirdleJ , MacleanP, Henderson H V, McEwanJ C . Genome-wide DNA methylation patterns and transcription analysis in sheep muscle.PLoS ONE, 2014, 9(7): e101853
CrossRef Google scholar
[24]
CaoJ X, WeiC H, LiuD M, Wang H H, WuM M , XieZ Y, Capellini T D, ZhangL , ZhaoF P, LiL, ZhongT, Wang L J, LuJ , LiuR Z, ZhangS F, DuY F, Zhang H P, DuL X . DNA methylation landscape of body size variation in sheep.Scientific Reports, 2015, 5(1): 13950
CrossRef Google scholar
[25]
RiggioV, MatikaO, Pong-WongR, Stear M J, BishopS C . Genome-wide association and regional heritability mapping to identify loci underlying variation in nematode resistance and body weight in Scottish Blackface lambs.Heredity, 2013, 110(5): 420–429
CrossRef Google scholar
[26]
ZhangL, LiuJ S, ZhaoF P, Ren H X, XuL Y , LuJ, ZhangS F, ZhangX N, Wei C H, LuG B , ZhengY M, DuL X. Genome-wide association studies for growth and meat production traits in sheep.PLoS ONE, 2013, 8(6): e66569
CrossRef Google scholar
[27]
ZhangL F, MouselM R, WuX L, Michal J J, ZhouX , DingB, DodsonM V, El-HalawanyN K , LewisG S, JiangZ. Genome-wide genetic diversity and differentially selected regions among Suffolk, Rambouillet, Columbia, Polypay, and Targhee sheep.PLoS ONE, 2013, 8(6): e65942
CrossRef Google scholar
[28]
GholizadehM, Rahimi-Mianji G, Nejati-JavaremiA . Genomewide association study of body weight traits in Baluchi sheep.Journal of Genetics, 2015, 94(1): 143–146
CrossRef Google scholar
[29]
YangJ, LiW R, LvF H, He S G, TianS L , PengW F, SunY W, ZhaoY X, Tu X L, ZhangM , XieX L, WangY T, LiJ Q, Liu Y G, ShenZ Q , WangF, LiuG J, LuH F, Kantanen J, HanJ L , LiM H, LiuM J. Whole-genome sequencing of native sheep provides insights into rapid adaptations to extreme environments.Molecular Biology and Evolution, 2016, 33(10): 2576–2592
CrossRef Google scholar
[30]
KijasJ W, Serrano M, McCullochR , LiY, Salces Ortiz J, CalvoJ H , Pérez-GuzmánM D . Genome-wide association for a dominant pigmentation gene in sheep.Journal of Animal Breeding and Genetics, 2013, 130(6): 468–475
CrossRef Google scholar
[31]
YangG L, FuD L, LangX, Wang Y T, ChengS R , FangS L, LuoY Z. Mutations in MC1R gene determine black coat color phenotype in Chinese sheep.Scientific World Journal, 2013, 2013(5): 675382
[32]
FarielloM I, ServinB, Tosser-KloppG , RuppR, MorenoC, CristobalM S , BoitardS. Selection signatures in worldwide sheep populations.PLoS ONE, 2014, 9(8): e103813
CrossRef Google scholar
[33]
Al-MamunH A, ClarkS A, KwanP, Gondro C. Genome-wide linkage disequilibrium and genetic diversity in five populations of Australian domestic sheep.Genetics, Selection, Evolution, 2015, 47(1): 90
CrossRef Google scholar
[34]
WeiC H, WangH H, LiuG, Wu M M, CaoJ X V , LiuZ, LiuR Z, ZhaoF P, Zhang L, LuJ , LiuC S, DuL X. Genome-wide analysis reveals population structure and selection in Chinese indigenous sheep breeds.BMC Genomics, 2015, 16(1): 194
CrossRef Google scholar
[35]
LiM H, Tiirikka T, KantanenJ . A genome-wide scan study identifies a single nucleotide substitution in ASIP associated with white versus non-white coat-colour variation in sheep (Ovis aries).Heredity, 2014, 112(2): 122–131
CrossRef Google scholar
[36]
WangZ P, ZhangH, YangH, Wang S Z, RongE G , PeiW Y, LiH, WangN. Genome-wide association study for wool production traits in a Chinese Merino sheep population.PLoS ONE, 2014, 9(9): e107101
CrossRef Google scholar
[37]
FuS Y, QiY X, HeX L, Da L, WangB , RigeleT E, WuJ H, YangD, Liu Y B, ZhangW G . Transcriptome analysis reveals skin lipid metabolism related to wool diameter in sheep. BioRxiv, 2016. doi: 10.1101/051359 (preprint)
[38]
LiuG B, LiuR Z, LiQ Q, Tang X H, YuM , LiX Y, CaoJ H, ZhaoS H. Identification of microRNAs in wool follicles during anagen, catagen, and telogen phases in Tibetan sheep.PLoS One, 2013, 8(10): e77801
CrossRef Google scholar
[39]
FanR W, XieJ S, BaiJ M, Wang H D, TianX , BaiR, JiaX Y, YangL, Song Y F, HerridM , GaoW J, HeX Y, YaoJ B, Smith G W, DongC S . Skin transcriptome profiles associated with coat color in sheep.BMC Genomics, 2013, 14(1): 389
CrossRef Google scholar
[40]
YueY J, LiuJ B, YangM, Han J L, GuoT T , GuoJ, FengR L, YangB H. De novo assembly and characterization of skin transcriptome using RNAseq in sheep (Ovis aries).Genetics and Molecular Research, 2015, 14(1): 1371–1384
CrossRef Google scholar
[41]
LiuG B, LiuR Z, TangX H, Cao J H, ZhaoS H , YuM. Expression profiling reveals genes involved in the regulation of wool follicle bulb regression and regeneration in sheep.International Journal of Molecular Sciences, 2015, 16(5): 9152–9166
CrossRef Google scholar
[42]
MoioliB, ScataM C, SteriR, Napolitano F, CatilloG . Signatures of selection identify loci associated with milk yield in sheep.BMC Genetics, 2013, 14(1): 76
CrossRef Google scholar
[43]
Gutiérrez-GilB, Arranz J J, Pong-WongR , Garcia-GamezE, KijasJ, WienerP. Application of selection mapping to identify genomic regions associated with dairy production in sheep.PLoS ONE, 2014, 9(5): e94623
CrossRef Google scholar
[44]
RuppR, SeninP, SarryJ, Allain C, TascaC , LigatL, PortesD, WoloszynF, Bouchez O, TabouretG , LebastardM, CaubetC, FoucrasG, Tosser-Klopp G. A point mutation in suppressor of cytokine signalling 2 (Socs2) increases the susceptibility to inflammation of the mammary gland while associated with higher body weight and size and higher milk production in a sheep model.PLoS Genetics, 2015, 11(12): e1005629
CrossRef Google scholar
[45]
Suárez-VegaA, Gutierrez-Gil B, KloppC , Robert-GranieC, Tosser-Klopp G, ArranzJ J . Characterization and comparative analysis of the milk transcriptome in two dairy sheep breeds using RNA sequencing.Scientific Reports, 2015, 5(1): 18399
CrossRef Google scholar
[46]
Suárez-VegaA, Gutierrez-Gil B, KloppC , Tosser-KloppG, ArranzJ J. Comprehensive RNA-Seq profiling to evaluate lactating sheep mammary gland transcriptome.Scientific Data, 2016, 3: 160051
CrossRef Google scholar
[47]
Suárez-VegaA, Gutierrez-Gil B, ArranzJ J . Transcriptome expression analysis of candidate milk genes affecting cheese-related traits in 2 sheep breeds.Journal of Dairy Science, 2016, 99(8): 6381–6390
CrossRef Google scholar
[48]
GiordaniT, Vangelisti A, ConteG , SerraA, NataliL, RanieriA, Mele M, CavalliniA . Transcript profiling in the milk of dairy ewes fed extruded linseed.Genomics Data, 2017, 11: 17–19
CrossRef Google scholar
[49]
VågeD I, HusdalM, KentM P, Klemetsdal G, BomanI A . A missense mutation in growth differentiation factor 9 (GDF9) is strongly associated with litter size in sheep.BMC Genetics, 2013, 14(1): 1
CrossRef Google scholar
[50]
GholizadehM, Rahimi-Mianji G, Nejati-JavaremiA , De KoningD J, JonasE. Genome-wide association study to detect QTL for twinning rate in Baluchi sheep.Journal of Genetics, 2014, 93(2): 489–493
CrossRef Google scholar
[51]
LvF H, AghaS, KantanenJ, Colli L, StuckiS , KijasJ W, JoostS, LiM H, Ajmone Marsan P. Adaptations to climate-mediated selective pressures in sheep.Molecular Biology and Evolution, 2014, 31(12): 3324–3343
CrossRef Google scholar
[52]
DemarsJ, FabreS, SarryJ, Rossetti R, GilbertH , PersaniL, Tosser-Klopp G, MulsantP , NowakZ, DrobikW, MartyniukE, Bodin L. Genome-wide association studies identify two novel BMP15 mutations responsible for an atypical hyperprolificacy phenotype in sheep.PLoS Genetics, 2013, 9(4): e1003482
CrossRef Google scholar
[53]
MiaoX, LuoQ. Genome-wide transcriptome analysis between small-tail Han sheep and the Surabaya fur sheep using high-throughput RNA sequencing.Reproduction, 2013, 145(6): 587–596
CrossRef Google scholar
[54]
MiaoX, QinQ L X. Genome-wide transcriptome analysis of mRNAs and microRNAs in Dorset and Small Tail Han sheep to explore the regulation of fecundity.Molecular and Cellular Endocrinology, 2015, 402: 32–42
CrossRef Google scholar
[55]
MiaoX Y, LuoQ M, ZhaoH J, Qin X Y. Ovarian transcriptomic study reveals the differential regulation of miRNAs and lncRNAs related to fecundity in different sheep.Scientific Reports, 2016, 6(1): 35299
CrossRef Google scholar
[56]
ChenH Y, ShenH, JiaB, Zhang Y S, WangX H , ZengX C. Differential gene expression in ovaries of Qira black sheep and Hetian sheep using RNA-Seq technique.PLoS ONE, 2015, 10(3): e0120170
CrossRef Google scholar
[57]
HuX J, Pokharel K, PeippoJ , GhanemN, Zhaboyev I, KantanenJ , LiM H. Identification and characterization of miRNAs in the ovaries of a highly prolific sheep breed.Animal Genetics, 2016, 47(2): 234–239
CrossRef Google scholar
[58]
CaoJ X, WeiC H, ZhangS Z, Capellini T D, ZhangL , ZhaoF P, LiL, ZhongT, Wang L J, DuL X , ZhangH P. Screening of reproduction-related single-nucleotide variations from MeDIP-seq data in sheep.Molecular Reproduction and Development, 2016, 83(11): 958–967
CrossRef Google scholar
[59]
WiedemarN, Drögemüller C A. 1.8-kb insertion in the 3′-UTR of RXFP2 is associated with polledness in sheep.Animal Genetics, 2015, 46(4): 457–461
CrossRef Google scholar
[60]
JohnstonS E, McEwanJ C, PickeringN K , KijasJ W, Beraldi D, PilkingtonJ G , PembertonJ M, SlateJ. Genome-wide association mapping identifies the genetic basis of discrete and quantitative variation in sexual weaponry in a wild sheep population.Molecular Ecology, 2011, 20(12): 2555–2566
CrossRef Google scholar
[61]
DominikS, Henshall J M, HayesB J . A single nucleotide polymorphism on chromosome 10 is highly predictive for the polled phenotype in Australian Merino sheep.Animal Genetics, 2012, 43(4): 468–470
CrossRef Google scholar
[62]
PoissantJ, DavisC S, MalenfantR M , HoggJ T, Coltman D W. QTL mapping for sexually dimorphic fitness-related traits in wild bighorn sheep.Heredity, 2012, 108(3): 256–263
CrossRef Google scholar
[63]
KijasJ W, MillerJ E, HadfieldT, McCulloch R, Garcia-GamezE , Porto NetoL R, Cockett N. Tracking the emergence of a new breed using 49,034 SNP in sheep.PLoS ONE, 2012, 7(7): e41508
CrossRef Google scholar
[64]
RandhawaI A S, Khatkar M S, ThomsonP C , RaadsmaH W. Composite selection signals can localize the trait specific genomic regions in multi-breed populations of cattle and sheep.BMC Genetics, 2014, 15(1): 34
CrossRef Google scholar
[65]
KijasJ W, Naumova A K. Haplotype-based analysis of selective sweeps in sheep.Genome, 2014, 57(8): 433–437
CrossRef Google scholar
[66]
RenX, YangG L, PengW F, Zhao Y X, ZhangM , ChenZ H, WuF A, KantanenJ, Shen M, LiM H . A genome-wide association study identifies a genomic region for the polycerate phenotype in sheep (Ovis aries).Scientific Reports, 2016, 6(1): 21111
CrossRef Google scholar
[67]
KijasJ W, Hadfield T, SanchezM N , CockettN. Genome-wide association reveals the locus responsible for four-horned ruminant.Animal Genetics, 2016, 47(2): 258–262
CrossRef Google scholar
[68]
GreyvensteinO F C, Reich C M, van Marle-KosterE , RileyD G, HayesB J. Polyceraty (multi-horns) in Damara sheep maps to ovine chromosome 2.Animal Genetics, 2016, 47(2): 263–266
CrossRef Google scholar
[69]
MoradiM H, Nejati-Javaremi A, Moradi-ShahrbabakM, DoddsK G, McEwan J C. Genomic scan of selective sweeps in thin and fat tail sheep breeds for identifying of candidate regions associated with fat deposition.BMC Genetics, 2012, 13(1): 10
CrossRef Google scholar
[70]
MoioliB, PillaF, CianiE. Signatures of selection identify loci associated with fat tail in sheep.Journal of Animal Science, 2015, 93(10): 4660–4669
CrossRef Google scholar
[71]
ZhuC Y, FanH Y, YuanZ H, Hu S J, MaX M , XuanJ L, WangH W, ZhangL, Wei C H, ZhangQ , ZhaoF P, DuL X. Genome-wide detection of CNVs in Chinese indigenous sheep with different types of tails using ovine high-density 600K SNP arrays.Scientific Reports, 2016, 6(1): 27822
CrossRef Google scholar
[72]
YuanZ, LiuE, LiuZ, Kijas J W, ZhuC , HuS, MaX, ZhangL, Du L, WangH , WeiC. Selection signature analysis reveals genes associated with tail type in Chinese indigenous sheep.Animal Genetics, 2017, 48(1): 55–66
CrossRef Google scholar
[73]
ChengX, ZhaoS G, YueY, Liu Z, LiH W , WuJ P. Comparative analysis of the liver tissue transcriptomes of Mongolian and Lanzhou fat-tailed sheep.Genetics and Molecular Research, 2016, 15(2): 15028572
CrossRef Google scholar
[74]
LiN, YeM Z, LiY R, Yan Z X, ButcherL M , SunJ H, HanX, ChenQ A, Zhang X Q, WangJ . Whole genome DNA methylation analysis based on high throughput sequencing technology.Methods, 2010, 52(3): 203–212
CrossRef Google scholar
[75]
SafariE, Fogarty N M, GilmourA R . A review of genetic parameter estimates for wool, growth, meat and reproduction traits in sheep.Livestock Production Science, 2005, 92(3): 271–289
CrossRef Google scholar
[76]
TianY, HuangX, TianK, Di J, BaiY , XuX, FuX, WuW, ShiX, ZhaoB. Identification of copy number variations in fine wool sheep using Ovine SNP600 BeadChip array.Journal of Animal Science, 2016, 94(7): 29–30
[77]
LiJ P, QuH E, JiangH Z, Zhao Z H, ZhangQ L . Transcriptome-wide comparative analysis of microRNA profiles in the telogen skins of Liaoning Cashmere goats (Capra hircus) and Fine-Wool sheep (Ovis aries) by Solexa Deep Sequencing.DNA and Cell Biology, 2016, 35(11): 696–705
CrossRef Google scholar
[78]
IdaA, Vicovan P G, RaduR , VicovanA, CutovaN, EnciuA. Improving the milk production at the breeds and populations of sheep from various geo-climatic zones.Lucrări Științifice-Universitatea De Științe Agricole Si Medicină Veterinară, 2012, 57: 34–38
[79]
Garcia-GamezE, Gutierrez-Gil B, SahanaG , SanchezJ P, BayonY, ArranzJ J. GWA analysis for milk production traits in dairy sheep and genetic support for a QTN influencing milk protein percentage in the LALBA gene.PLoS ONE, 2012, 7(10): e47782
CrossRef Google scholar
[80]
AbdoliR, ZamaniP, MirhoseiniS Z , Ghavi Hossein-ZadehN, Nadri S. A review on prolificacy genes in sheep.Reproduction in Domestic Animals, 2016, 51(5): 631–637
CrossRef Google scholar
[81]
NotterD R. Genetic aspects of reproduction in sheep.Reproduction in Domestic Animals, 2008, 43(2): 122–128
CrossRef Google scholar
[82]
LiuQ Y, PanZ Y, WangX Y, Hu W P, DiR , YaoY X, ChuM X. Progress on major genes for high fecundity in ewes.Frontiers of Agricultural Science and Engineering, 2014, 1(4): 282–290
CrossRef Google scholar
[83]
AbdoliR, ZamaniP, DeljouA, Rezvan H. Association of BMPR-1B and GDF9 genes polymorphisms and secondary protein structure changes with reproduction traits in Mehraban ewes.Gene, 2013, 524(2): 296–303
CrossRef Google scholar
[84]
JohnstonS E, Gratten J, BerenosC , PilkingtonJ G, Clutton-Brock T H, PembertonJ M , SlateJ. Life history trade-offs at a single locus maintain sexually selected genetic variation.Nature, 2013, 502(7469): 93–95
CrossRef Google scholar
[85]
MartinA M, Festa-Bianchet M, ColtmanD W , PelletierF. Sexually antagonistic association between paternal phenotype and offspring viability reinforces total selection on a sexually selected trait.Biology Letters, 2014, 10(2): 104–111
CrossRef Google scholar
[86]
Nejati-JavaremiA, Izadi F, RahmatiG , MoradiM, IzadiF. Selection in fat-tailed sheep based on two traits of fat-tail and body weight versus single-trait total body weight.International Journal of Agriculture and Biology, 2007, (4): 645–648
[87]
PengW Z, XuJ, ZhangY, Feng J X, DongC J , JiangL K, FengJ Y, ChenB H, Gong Y W, ChenL , XuP. An ultra-high density linkage map and QTL mapping for sex and growth-related traits of common carp (Cyprinus carpio).Scientific Reports, 2016, 6(1): 26693
CrossRef Google scholar
[88]
GholizadehM, Rahimi-Mianji G, Nejati-JavaremiA , De KoningD J, JonasE. Genome wide association study to detect QTL for twinning rate in Baluchi sheep.Journal of Genetics, 2014, 93(2): 489–493
CrossRef Google scholar
[89]
YiS E, LaPoltP S, YoonB S, Chen J Y C, LuJ K H , LyonsK M. The type I BMP receptor BMPRIB is essential for female reproductive function.Proceedings of the National Academy of Sciences of the United States of America, 2001, 98(14): 7994–7999
CrossRef Google scholar
[90]
MulsantP, LecerfF, FabreS, Schibler L, MongetP , LannelucI, Pisselet C, RiquetJ , MonniauxD, Callebaut I, CribiuE , ThimonierJ, Teyssier J, BodinL , CognieY, Chitour N, ElsenJ M . Mutation in bone morphogenetic protein receptor-IB is associated with increased ovulation rate in Booroola Merino ewes.Proceedings of the National Academy of Sciences of the United States of America, 2001, 98(9): 5104–5109
CrossRef Google scholar

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (31272413, 3161101336), the National Transgenic Breeding Project of China (2014ZX0800952B), the External Cooperation Program of Chinese Academy of Sciences (152111KYSB20150010) and the Taishan Scholars Program of Shandong Province (201511085).

Compliance with ethics guidelines

Song-Song Xu and Meng-Hua Li declare that they have no conflicts of interest or financial conflicts to disclose.
This article is a review and does not contain any studies with human or animal subjects performed by any of the authors.

RIGHTS & PERMISSIONS

The Author(s) 2017. Published by Higher Education Press. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0)
AI Summary AI Mindmap
PDF(391 KB)

Accesses

Citations

Detail

Sections
Recommended

/