The effect of different agricultural management practices on irrigation efficiency, water use efficiency and green and blue water footprint

La ZHUO, Arjen Y. HOEKSTRA

PDF(147 KB)
PDF(147 KB)
Front. Agr. Sci. Eng. ›› 2017, Vol. 4 ›› Issue (2) : 185-194. DOI: 10.15302/J-FASE-2017149
RESEARCH ARTICLE
RESEARCH ARTICLE

The effect of different agricultural management practices on irrigation efficiency, water use efficiency and green and blue water footprint

Author information +
History +

Abstract

This paper explores the effect of varying agricultural management practices on different water efficiency indicators: irrigation efficiency (IE), crop water use efficiency (WUE), and green and blue water footprint (WF). We take winter wheat in an experimental field in Northern China as a case study and consider a dry, average and wet year. We conducted 24 modeling experiments with the AquaCrop model, for all possible combinations of four irrigation techniques, two irrigation strategies and three mulching methods. Results show that deficit irrigation most effectively improved blue water use, by increasing IE (by 5%) and reducing blue WF (by 38%), however with an average 9% yield reduction. Organic or synthetic mulching practices improved WUE (by 4% and 10%, respectively) and reduced blue WF (by 8% and 17%, respectively), with the same yield level. Drip and subsurface drip irrigation improved IE and WUE, but drip irrigation had a relatively large blue WF. Improvements in one water efficiency indicator may cause a decline in another. In particular, WUE can be improved by more irrigation at the cost of the blue WF. Furthermore, increasing IE, for instance by installing drip irrigation, does not necessarily reduce the blue WF.

Keywords

field management / irrigation efficiency / water footprint / water productivity / water use efficiency

Cite this article

Download citation ▾
La ZHUO, Arjen Y. HOEKSTRA. The effect of different agricultural management practices on irrigation efficiency, water use efficiency and green and blue water footprint. Front. Agr. Sci. Eng., 2017, 4(2): 185‒194 https://doi.org/10.15302/J-FASE-2017149

References

[1]
Hoekstra A Y, Mekonnen M M. The water footprint of humanity. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(9): 3232–3237
CrossRef Pubmed Google scholar
[2]
De Wrachien D, Goli M B. Global warming effects on irrigation development and crop production: a world-wide view. Agricultural Sciences, 2015, 6(7): 734–747
CrossRef Google scholar
[3]
Zwart S J, Bastiaanssen W G M. Review of measured crop water productivity values for irrigated wheat, rice, cotton and maize. Agricultural Water Management, 2004, 69(2): 115–133
CrossRef Google scholar
[4]
Zhao X, Liu J, Liu Q, Tillotson M R, Guan D, Hubacek K. Physical and virtual water transfers for regional water stress alleviation in China. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(4): 1031–1035
CrossRef Pubmed Google scholar
[5]
Perry C. Efficient irrigation; inefficient communication; flawed recommendations. Irrigation and Drainage, 2007, 56(4): 367–378
CrossRef Google scholar
[6]
Hoekstra A Y, Chapagain A K, Aldaya M M, Mekonnen M M. The water footprint assessment manual: setting the global standard. London:Earthscan, 2011
[7]
Contor B A, Taylor R G. Why improving irrigation efficiency increases total volume of consumptive water use. Irrigation and Drainage, 2013, 62(3): 273–280
CrossRef Google scholar
[8]
Hoekstra A Y. The water footprint of modern consumer society. London:Routledge, 2013
[9]
Hsiao T C, Heng L, Steduto P, Rojas-Lara B, Raes D, Fereres E. AquaCrop—The FAO crop model to simulate yield response to water: III. Parameterization and testing for maize. Agronomy Journal, 2009, 101(3): 448–459
CrossRef Google scholar
[10]
Raes D, Steduto P, Hsiao T C, Fereres E. AquaCrop—The FAO crop model to simulate yield response to water: II. Main algorithms and software description. Agronomy Journal, 2009, 101(3): 438–447
CrossRef Google scholar
[11]
Steduto P, Hsiao T C, Raes D, Fereres E. AquaCrop—The FAO crop model to simulate yield response to water: I. Concepts and underlying principles. Agronomy Journal, 2009, 101(3): 426–437
CrossRef Google scholar
[12]
Abedinpour M, Sarangi A, Rajput T B S, Singh M, Pathak H, Ahmad T. Performance evaluation of AquaCrop model for maize crop in a semi-arid environment. Agricultural Water Management, 2012, 110: 55–66
CrossRef Google scholar
[13]
Jin X L, Feng H K, Zhu X K, Li Z H, Song S N, Song X Y, Yang G J, Xu X G, Guo W S. Assessment of the AquaCrop model for use in simulation of irrigated winter wheat canopy cover, biomass, and grain yield in the North China Plain. PLoS One, 2014, 9(1): e86938
CrossRef Pubmed Google scholar
[14]
Qin W, Chi B, Oenema O. Long-term monitoring of rainfed wheat yield and soil water at the loess plateau reveals low water use efficiency. PLoS One, 2013, 8(11): e78828
CrossRef Pubmed Google scholar
[15]
García-Vila M, Fereres E, Mateos L, Orgaz F, Steduto P. Deficit irrigation optimization of cotton with AquaCrop. Agronomy Journal, 2009, 101(3): 477–487
CrossRef Google scholar
[16]
Stricevic R, Cosic M, Djurovic N, Pejic B, Maksimovic L. Assessment of the FAO AquaCrop model in the simulation of rainfed and supplementally irrigated maize, sugar beet and sunflower. Agricultural Water Management, 2011, 98(10): 1615–1621
CrossRef Google scholar
[17]
Ahmadi S H, Mosallaeepour E, Kamgar-Haghighi A A, Sepaskhah A R. Modeling maize yield and soil water content with AquaCrop under full and deficit irrigation managements. Water Resources Management, 2015, 29(8): 2837–2853
CrossRef Google scholar
[18]
Iqbal M A, Shen Y J, Stricevic R, Pei H, Sun H, Amiri E, Penas A, Del Rio S. Evaluation of the FAO AquaCrop model for winter wheat on the North China Plain under deficit irrigation from field experiment to regional yield simulation. Agricultural Water Management, 2014, 135: 61–72
CrossRef Google scholar
[19]
Nair S, Johnson J, Wang C. Efficiency of irrigation water use: a review from the perspectives of multiple disciplines. Agronomy Journal, 2013, 105(2): 351–363
CrossRef Google scholar
[20]
Bos M G, Nugteren J. On Irrigation Efficiencies, 3rd ed.Wageningen:  International Institute for Land Reclamation and Improvement, 1982
[21]
Israelsen O W. Irrigation principles and practices. New York: John Wiley and Sons, 1950
[22]
Zhuo L, Mekonnen M M, Hoekstra A Y, Wada Y. Inter- and intra-annual variation of water footprint of crops and blue water scarcity in the Yellow River basin (1961–2009). Advances in Water Resources, 2016, 87: 29–41
CrossRef Google scholar
[23]
Chukalla A D, Krol M S, Hoekstra A Y. Green and blue water footprint reduction in irrigated agriculture: effect of irrigation techniques, irrigation strategies and mulching. Hydrology and Earth System Sciences, 2015, 19(12): 4877–4891
CrossRef Google scholar
[24]
Ali M H. Water application methods. In: Heidelberg A M H eds. Practices of irrigation and on-farm water management. New York: Springer, 2011
[25]
FAO. AquaCrop reference manual. Rome:Food and Agriculture Organization of the United Nations, 2012
[26]
Raes D, Steduto P, Hsiao T C, Fereres E. Reference manual AquaCrop version 4.0. Rome: Food and Agriculture Organization of the United Nations, 2011
[27]
Harris I, Jones P D, Osborn T J, Lister D H. Updated high-resolution grids of monthly climatic observations—the CRU TS3.10 Dataset. International Journal of Climatology, 2014, 34(3): 623–642
CrossRef Google scholar
[28]
Gommes R A. Pocket computers in agrometeorology. In: FAO plant production and protection. Rome: Food and Agriculture Organization of the United Nations, 1983

Acknowledgements

The work was partially developed within the framework of the Panta Rhei Research Initiative of the international Association of Hydrological Sciences (IAHS).

Compliance with ethics guidelines

La Zhuo and Arjen Y Hoekstra declare that they have no conflict of interest or financial conflicts to disclose.
This article does not contain any studies with human or animal subjects performed by any of the authors.

RIGHTS & PERMISSIONS

The Author(s) 2017. Published by Higher Education Press. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0)
AI Summary AI Mindmap
PDF(147 KB)

Accesses

Citations

Detail

Sections
Recommended

/