Comparison of prechilling stratification and sulfuric acid scarification on seed germination of Panicum virgatum under drought stress

Nan WANG, Jing GAO, Suiqi ZHANG, Feng YAN

PDF(628 KB)
PDF(628 KB)
Front. Agr. Sci. Eng. ›› 2017, Vol. 4 ›› Issue (2) : 220-227. DOI: 10.15302/J-FASE-2017146
RESEARCH ARTICLE
RESEARCH ARTICLE

Comparison of prechilling stratification and sulfuric acid scarification on seed germination of Panicum virgatum under drought stress

Author information +
History +

Abstract

In semi-arid regions of the Loess Plateau, water deficiency restricts plant performance. Panicum virgatum (switchgrass), which is a highly versatile grass, had been introduced to the Plateau as a restoration species. To determine if prechilling stratification (PCS) and sulfuric acid scarification (SAS) can optimize establishment,P. virgatum cvs Pathfinder, Trailblazer and Alamo were tested under different ambient water potentials by measuring germination and root and shoot growth along water potential gradients under laboratory conditions. Both PCS and SAS improved total germination percentage (TGP), with PCS being more beneficial. The effect of PCS and SAS on mean germination time (MGT) weakened gradually with increasing drought stress. Both PCS and SAS showed no obvious effect on promoting root and shoot growth. Both PCS and SAS reduced base water potential requirement for reaching 50% germination of Pathfinder and Trailblazer, with this effect greater for PCS. These results indicate that embryo dormancy may be a major factor limiting germination ofP. virgatum under drought conditions. Pathfinder appears to be more suitable for a semi-arid environment, whereas Alamo appears to be unsuitable for drought conditions. Given the large difference between predicted value and measured value, the reliability and applicable scope of linear regression estimatedY50 needs further investigation, specification and optimization.

Keywords

base water potential / data analysis method / embryo growth / germination

Cite this article

Download citation ▾
Nan WANG, Jing GAO, Suiqi ZHANG, Feng YAN. Comparison of prechilling stratification and sulfuric acid scarification on seed germination of Panicum virgatum under drought stress. Front. Agr. Sci. Eng., 2017, 4(2): 220‒227 https://doi.org/10.15302/J-FASE-2017146

References

[1]
Mutegi E, Stottlemyer  A L, Snow  A A, Sweeney  P M. Genetic structure of remnant populations and cultivars of switchgrass (Panicum virgatum) in the context of prairie conservation and restoration. Restoration Ecology, 2014, 22(2): 223–231
CrossRef Google scholar
[2]
Ichizen N, Takahashi  H, Nishio T ,  Liu G, Li  D, Huang J . Impacts of switchgrass (Panicum virgatum L.) planting on soil erosion in the hills of the Loess Plateau in China. Weed Biology and Management, 2005, 5(1): 31–34
CrossRef Google scholar
[3]
Sang T, Zhu  W. China’s bioenergy potential. GCB Bioenergy, 2011, 3(2): 79–90
CrossRef Google scholar
[4]
Ma Y, An  Y, Shui J ,  Sun Z. Adaptability evaluation of switchgrass (Panicum virgatum L.) cultivars on the Loess Plateau of China. Plant Science, 2011, 181(6): 638–643
CrossRef Google scholar
[5]
Duclos D V, Ray  D T, Johnson  D J, Taylor  A G. Investigating seed dormancy in switchgrass (Panicum virgatum L.): understanding the physiology and mechanisms of coat-imposed seed dormancy. Industrial Crops and Products, 2013, 45: 377–387
CrossRef Google scholar
[6]
Beckman J J, Moser  L E, Kubik  K, Waller S S . Big bluestem and switchgrass establishment as influenced by seed priming. Agronomy Journal, 1993, 85(2): 199–202
CrossRef Google scholar
[7]
Sarath G, Mitchell  R B. Aged switchgrass seed lot’s response to dormancy-breaking chemicals. Seed Technology, 2008, 30(1): 7–16
[8]
Martinez-Reyna J M ,  Vogel K P . Heterosis in switchgrass: spaced plants. Crop Science, 2008, 48(4): 1312–1320
CrossRef Google scholar
[9]
Hanson J, Johnson  H. Germination of switchgrass under various temperature and pH regimes. Seed Technology, 2005, 27(2): 203–210
[10]
Hacisalihoglu G. Responses of three switchgrass (Panicum virgatum L.) cultivars to seed priming and differential aging conditions. Acta Agriculturae Scandinavica Section B–Soil and Plant Science, 2008, 58(3): 280–284
CrossRef Google scholar
[11]
Ghimire S R, Charlton  N D, Craven  K D. The mycorrhizal fungus, Sebacina vermifera, enhances seed germination and biomass production in switchgrass (Panicum virgatum L). BioEnergy Research, 2009, 2(1–2): 51–58
CrossRef Google scholar
[12]
Sarath G, Hou  G, Baird L M ,  Mitchell R B . Reactive oxygen species, ABA and nitric oxide interactions on the germination of warm-season C4-grasses. Planta, 2007, 226(3): 697–708
CrossRef Google scholar
[13]
Scott S, Jones  R, Williams W . Review of data analysis methods for seed germination. Crop Science, 1984, 24(6): 1192–1199
CrossRef Google scholar
[14]
Ritz C, Pipper  C B, Streibig  J C. Analysis of germination data from agricultural experiments. European Journal of Agronomy, 2013, 45: 1–6
CrossRef Google scholar
[15]
Mo H D. Agricultural experiment statistics. Shanghai: Shanghai Scientific and Technical Publishers, 1984 (in Chinese)
[16]
Farooq M, Aziz  T, Basra S ,  Cheema M ,  Rehman H . Chilling tolerance in hybrid maize induced by seed priming with salicylic acid. Journal Agronomy & Crop Science, 2008, 194(2): 161–168
CrossRef Google scholar
[17]
Patanè C, Saita  A, Sortino O . Comparative effects of salt and water stress on seed germination and early embryo growth in two cultivars of sweet sorghum. Journal Agronomy & Crop Science, 2013, 199(1): 30–37
CrossRef Google scholar
[18]
Michel B E, Kaufmann  M R. The osmotic potential of polyethylene glycol 6000. Plant Physiology, 1973, 51(5): 914–916
CrossRef Google scholar
[19]
Hsu F, Nelson  C, Matches A . Temperature effects on germination of perennial warm-season forage grasses. Crop Science, 1985, 25(2): 215–220
CrossRef Google scholar
[20]
Patanè C, Cavallaro  V, Cosentino S L . Germination and radicle growth in unprimed and primed seeds of sweet sorghum as affected by reduced water potential in NaCl at different temperatures. Industrial Crops and Products, 2009, 30(1): 1–8
CrossRef Google scholar
[21]
Kaye T, Kuykendall  K. Effects of scarification and cold stratification on seed germination of Lupinus sulphureus ssp. kincaidii. Seed Science and Technology, 2001, 29(3): 663–668
[22]
Phartyal S S, Godefroid  S, Koedam N . Seed development and germination ecophysiology of the invasive tree Prunus serotina (Rosaceae) in a temperate forest in Western Europe. Plant Ecology, 2009, 204(2): 285–294
CrossRef Google scholar
[23]
Mattana E, Pritchard  H, Porceddu M ,  Stuppy W ,  Bacchetta G . Interchangeable effects of gibberellic acid and temperature on embryo growth, seed germination and epicotyl emergence in Ribes multiflorum ssp. sandalioticum (Grossulariaceae). Plant Biology, 2012, 14(1): 77–87
[24]
Muscolo A, Sidari  M, Anastasi U ,  Santonoceto C ,  Maggio A . Effect of PEG-induced drought stress on seed germination of four lentil genotypes. Journal of Plant Interactions, 2014, 9(1): 354–363
CrossRef Google scholar
[25]
Voegele A, Graeber  K, Oracz K ,  Tarkowská D ,  Jacquemoud D ,  Turečková V ,  Urbanová T ,  Strnad M ,  Leubner-Metzger G . Embryo growth, testa permeability, and endosperm weakening are major targets for the environmentally regulated inhibition of Lepidium sativum seed germination by myrigalone A. Journal of Experimental Botany, 2012, 63(14): 5337–5350
CrossRef Google scholar
[26]
Yan M. Seed priming stimulate germination and early seedling growth of Chinese cabbage under drought stress. South African Journal of Botany, 2015, 99: 88–92
CrossRef Google scholar
[27]
Kaya M D, Okçu  G, Atak M ,  Çıkılı Y, Kolsarıcı Ö. Seed treatments to overcome salt and drought stress during germination in sunflower (Helianthus annuus L.). European Journal of Agronomy, 2006, 24(4): 291–295 doi:10.1016/j.eja.2005.08.001
[28]
Martín I, Guerrero  M. Effect of sulphuric acid scarification on seed accessions of cluster clover (Trifolium glomeratum) stored in a genebank. Seed Science and Technology, 2014, 42(2): 293–299
CrossRef Google scholar
[29]
Ekpong B. Effects of seed maturity, seed storage and pre-germination treatments on seed germination of cleome (Cleome gynandra L.). Scientia Horticulturae, 2009, 119(3): 236–240
CrossRef Google scholar
[30]
Shen Z X, Parrish  D J, Wolf  D D, Welbaum  G E. Stratification in switchgrass seeds is reversed and hastened by drying. Crop Science, 2001, 41(5): 1546–1551
CrossRef Google scholar
[31]
Duclos D V, Altobello  C O, Taylor  A G. Investigating seed dormancy in switchgrass (Panicum virgatum L.): Elucidating the effect of temperature regimes and plant hormones on embryo dormancy. Industrial Crops and Products, 2014, 58: 148–159
CrossRef Google scholar
[32]
Traversa A, Loffredo  E, Gattullo C E ,  Palazzo A J ,  Bashore T L ,  Senesi N . Comparative evaluation of compost humic acids and their effects on the germination of switchgrass (Panicum vigatum L.). Journal of Soils and Sediments, 2014, 14(2): 432–440
CrossRef Google scholar
[33]
Wartidiningsih N, Geneve  R, Kester S . Osmotic priming or chilling stratification improves seed germination of purple coneflower. HortScience, 1994, 29(12): 1445–1448
[34]
Davis T D, George  S W, Upadhyaya  A, Parsons J . Improvement of seedling emergence of Lupinus texensis Hook. following seed scarification treatments. Journal of Environmental Horticulture, 1991, 9(1): 17–21

Acknowledgements

This work was supported by the National Natural Science Foundation of China (31500320) and the National Science and Technology Supporting Programs (2015BAD22B01).

Compliance with ethics guidelines

Nan Wang, Jing Gao, Suiqi Zhang, and Feng Yan declare that they have no conflicts of interest or financial conflicts to disclose.
This article does not contain any studies with human or animal subjects performed by any of the authors.

RIGHTS & PERMISSIONS

The Author(s) 2017. Published by Higher Education Press. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0)
AI Summary AI Mindmap
PDF(628 KB)

Accesses

Citations

Detail

Sections
Recommended

/