Long-term simulation of growth stage-based irrigation scheduling in maize under various water constraints in Colorado, USA

Quanxiao FANG, Liwang MA, Lajpat Rai AHUJA, Thomas James TROUT, Robert Wayne MALONE, Huihui ZHANG, Dongwei GUI, Qiang YU

PDF(1081 KB)
PDF(1081 KB)
Front. Agr. Sci. Eng. ›› 2017, Vol. 4 ›› Issue (2) : 172-184. DOI: 10.15302/J-FASE-2017139
RESEARCH ARTICLE
RESEARCH ARTICLE

Long-term simulation of growth stage-based irrigation scheduling in maize under various water constraints in Colorado, USA

Author information +
History +

Abstract

Due to varying crop responses to water stress at different growth stages, scheduling irrigation is a challenge for farmers, especially when water availability varies on a monthly, seasonal and yearly basis. The objective of this study was to optimize irrigation between the vegetative (V) and reproductive (R) phases of maize under different available water levels in Colorado. Long-term (1992–2013) scenarios simulated with the calibrated Root Zone Water Quality Model were designed to meet 40%–100% of crop evapotranspiration (ET) requirements at V and R phases, subject to seasonal water availabilities (300, 400, 500 mm, and no water limit), with and without monthly limits (total of 112 scenarios). The most suitable irrigation between V and R phases of maize was identified as 60/100, 80/100, and 100/100 of crop ET requirement for the 300, 400, 500 mm water available, respectively, based on the simulations from 1992 to 2013. When a monthly water limit was imposed, the corresponding suitable irrigation targets between V and R stages were 60/100, 100/100, and 100/100 of crop ET requirement for the above three seasonal water availabilities, respectively. Irrigation targets for producing higher crop yield with reduced risk of poor yield were discussed for projected five-year water availabilities.

Keywords

RZWQM / ET-based irrigation schedule / maize / water constrains

Cite this article

Download citation ▾
Quanxiao FANG, Liwang MA, Lajpat Rai AHUJA, Thomas James TROUT, Robert Wayne MALONE, Huihui ZHANG, Dongwei GUI, Qiang YU. Long-term simulation of growth stage-based irrigation scheduling in maize under various water constraints in Colorado, USA. Front. Agr. Sci. Eng., 2017, 4(2): 172‒184 https://doi.org/10.15302/J-FASE-2017139

References

[1]
Fang Q X, Ma L W, Yu Q, Ahuja L R, Malone R W, Hoogenboom G. Irrigation strategies to improve the water use efficiency of wheat–maize double cropping systems in North China Plain. Agricultural Water Management, 2010, 97(8): 1165–1174
CrossRef Google scholar
[2]
Geerts S, Raes D. Deficit irrigation as an on-farm strategy to maximize crop water productivity in dry areas. Agricultural Water Management, 2009, 96(9): 1275–1284
CrossRef Google scholar
[3]
Bell L W, Lilley J M, Hunt J R, Kirkegaard J A. Optimizing grain yield and grazing potential of crops across Australia’s high-rainfall zone: a simulation analysis. 1. Wheat. Crop & Pasture Science, 2015, 66(4): 332–348
CrossRef Google scholar
[4]
Sadras V O, Lawson C, Hooper P, McDonald G K. Contribution of summer rainfall and nitrogen to the yield and water use efficiency of wheat in Mediterranean-type environments of South Australia. European Journal of Agronomy, 2012, 36(1): 41–54
CrossRef Google scholar
[5]
Zhang S, Sadras V, Chen X, Zhang F. Water use efficiency of dryland wheat in the Loess Plateau in response to soil and crop management. Field Crops Research, 2013a, 151: 9–18
CrossRef Google scholar
[6]
Zhang X, Wang Y, Sun H, Chen S, Shao L. Optimizing the yield of winter wheat by regulating water consumption during vegetative and reproductive stages under limited water supply. Irrigation Science, 2013b, 31(5): 1103–1112
CrossRef Google scholar
[7]
Lobell D B, Roberts M J, Schlenker W, Braun N, Little B B, Rejesus R M, Hammer G L. Greater sensitivity to drought accompanies maize yield increase in the U.S. Midwest. Science, 2014, 344(6183): 516–519
CrossRef Pubmed Google scholar
[8]
Xue Q, Rudd J C, Liu S, Jessup K E, Devkota R N, Mahano J R. Yield determination and water-use efficiency of wheat under water-limited conditions in the US Southern High Plains. Crop Science, 2014, 54(1): 34–47
CrossRef Google scholar
[9]
Du T, Kang S, Zhang J, Davies W J. Deficit irrigation and sustainable water-resource strategies in agriculture for China’s food security. Journal of Experimental Botany, 2015, 66(8): 2253–2269
CrossRef Pubmed Google scholar
[10]
Roth G, Harris G, Gillies M, Montgomery J, Wigginton D. Water-use efficiency and productivity trends in Australian irrigated cotton: a review. Crop & Pasture Science, 2014, 64(12): 1033–1048
[11]
Kottmann L, Wilde P, Schittenhelm S. How do timing, duration, and intensity of drought stress affect the agronomic performance of winter rye? European Journal of Agronomy, 2016, 75: 25–32
CrossRef Google scholar
[12]
Zhang S, Sadras V, Chen X, Zhang F. Water use efficiency of dryland maize in the Loess Plateau of China in response to crop management. Field Crops Research, 2014, 163: 55–63
CrossRef Google scholar
[13]
Irmak S, Djaman K, Rudnick D R. Effect of full and limited irrigation amount and frequency on subsurface drip-irrigated maize evapotranspiration, yield, water use efficiency and yield response factors. Irrigation Science, 2016, 34(4): 271–286
CrossRef Google scholar
[14]
Pereira L S, Paredes P, Cholpankulov E D, Inchenkova O P, Teodoro P R, Horst M G. Irrigation scheduling strategies for cotton to cope with water scarcity in the Fergana Valley, Central Asia. Agricultural Water Management, 2009, 96(5): 723–735
CrossRef Google scholar
[15]
Attia A, Rajan N, Xue Q, Nair S, Ibrahim A, Hays D. Application of DSSAT-CERES-Wheat model to simulate winter wheat response to irrigation management in the Texas High Plains. Agricultural Water Management, 2016, 165: 50–60
CrossRef Google scholar
[16]
Montoya F, Camargo D, Ortega J F, Córcoles J I, Domínguez A. Evaluation of Aquacrop model for a potato crop under different irrigation conditions. Agricultural Water Management, 2016, 164: 267–280
CrossRef Google scholar
[17]
Amarasingha R P R K, Suriyagoda L D B, Marambe B, Gaydon D S, Galagedara L W, Punyawardena R, Howden M. Simulation of crop and water productivity for rice (Oryza sativa L.) using APSIM under diverse agro-climatic conditions and water management techniques in Sri Lanka. Agricultural Water Management, 2015, 160: 132–143
CrossRef Google scholar
[18]
Marsal J, Stöckle C O. Use of CropSyst as a decision support system for scheduling regulated deficit irrigation in a pear orchard. Irrigation Science, 2012, 30(2): 139–147
CrossRef Google scholar
[19]
Sun C, Ren L. Assessing crop yield and crop water productivity and optimizing irrigation scheduling of winter wheat and summer maize in the Haihe plain using SWAT model. Hydrological Processes, 2014, 28(4): 2478–2498
CrossRef Google scholar
[20]
Fang Q X, Ma L, Nielsen D C, Trout T J, Ahuja L R. Quantifying corn yield and water use efficiency under growth stage-based deficit irrigation conditions. In: Ahuja L R, Ma L, Lascano, R J, eds. Practical applications of agricultural system models to optimize the use of limited water. Adv. Agric. Systems Model. 5. ASA, SSSA, CSSA, Madison, WI. 2014, 1–24
[21]
Ahuja L R, Ma L, Lascano R J, Saseendran S A, Fang Q X, Nielsen D C, Colaizzi P D. Syntheses of the current model applications for managing water and needs for experimental data and model improvements to enhance these applications. Practical applications of agricultural system models to optimize the use of limited water, Adv. Agric. Systems Model. 5. ASA, SSSA, CSSA, Madison, WI. 2014, 399–438
[22]
Ma L, Ahuja L R, Malone R W. Systems modeling for soil and water research and management: current status and needs for the 21st century. Transactions of the ASABE, 2007, 50(5): 1705–1713
CrossRef Google scholar
[23]
Chen C, Wang E, Yu Q. Modelling the effects of climate variability and water management on crop water productivity and water balance in the North China Plain. Agricultural Water Management, 2010, 97(8): 1175–1184
CrossRef Google scholar
[24]
Geerts S, Raes D, Garcia M. Using AquaCrop to derive deficit irrigation schedules. Agricultural Water Management, 2010, 98(1): 213–216
CrossRef Google scholar
[25]
Saseendran S A, Ahuja L R, Nielsen D C, Trout T J, Ma L. Use of crop simulation models to evaluate limited irrigation management options for corn in a semiarid environment. Water Resources Research, 2008, 44(7): 137–149
CrossRef Google scholar
[26]
Linker R, Ioslovich I, Sylaios G, Plauborg F, Battilani A. Optimal model-based deficit irrigation scheduling using AquaCrop: a simulation study with cotton, potato and tomato. Agricultural Water Management, 2016, 163: 236–243
CrossRef Google scholar
[27]
García-Vila M, Fereres E. Combining the simulation crop model AquaCrop with an economic model for the optimization of irrigation management at farm level. European Journal of Agronomy, 2012, 36(1): 21–31
CrossRef Google scholar
[28]
Allen R G, Wright J L, Pruitt W O, Pereira L S, Jensen M E. Water requirements. In: Hoffman G J, Robert G E, Marvin E J, Derrel L M, Ronald L E. eds. Design and operation of farm irrigation systems. 2nd ed. Chap. 8. ASAE, St. Joseph, MI. 2007, 208–288
[29]
Allen R G, Pereira L S, Smith M, Raes D, Wright J L. FAO-56 dual crop coefficient method for estimating evaporation from soil and application extensions. Journal of Irrigation and Drainage Engineering, 2005, 131(1): 2–13
CrossRef Google scholar
[30]
Ma L, Trout T J, Ahuja L R, Bausch W C, Saseendran S A, Malone R W, Nielsen D C. Calibrating RZWQM2 model for maize responses to deficit irrigation. Agricultural Water Management, 2012, 103: 140–149
CrossRef Google scholar
[31]
Ahuja L R, Rojas K W, Hanson J D, Shaffer M J, Ma L. Root zone water quality model: modeling management effects on water quality and crop production. Highlands Ranch: Water Resources Publication, 2000
[32]
Ma L, Hoogenboom G, Ahuja L R, Ascough J C II, Saseendran S A. Evaluation of the RZWQM-CERES-Maize hybrid model for maize production. Agricultural Systems, 2006, 87(3): 274–295
CrossRef Google scholar
[33]
Shuttleworth W J, Wallace J S. Evaporation from sparse crops-an energy combination theory. Quarterly Journal of the Royal Meteorological Society, 1985, 111(469): 839–855
CrossRef Google scholar
[34]
Doherty J.FORTRAN 90 modules for implementation of parallelised, model-independent, model-based processing. http://www.pesthomepage.org/getfiles.php?file=modules.pdf, 2008–03–20

Acknowledgements

This work was supported by the National Natural Science Foundation of China (31671627) and the 2016 Agricultural international exchange and cooperation project.

Compliance with ethics guidelines

Quanxiao Fang, Liwang Ma, Lajpat Rai Ahuja, Thomas James Trout, Robert Wayne Malone, Huihui. Zhang, Dongwei Gui, and Qiang Yu declare that they have no conflict of interest or financial conflicts to disclose.
This article does not contain any studies with human or animal subjects performed by any of the authors.

RIGHTS & PERMISSIONS

The Author(s) 2017. Published by Higher Education Press. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0)
AI Summary AI Mindmap
PDF(1081 KB)

Accesses

Citations

Detail

Sections
Recommended

/