A bacterial artificial chromosome-based physical map of Manihot esculenta ssp. flabellifolia

Yuhua FU, Zhiqiang XIA, Shujuan WANG, Xin CHEN, Cheng LU, Mingcheng LUO, Hongbin ZHANG, Wenquan WANG

PDF(469 KB)
PDF(469 KB)
Front. Agr. Sci. Eng. ›› 2016, Vol. 3 ›› Issue (4) : 321-329. DOI: 10.15302/J-FASE-2016124
RESEARCH ARTICLE
RESEARCH ARTICLE

A bacterial artificial chromosome-based physical map of Manihot esculenta ssp. flabellifolia

Author information +
History +

Abstract

Cassava ( Manihot esculenta ) is known as the third most important food crop in the tropics and also used for industrial feedstock for biofuels. Two new bacterial artificial chromosome (BAC) libraries were constructed for W14 ( M. Esculenta ssp. flabellifolia ), a wild ancestor of domesticated cassava. The libraries were constructed with Eco RI and Hin dIII insertion vectors, respectively. The Eco RI library has 29952 clones with an average insert size of 115 kb, while the Hin dIII library consists of 29952 clones with an average insert of 129 kb. The combined libraries contain a total of 59904 clones with an average insert size of 125 kb, representing approximately 10 × haploid genome equivalents. A total of 29952 clones were fingerprinted and resulted in a cassava physical map composed of 2485 contigs with an average physical length of 336 kb and 2909 singletons, representing approximately 762 Mb of the cassava genome. 5000 clones located at the ends of BAC contigs were selected and sequenced. A total of 6077 SNPs and 231 indels were identified, that covered 459 gene sequences, of which 6 genes were associated with starch and sucrose metabolism. This BAC-based physical map provides valuable tools to understand the genetics and evolution of cassava.

Graphical abstract

Keywords

cassava / BAC library / physical map

Cite this article

Download citation ▾
Yuhua FU, Zhiqiang XIA, Shujuan WANG, Xin CHEN, Cheng LU, Mingcheng LUO, Hongbin ZHANG, Wenquan WANG. A bacterial artificial chromosome-based physical map of Manihot esculenta ssp. flabellifolia . Front. Agr. Sci. Eng., 2016, 3(4): 321‒329 https://doi.org/10.15302/J-FASE-2016124

References

[1]
Awoleye F , van Duren M , Dolezel J , Novak F J . Nuclear DNA content and in vitro induced somatic polyploidization cassava ( Manihot esculenta Crantz) breeding. Euphytica , 1994 , 76 ( 3 ): 195 – 202
CrossRef Google scholar
[2]
Mohammed B B , Isah A B , Ibrahim M A . Influence of compaction pressures on modified cassava starch as a binder in paracetamol tablet formulations. Nigerian Journal of Pharmaceutical Sciences , 2009 , 8 ( 1 ): 80 – 88
[3]
Dixon A G O , Bandyopadhyay R , Coyne D , Ferguson M , Ferris R S B , Hanna R , Hughes J , Ugent I I , Legg J , Mahungu N , Manyong V , Mowbray D , Neuenschwander P , Whyte J , Hartmann P , Ortiz R . Cassava: from poor farmer’s crop to pacesetter of African rural development. Chronica Horticulturae , 2003 , 43 ( 4 ): 8 – 15
[4]
Tonukari N J . Cassava and the future of starch. Electronic Journal of Biotechnology , 2004 , 7 ( 1 ): 5 – 8
CrossRef Google scholar
[5]
Rettinassababady C , Ramadoss N, Thirumeni S . Present situation and future potential of cassava in Thailand . Ifad Stakeholder Consultation Meeting ,  2007 ,  19 ( 1 ): 392 – 415
[6]
FAO . Food and agriculture organization of the United Nations: cassava . Available at FAO Website on June 23, 2016
[7]
Ceballos H , Iglesias C A , Perez J C , Dixon A G O . Cassava breeding: opportunities and challenges. Plant Molecular Biology , 2004 , 56 ( 4 ): 503 – 516
CrossRef Google scholar
[8]
Akano A O , Dixon A G O , Mba C , Barrera E , Fregene M . Genetic mapping of a dominant gene conferring resistance to cassava mosaic disease. Theoretical and Applied Genetics , 2002 , 105 ( 4 ): 521 – 525
CrossRef Google scholar
[9]
López C E , Quesada-Ocampo L M , Bohórquez A , Duque M C , Vargas J , Tohme J , Verdier V . Mapping EST-derived SSRs and ESTs involved in resistance to bacterial blight in Manihotesculenta. Genome , 2007 , 50 ( 12 ): 1078 – 1088
CrossRef Google scholar
[10]
Wydra K , Zinsou V , Jorge V , Verdier V . Identification of pathotypes of Xanthomonas axonopodis pv. manihotis in Africa and detection of quantitative trait loci and markers for resistance to bacterial blight of cassava. Phytopathology , 2004 , 94 ( 10 ): 1084 – 1093
CrossRef Google scholar
[11]
Okogbenin E , Marin J , Fregene M . QTL analysis for early yield in a pseudo F2 population of cassava. African Journal of Biotechnology , 2008 , 7 ( 2 ): 131 – 138
[12]
Okogbenin E , Fregene M . Genetic mapping of QTLs affecting productivity and plant architecture in a full-sib cross from non-inbred parents in Cassava ( Manihot esculenta Crantz). Theoretical and Applied Genetics , 2003 , 107 ( 8 ): 1452 – 1462
CrossRef Google scholar
[13]
Chen X , Fu Y , Xia Z , Jie L , Wang H , Lu C , Wang W . Analysis of QTL for yield-related traits in cassava using an F1 population from non-inbred parents. Euphytica , 2012 , 187 ( 2 ): 227 – 234
CrossRef Google scholar
[14]
Whankaew S , Poopear S , Kanjanawattanawong S , Tangphatsornruang S , Boonseng O , Lightfoot D A , Triwitayakorn K . A genome scan for quantitative trait loci affecting cyanogenic potential of cassava root in an outbred population. BMC Genomics , 2011 , 12 ( 1 ): 266
CrossRef Google scholar
[15]
Kizito E B . RÖnnberg-Wästljung A C, Egwang T G, Gullberg U, Fregene M, Westerbergh A. Quantitative trait loci controlling cyanogenic glucoside and dry matter content in cassava ( Manihot esculenta Crantz) roots. Hereditas , 2007 , 144 ( 4 ): 129 – 136
CrossRef Google scholar
[16]
Chavarriagea-Aguirre P , Maya M M , Bonierbale M W , Kresovich S , Fregene M A , Tohme J , Kochert G . Microsatellites in cassava ( Manihot esculenta Crantz): discovery, inheritance and variability. Theoretical and Applied Genetics , 1998 , 97 ( 3 ): 493 – 501
CrossRef Google scholar
[17]
Fregene M , Angel F , Gomez R , Rodriguez F , Chavarriaga P , Roca W M , Tohme J , Bonierbale M . A molecular genetic map of cassava ( Manihot esculenta Crantz). Theoretical and Applied Genetics , 1997 , 95 ( 3 ): 431 – 441
CrossRef Google scholar
[18]
Okogbenin E , Marin J , Fregene M A . An SSR-based molecular genetic map of cassava. Euphytica , 2006 , 147 ( 3 ): 433 – 440
CrossRef Google scholar
[19]
Chen X , Xia Z , Fu Y , Lu C , Wang W . Constructing a genetic linkage map using an F 1 population of non-inbred parents in cassava ( Manihot esculenta Crantz). Plant Molecular Biology Reporter , 2010 , 28 ( 4 ): 676 – 683
CrossRef Google scholar
[20]
Kunkeaw S , Tangphatsornruang S , Smith D R , Triwiayakorn K . Genetic linkage map of cassava ( Manihot esculenta Crantz) based on AFLP and SSR markers. Plant Breeding , 2010 , 129 ( 1 ): 112 – 115
CrossRef Google scholar
[21]
Mba R E C , Stephensen P , Edwards K , Melzer S , Nkumbira J , Gullberg U , Apel K , Gale M , Tohme J , Fregene M . Simple sequence repeat (SSR) markers survey of the cassava ( Manihot esculenta Crantz) genome: towards and SSR-based molecular genetic map of cassava. Theoretical and Applied Genetics , 2001 , 102 ( 1 ): 21 – 31
CrossRef Google scholar
[22]
Sraphet S , Boonchanawiwat A , Thanyasiriwat T , Boonseng O , Tabata S , Sasamoto S , Shirasawa K , Isobe S , Lightfoot D A , Tangphatsornruang S , Triwitayakorn K . SSR and EST-SSR-based genetic linkage map of cassava ( Manihot esculenta Crantz). Theoretical and Applied Genetics , 2011 , 122 ( 6 ): 1161 – 1170
CrossRef Google scholar
[23]
Lopez C , Jorge V , Piégu B , Mba C , Cortes D , Restrepo S , Soto M , Laudié M , Berger C , Cooke R , Delseny M , Tohme J , Verdier V . A unigene catalogue of 5700 expressed genes in cassava. Plant Molecular Biology , 2004 , 56 ( 4 ): 541 – 554
CrossRef Google scholar
[24]
Lokko Y , Anderson J V , Rudd S , Raji A , Horvath D P , Mikel M A , Kim R , Liu L , Hernandez A G , Dixon A G O , Ingelbrecht I . Characterization of an 18,166 EST dataset for cassava ( Manihot esculenta Crantz) enriched for drought-responsive genes. Plant Cell Reports , 2007 , 26 ( 9 ): 1605 – 1618
CrossRef Google scholar
[25]
Sakurai T , Plata G , Rodrígue-Zapata F , Seki M , Salcedo A , Toyoda A , Ishiwata A , Tohme J , Sakaki Y , Shinozaki K , Ishitani M . Sequencing analysis of 20,000 full-length cDNA clones from cassava reveals lineage specific expansions in gene families related to stress response. BMC Plant Biology , 2007 , 7 ( 1 ): 66 – 72
CrossRef Google scholar
[26]
Ferguson M , Hearne S J , Close T J , Wanamaker C S , Moskal W A , Town C D , Young J D , Marri P R , Rabbi I Y , Villiers E P D . Identification, validation and high-throughput genotyping of transcribed gene SNPs in cassava. Theoretical and Applied Genetics , 2012a , 124 ( 4 ): 685 – 695
CrossRef Google scholar
[27]
Utsumi Y , Sakurai T , Umemura Y , Ayling S , Ishitani M , Narangajavana J , Sojikul P , Triwitayakorn K , Matsui M , Manabe R , Shinozaki K , Seki M . RIKEN cassava initiative: establishment of a cassava functional genomics platform. Tropical Plant Biology , 2012 , 5 ( 1 ): 110 – 116
CrossRef Google scholar
[28]
Lopez C , Soto M , Restrepo S , Piegu B , Cooke R , Delseny M , Tohme J , Verdier V . Gene expression profile in response to Xanthomonas axonopodis pv. Manihotis infection in cassava using a cDNA microarray. Plant Molecular Biology , 2005 , 57 ( 3 ): 393 – 410
CrossRef Google scholar
[29]
Yang J , An D , Zhang P . Expression profiling of cassava storage roots reveals an active process of glycolysis/gluconeogenesis. Journal of Integrative Plant Biology , 2011 , 53 ( 3 ): 193 – 211
CrossRef Google scholar
[30]
Ferguson M , Rabbi I Y , Kim D , Gedil M , Lopez-Lavalle L A B , Okogbenin E . Molecular markers and their application to cassava breeding: past, present and future. Tropical Plant Biology , 2012b , 5 ( 1 ): 95 – 109
CrossRef Google scholar
[31]
Tomkins J P , Fregene M , Main D , Kim H , Wing R A , Tohme J . Bacterial artificial chromosome (BAC) library resource for positional cloning of pest and disease resistance genes in cassava ( Manihot esculenta Crantz). Plant Molecular Biology , 2004 , 56 ( 4 ): 555 – 561
CrossRef Google scholar
[32]
Okogbenin E , Setter T L , Ferguson M , Mutegi R , Ceballos H , Olasanmi B , Fregene M . Phenotypic approaches to drought in cassava . Frontiers in Physiology , 2013 , 4 : 93
CrossRef Google scholar
[33]
Adam-Blondon A F , Bernole A , Faes G , Lamoureux D , Pateyron S , Grando M S , Caboche M , Velasco R , Chalhoub B . Construction and characterization of BAC libraries from major grapevine cultivars. Theoretical and Applied Genetics , 2005 , 110 ( 8 ): 1363 – 1371
CrossRef Google scholar
[34]
Yim Y , Davis G L , Duru N A , Musket T A , Linton E W , Messing J W , McMullen M D , Soderlund C A , Polacco M L , Gardiner J M , Coe E H . Characterization of three maize bacterial artificial chromosome libraries toward anchoring of the physical map to the genetic map using high-density bacterial artificial chromosome filter hybridization. Plant Physiology , 2002 , 130 ( 4 ): 1686 – 1696
CrossRef Google scholar
[35]
Meyers B C , Scalabrin S , Morgante M . Mapping and sequencing complex genomes: let’s get physical! Nature Reviews Genetics , 2004 , 5 ( 8 ): 578 – 589
CrossRef Google scholar
[36]
Lin L , Pierce G J , Bowers J E , Estill J C , Compton R O , Rainville L K , Kim C , Lemke C , Rong J , Tang H , Wang X , Braidotti M , Chen A H , Chicola K , Collura K , Epps E , Golser W , Grover C E , Ingles J , Karunakaran S , Kudrna D , Olive J , Tabassum N , Um E , Wissotski M , Yu Y , Zuccolo A , Rahman M , Peterson D G , Wing R A , Wendel J F , Paterson A H . A draft physical map of a D-genome cotton species ( Gossypium raimondii ). BMC Genomics , 2010 , 11 ( 1 ): 395
CrossRef Google scholar
[37]
Schulte D , Ariyadasa R , Shi B , Fleury D , Saski C , Atkins M , Dejong P , Wu C , Graner A , Langridge P , Stein N . BAC library resources for map-based cloning and physical map construction in barley (Hordeum vulgare L.). BMC Genomics , 2011 , 12 ( 1 ): 247
CrossRef Google scholar
[38]
Shinozuka H , Cogan N O I , Smith K F , Spangenberg G C , Forster J W . Fine-scale comparative genetic and physical mapping supports map-based cloning strategies for the self-incompatibility loci of perennial ryegrass ( Lolium perenne L.). Plant Molecular Biology , 2010 , 72 ( 3 ): 343 – 355
CrossRef Google scholar
[39]
Kucuktas H , Wang S , Li P , He C , Xu P , Sha Z , Liu H , Jiang Y , Baoprasertkul P , Somridhivej B , Wang Y , Abernathy J , Guo X , Liu L , Muir W M , Liu Z . Construction of genetic linkage maps and comparative genome analysis of catfish using gene-associated markers. Genetics , 2009 , 181 ( 4 ): 1649 – 16660
CrossRef Google scholar
[40]
Philippe R , Paux E , Bertin I , Sourdille P , Choulet F , Laugier C , Simkova H , Safař J , Bellec A , Vautrin S , Frenkel Z , Cattonaro F , Magni F , Scalabrin S , Martis M M , Mayer K F X , Korol A B , Berges H , Doležel J , Feuillet C . A high density physical map of chromosome 1BL supports evolutionary studies, map-based cloning and sequencing in wheat. Genome Biology , 2013 , 14 ( 6 ): 1 – 22
CrossRef Google scholar
[41]
Tuskan G A , Difazio S P , Jansson S , Bohlmann J , Grigoriev I V , Hellsten U , Putnam N H , Ralph S , Rombauts S , Salsmov A , Schein J E , Sterck L , Aerts A , Bhalerao R R , Bhalerao R P , Blaudez D , Boerjan W , Brun A , Brunner A M , Busov V , Campbell M M , Carlson J E , Chalot M , Chapman J , Chen G , Cooper D M L , Coutinho P M , Couturier J , Covert S F , Cronk Q C B , Cunningham R , Davis J M , Degroeve S , Dejardin A , Depamphilis C W , Detter J C , Dirks B , Dubchak I , Duplessis S , Ehlting J , Ellis B E , Gendler K , Goodsterin D , Gribskov M , Grimwood J , Groover A , Gunter L E , Hamberger B , Heinze B , Helariutta Y , Henrisssat B , Holligan D , Holt R A , Huang W , Islamfaridi N , Jones S , Jonesrhoades J K , Jorgensen R , Joshi C P , Kangasjarvi J , Karlsson J , Kelleher C T , Kirkpatrick R , Kirst M , Kohler A , Kalluri U C , Larimer F W , Leebensmack J , Leple J C , Locascio P , Lou Y , Lucas S , Martin F , Montanini B , Napoli C , Nelson D R , Nelson C D , Nieminen K , Nilsson O , Pereda V , Peter G , Philippe R , Pilate G , Poliakov A , Razumovskaya J , Richardson P M , Rinaldi C , Ritland K , Rouze P , Ryaboy D , Schmutz J , Schrader J , Segerman B , Shin H , Siddiqui A , Sterky F , Terry A , Tsai C , Uberbacher E , Unneberg P , Vahala J , Wall K , Wessler S R , Yang G , Yin T , Douglas C J , Marra M A , Sandberg G , Peer Y V D , Rokhsar D S . The genome of black cottonwood, Populus trichocapa (Torr. & Gray). Science , 2006 , 313 ( 5793 ): 1596 – 1604
CrossRef Google scholar
[42]
Schnable P S , Ware D , Fulton R S , Stein J C , Wei F , Pasternak S , Liang C , Zhang J , Fulton L , Graves T , Minx P J , Reily A D , Courtney L , Kruchowski S S , Tomlinson C , Strong C , Delehaunty K D , Fronick C , Courtney B , Rock S M , Belter E A , Du F , Kim K , Abbott R , Cotton M , Levy A , Marchetto P , Ochoa K , Jackson S M , Gillam B , Chen W , Yan L , Higginbotham J , Cardenas M , Waligorski J , Applebaum E , Phelps L , Falcone J , Kanchi K L , Thane T , Scimone A , Thane N , Henke J , Wang T , Ruppert J , Shah N , Rotter K , Hodges J , Ingenthron E , Cordes M , Kohlberg S , Sgro J , Delgado B , Mead K , Chinwalla A T , Leonard S , Crouse K , Collura K , Kudrna D , Currie J , He R , Angelova A , Rajasekar S , Mueller T , Lomeli R , Scara G , Ko A , Delaney K , Wissotski M , Lopez G , Campos D , Braidotti M , Ashley E , Golser W , Kim H , Lee S , Lin J , Dujmic Z , Kim W , Talag J , Zuccolo A , Fan C , Sebastian A , Kramer M , Spiegel L , Nascimento L , Zutavern T , Miller B , Ambroise C , Muller S M , Spooner W , Narechania A , Ren L , Wei S , Kumari S , Faga B , Levy M J , Mcmahan L , Buren P V , Vaughn M W , Kai Y , Yeh C , Emrich S J , Jia Y , Kalyanaraman A , Hsia A , Barbazuk W B , Baucom R S , Brutnell T P , Carpita N C , Chaparro C , Chia J , Deragon J , Estill J C , Fu Y , Jeddeloh J A , han Y , Lee H , Li P , Lisch D , Liu S , Liu Z , Nagel D H , Mccann C M , Sanmiguel P , Myers A M , Nettleton D , Nguyen J , Penning B W , Ponnala L , Schneider K L , Schwartz D C , Sharma A , Soderlund C , Springer N M , Sun Q , Wang H , Waterman M S , Westerman R , Wolfgruber T K , Yang L , Yu Y , Zhang L , Zhou S , Zhu Q , Bennetzen J L , Dawe R K , Jiang J , Jiang N , Presting G G , Wessler S R , Aluru S , Martienssen R A , Clifton S W , Mccombie W R , Wing R A , Wilson R K . The B73 maize genome: complexity, diversity, and dynamics. Science , 2009 , 326 ( 5956 ): 1112 – 1115
CrossRef Google scholar
[43]
Bevan M W , Uauy C . Genomics reveals new landscapes for crop improvement. Genome Biology , 2013 , 14 ( 6 ): 206
CrossRef Google scholar
[44]
Ariyadasa R , Stein N . Advances in BAC-based physical mapping and map integration strategies in plants. Journal of Biomedicine & Biotechnology , 2012 , 2012 : 1 – 11
CrossRef Google scholar
[45]
Ha J , Abernathy B , Nelson W , Grant D , Wu X , Nguyen H T , Stacey G , Yu Y , Wing R A , Shoemaker R C , Jackson S A . Integration of the draft sequence and physical map as a framework for genomic research in soybean (Glycine max (L.) Merr.) and wild soybean (Glycine soja Sieb. and Zucc.). G3: Genes, Genomes, Genetics , 2012 , 2 ( 3 ): 321 – 329
[46]
Xu Z , Sun S , Covaleda L , Ding K , Zhang A , Wu C , Scheuring C F , Zhang H . Genome physical mapping with large-insert bacterial clones by fingerprint analysis: methodologies, source clone genome coverage, and contig map quality. Genomics , 2004 , 84 ( 6 ): 941 – 951
CrossRef Google scholar
[47]
Luo M , Thomas C , You F M , Hsiao J , Ouyang S , Buell C R , Malandro M E , Mcguire P E , Anderson O D , Dvorak J . High-throughput fingerprinting of bacterial artificial chromosomes using the SNaPshot labeling kit and sizing of restrictin fragments by capillary electrophoresis. Genomics , 2003 , 82 ( 3 ): 378 – 389
CrossRef Google scholar
[48]
Nelson W M , Bharti A K , Butler E , Wei F , Fuks G , Kim H , Wing R A , Messing J , Soderlund C . Whole-genome validation of high-information-content fingerprinting. Plant Physiology , 2005 , 139 ( 1 ): 27 – 38
CrossRef Google scholar
[49]
Zhang H , Zhao X , Ding X , Paterson A H , Wing R A . Preparation of megabase-size DNA from plant nuclei. Plant Journal , 1995 , 7 ( 1 ): 175 – 184
CrossRef Google scholar
[50]
Wu C , Xu Z , Zhang H . DNA libraries. In: Encyclopedia of Molecular Cell Biology and Molecular Medicine. Meyers RA (ed.). Vol. 3 (2nd Edition). Weinheim : Wiley-VCH Verlag GmbH , 2004 , 385 – 425
[51]
Ren C , Xu Z , Sun S , Lee M , Wu C , Scheuring C F , Zhang H . Genomic DNA Libraries and Physical Mapping. In: The Handbook of Plant Genome Mapping: Genetic and Physical Mapping. Meksem K and Kahl G (eds.). Weinheim : Wiley-VCH Verlag GmbH , 2005 , 173 – 213
[52]
Zhang M , Li Y , Zhang H . Isolation of megabase-sized DNA fragments from plants. In: Handbook of Nucleic Acid Purification. D. Liu (ed.) . Florida : Taylor & Francis Group, LLC , 2008 , 513 – 524
[53]
Sambrook J , Russell D W . Molecular cloning: a laboratory manual (3rd ed.) New York : Cold Spring Harbor Laboratory Press , 2001 , 1 – 68
[54]
Quiniou S M , Waldbieser G C , Duke M V . A first generation BAC-based physical map of the channel catfish genome. BMC Genomics , 2007 , 8 ( 1 ): 40
CrossRef Google scholar
[55]
Ewing B , Hillier L , Wendl M C , Green P . Base-calling of automated sequencer traces using Phred.I. Accuracy assessment. Genome Research , 1998 , 8 ( 3 ): 175 – 185
CrossRef Google scholar
[56]
Chou H , Holmes M H . DNA sequence quality trimming and vector removal. Bioinformatics , 2001 , 17 ( 12 ): 1093 – 1104
CrossRef Google scholar
[57]
Langmead B , Salzberg S L . Fast gapped-read alignment with Bowtie 2. Nature Methods , 2012 , 9 ( 4 ): 357 – 359
CrossRef Google scholar
[58]
Li H , Handsaker B , Wysoker A , Fennell T , Ruan J , Homer N , Marth G T , Abecasis G R , Durbin R . The Sequence Alignment/Map format and SAMtools. Bioinformatics) , 2009 , 25 ( 16 ): 2078 – 2079
CrossRef Google scholar
[59]
Conesa A , Götz S . Blast2GO: a comprehensive suite for functional analysis in plant genomics. International Journal of Plant Genomics , 2008 , 2008 : 1 – 12
CrossRef Google scholar
[60]
Wu C , Sun S , Nimmakayala P , Santos F A , Meksem K , Springman R , Ding K , Lightfoot D A , Zhang H A . BAC and BIBAC-based physical map of the soybean genome. Genome Research , 2004 , 14 ( 2 ): 319 – 326
CrossRef Google scholar
[61]
Mun J , Kwon S , Yang T , Kim H , Choi B , Baek S , Kim J S , Jin M , Kim J A , Lim M , Lee S I , Kim H , Kim H , Lim Y P , Park B . The first generation of a BAC-based physical map of Brassica rapa. BMC Genomics , 2008 , 9 ( 1 ): 280
CrossRef Google scholar
[62]
Coe E , Cone K , McMullen M , Chen S S , Davis G , Gardiner J , Liscum E , Polacco M , Paterson A , Sanchez-Villeda H , Soderlund C , Wing R . Access to the maize genome: an integrated physical and genetic map. Plant Physiology , 2002 , 128 ( 1 ): 9 – 12
CrossRef Google scholar
[63]
Kelleher C T , Chiu R , Shin H , Bosdet I E , Krzywinski M I , Fjell C D , Wilkin J , Yin T , DiFazio S P , Ali J , Asano J K , Chan S , Cloutier A , Girn N , Leach S , Lee D , Mathewson C A , Olson T , O’connor K , Prabhu A L , Smailus D E , Stott J M , Tsai M , Wye N H , Yang G S , Zhuang J , Holt R A , Putnam N H , Vrebalov J , Giovannoni J J , Grimwood J , Schmutz J , Rokhsar D , Jones S J , Marra M A , Tuskan G A , Bohlmann J , Ellis B E , Ritland K , Douglas C J , Schein J E . A physical map of the highly heterozygous Populus genome: integration with genome sequence and genetic map and analysis of haplotype variation. Plant Journal , 2007 , 50 ( 6 ): 1063 – 1078
CrossRef Google scholar
[64]
Han Y , Gasic K , Marron B M , Beever J E , Korban S S . A BAC-based physical map of the apple genome. Genomics , 2007 , 89 ( 5 ): 630 – 637
CrossRef Google scholar
[65]
Córdoba J M , Chavarro C , Rojas F , Muñoz C , Blair M W . Identification and mapping of simple sequence repeat markers from Common Bean ( Phaseolus vulgaris L.) bacterial artificial chromosome end sequences for genome characterization and genetic-physical map integration. Plant Genome , 2010 , 3 ( 3 ): 154 – 165
CrossRef Google scholar
[66]
Han Y , Chagné D , Gasic K , Rikkerink E H A , Beever J E , Gardiner S E , Korban S S . BAC-end sequence-based SNPs and Bin mapping for rapid integration of physical and genetic maps in apple. Genomics , 2009 , 93 ( 3 ): 282 – 288
CrossRef Google scholar
[67]
Ollitrault P , Terol J , Garcia-Lor A , Bérard A , Chauveau A , Froelicher Y , Belzile C , Morillon R , Navarro L , Brunel D , Talson M . SNP mining in C.clementina BAC end sequences; transferability in the Citrus genus (Rutaceae), phylogenetic inferences and perspectives for genetic mapping. BMC Genomics , 2012 , 13 ( 1 ): 13
CrossRef Google scholar
[68]
Shultz J L , Kazi S , Bashir R , Afzal J A , Lightfoot D A . The development of BAC-end sequenced-based microsatellite markers and placement in the physical and genetic maps of soybean. Theoretical and Applied Genetics , 2007 , 114 ( 6 ): 1081 – 1090
CrossRef Google scholar

Acknowledgements

This project was funded by the National Basic Research and Development Program (2010CB126600), China Agriculture Research System (CARS-12), and National International Science and Technology Cooperation Plan (2011DFB31690). Authors are grateful to bioinformatics researchers from the Cassava Genome Consortium for their help in integration of the BAC-based physical map with the assembled genome.

Compliance with ethics guidelines

Yuhua Fu, Zhiqiang Xia, Shujuan Wang, Xin Chen, Cheng Lu, Mingcheng Luo, Hongbin Zhang, and Wenquan Wang declare that they have no conflict of interest or financial conflicts to disclose.
This article does not contain any studies with human or animal subjects performed by any of the authors.

RIGHTS & PERMISSIONS

The Author(s) 2016. Published by Higher Education Press. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0)
AI Summary AI Mindmap
PDF(469 KB)

Accesses

Citations

Detail

Sections
Recommended

/