Critical roles of chemokines and cytokines in antiviral innate immune responses during rabies virus infection

Ying HUANG , Clement Wesley GNANADURAI , Zhenfang FU

Front. Agr. Sci. Eng. ›› 2017, Vol. 4 ›› Issue (3) : 260 -267.

PDF (441KB)
Front. Agr. Sci. Eng. ›› 2017, Vol. 4 ›› Issue (3) : 260 -267. DOI: 10.15302/J-FASE-2016116
REVIEW
REVIEW

Critical roles of chemokines and cytokines in antiviral innate immune responses during rabies virus infection

Author information +
History +
PDF (441KB)

Abstract

The innate immune response is the first line of defense against viral invasion and pro-inflammatory chemokines and cytokines have a critical function in the innate immune responses against virus infections. The ability of a rabies virus (RABV) to induce the expression of chemokines and cytokines can lead to viral clearance from the central nervous system (CNS), whereas the ability to evade such expression and activation contributes to virulence and pathogenicity. In this review, the crucial contribution of chemokines/cytokines to clearing RABV from the CNS is discussed, including recruiting leukocytes into the CNS, enhancement of blood brain barrier permeability and activation of various immune cells that are essential for viral clearance. In addition, recombinant RABV expressing cytokines and chemokines can induce elevated innate and adaptive immune responses which result in clearing an established wild-type RABV infection in the CNS.

Keywords

antiviral / blood brain barrier / chemokines and cytokines / innate immunity / rabies virus

Cite this article

Download citation ▾
Ying HUANG, Clement Wesley GNANADURAI, Zhenfang FU. Critical roles of chemokines and cytokines in antiviral innate immune responses during rabies virus infection. Front. Agr. Sci. Eng., 2017, 4(3): 260-267 DOI:10.15302/J-FASE-2016116

登录浏览全文

4963

注册一个新账户 忘记密码

Introduction

Rabies is one of the oldest human diseases with the highest fatality rate of all infectious diseases, and it still presents a public health threat, causing more than 55000 human deaths globally each year[1]. Rabies occurs in more than 150 countries and territories, mostly in Asian and Africa where animal vaccination is not extensively deployed[2]. The causative agent of rabies, rabies virus (RABV), is a member of the Lyssavirus genus in the Rhabdoviridae family. Its genome is a non-segmented negative strand of RNA and encodes five structural proteins in a highly conserved order of nucleoprotein, phosphoprotein, matrix protein, glycoprotein and the RNA-dependent RNA polymerase (also known as the large protein)[35]. Among these five structural proteins, glycoprotein is the only viral protein exposed on the surface of the virion[6], which is responsible for binding to neurospecific receptors for invasion into the nervous system[7,8]. Moreover, glycoprotein is the only viral protein capable of inducing virus-neutralizing antibodies (VNA) that are protective against rabies[911].

Wild-type (wt) RABV usually infects hosts at peripheral sites and migrates from motor or sensory nerves to the central nervous system (CNS) via retrograde axonal transport[12]. Once the virus gets into nervous system, it employs a series of strategies to evade the host immune responses[1317]. Preserving the integrity of infected neurons by limiting virus replication and subsequently reducing glycoprotein expression in the CNS is one of the mechanisms that contributes to wt RABV immune evasion[1820]. The evidence of limited viral replication was obtained in mouse neuroblastoma cells (MNA) or BSR cells infected with wt (DRV) or laboratory-attenuated (CVS-B2c) RABVs, and 2– to 3-log units less DRV than CVS-B2c was produced in mouse neuroblasma cells or BSR cells at 72 h post infection. Furthermore, immunohistochemistry straining for viral nucleoprotein and glycoprotein also revealed that significantly less viral antigens were present in the brain of mice infected with wt RABVs than when infected with laboratory-attenuated RABVs. The minimal level of virus replication and glycoprotein expression enables wt RABV to evade early detection by the host innate immune system, including pro-inflammatory cytokines or chemokines production, and benefits their survive and spread within the CNS[21]. Wt RABV induces recruitment of fewer inflammatory cells in the CNS by limiting the expression of cytokines or chemokines and maintaining the blood brain barrier (BBB) integrity[22]. Furthermore, wt RABV does not activate dendritic cells (DCs), the most efficient antigen-presenting cells (APC), and thereby does not induce adaptive immune responses[23]. It has been known for a long time that more than 70% human rabies patients do not develop VNA in the periphery as well as in the cerebrospinal fluid (CSF) at any stage. The same phenomenon, that wt RABV fails to induce protective VNA, is also observed in other animal species, such as mice, dogs and skunks[2426].

On the other hand, laboratory-attenuated RABV replicates rapidly and produces a large amount of the glycoprotein and induces strong innate and adaptive immune responses, such as extensive inflammation and neuronal apoptosis, expression of cytokines and chemokines, BBB permeability enhancement and DC activation as well as high level of VNA production[18,24,2732]. Numerous comparative studies performed in laboratory animals have suggested that the wt RABV evades, while laboratory-attenuated the RABV actives, the host innate immune responses[16,17,23,24,26,33].

The innate immune response is the first line of defense against viral invasion. Cells involved in the innate immune system utilize pattern recognition receptors to sense virus by engaging pathogen-associated molecular patterns[34]. This pattern recognition leads to the expression of pre-inflammatory cytokines/chemokines and costimulatory molecules that are the major contributors to virus elimination in absence of adaptive immunity[35].

Role of chemokines and cytokines in clearance of rabies virus from the central nervous system

The homeostasis between viral replication and host immune response predicts the clinical outcome of a viral infection. Immune recognition of viral antigens and its genome could initiate a rapid antiviral response mediated by chemokines and cytokines. The ability of a RABV to induce the expression of chemokines and cytokines can lead to virus clearance from the CNS, whereas the ability to evade their expression and activation contributes to virulence and pathogenicity[24,33,36,37]. Various studies utilizing laboratory-attenuate RABVs show that the induction of chemokines and cytokines has a crucial function in enhancing protective immunity and clearance of RABV from the CNS[3845] (Table 1). The application of genomic array technology has shown that the laboratory-attenuated RABV induces upregulation of a variety of genes involved in the innate immune and antiviral responses, especially those related to interferon (IFN)-a/b signaling pathways, such as interferon regulatory factors (IRF-1, 2 and 7), genes involved in inflammatory pathways including toll-like receptors (TLR) 1-3, complement cascade genes and pro-inflammatory chemokines and cytokines, including macrophage inflammatory protein (MIP)-1a, chemokine RANTES, chemokine CXCL10, interleukin (IL)-6 and IFN-g[24,37]. Similar study performed in raccoon (one of the primary hosts for rabies) found IFNs, IRF, TLR-3, tumor necrosis factor (TNF) receptor and IL-6 genes to be upregulated in RABV infection[46]. Further, studies conducted in mice using attenuated RABV, CVS-F3, showed that the differential upregulation of MIP-1b, TNF-a, IFN-g, and intercellular adhesion molecule 1 in the cerebellum and the cerebral cortex is key to the clearance of apathogenic RABV from the CNS[42], INF- g directly inhibits viral replication and regulates other chemokines that facilitate the loss of BBB integrity as well as immune cells invasion into CNS[42]. Thus, the induction of chemokines and cytokines and their role in orchestrating downstream immune events is a key feature in clearing RABV from the CNS. The crucial role of chemokines and cytokines in clearance of RABV from the CNS includes: 1) modulation of and leukocyte trafficking into the CNS, 2) enhancement of BBB permeability, 3) activation of various immune cells, which are essential for viral clearance and protection[3640].

The role of chemokines/cytokines in triggering leukocytes infiltration and central nervous system inflammation

In neurotropic virus infection, mononuclear leukocytes, monocytes and macrophages from the periphery can be recruited into the CNS once they are activated[47]. Laboratory-attenuated RABV was observed to induce numerous inflammatory cell infiltration into the CNS, including T cells, B cells, macrophages, and neutrophils[18,24,48], and this extensive infiltration is related to the high expression of chemokines and cytokines in the CNS. On the other hand, wt RABV infection fails to trigger sufficient pro-inflammatory chemokines and cytokines production, resulting in less cell infiltration and neuronal inflammation in the CNS[24,28,49].

Laboratory-attenuated RABV infection has been found to upregulate a variety of pro-inflammatory chemokines and cytokines in the CNS, such as CXCL10, CXCL9, CCL5, MIP-1a, IL-17, IL-6 and IFN-g[5052]. Among these, the highly expressed chemokine, CXCL10, initially induced by infected neuron cells, is the most prominently expressed chemokine in the CNS during laboratory-attenuated RABV infection[22,53]. Recently, Chai et al. showed the mechanism by which CXCL10 triggers T cells migration in RABV infection[53]. CXCL10 binds to its receptor, CXCR3, expressed on activated CD4+ Th1 cells to attract CXCR3+ CD4+ T cells infiltrating the CNS along the chemokine gradient and subsequently differentiating to IL-17-producing Th17 and IFN-g-producing Th1 cells. IFN-g secreted by Th1 cells further promotes the positive-feedback loop and amplifies CXCL10 production and CXCR3+ CD4 T cell infiltration[53]. Blocking CXCL10 with an anti-CXCL10 antibody dramatically reduces the Th17 infiltration numbers and decreases the IFN-g production[49,53]. CCL5 is another highly expressed chemokine and promotes leukocytes and macrophage migration into the CNS by binding its receptor CCR5 in laboratory-attenuated RABV infection, while blocking CCL5 with the CCL5 antagonist, Met-CCL5, dramatically reduced CD3+ T cell and macrophage infiltration in the CNS[54]. Although the mechanisms by which other inflammatory cells migrate into the CNS are not well understood in RABV infection, recent studies on recombinant RABVs expressing cytokines or chemokines (GM-CSF, MIP-1a or CCL5) suggest that the upregulation of chemokines and cytokines contributes to these inflammatory cell infiltration in the CNS[40,55,56].

The role of chemokines/cytokines in enhancing the blood brain barrier permeability

BBB is a dynamic barrier that regulates the movement of nutritional and toxic substances in and out of the CNS, and is crucial in maintaining a stable environment for the CNS[57]. Many viral infections can disrupt BBB integrity, such as herpes simplex virus 1, Japanese encephalitis virus, T cell leukemia virus, lymphocytic choriomeningitis virus, West Nile virus and mouse adenovirus type 1[5860]. While wt RABV infection does not alter the BBB permeability but finally leads to a lethal outcome[15,61]. The role of transient BBB enhancement and RABV clearance is evident from the study of Roy et al., where silver-haired bat RABV (SHBRV) infection in mice was lethal due to an intact BBB, although the functional immune responses (i.e., the production VNA and CD4+ and CD8+ T cells infiltration) to SHBRV develops in the periphery[61]. However, the lethal outcome of this SHBRV infection can be prevented by opening the BBB to facilitate the immune effectors infiltrating the CNS to clear RABV, thereby facilitating the survival of SHBRV infection[62]. Moreover, VNA administered in the periphery was unable to enter the CNS to clear wt RABV and failed to protect mice from rabies infection[63], while increasing the BBB permeability by administration of MCP-1 after VNA treatment improved the survival rate up to 80%, resulting in VNA entering into the CNS to clear RABV[63]. Together, these studies suggest that changes in BBB permeability are critical for surviving RABV infection.

On the other hand, laboratory-attenuated RABV infection has been demonstrated to enhance the permeability of the BBB[15,22,63]. One of the key mechanisms of BBB enhancement is the reduction of tight junction (TJ) proteins in brain microvascular endothelial cells (BMECs)[49,57]. One study showed that laboratory-attenuated RABV infection dramatically decreased the TJ protein expression, including claudin-5 and ZO-1, and enhanced the BBB permeability[64]. The BBB permeability enhancement corresponded to the reduction of TJ proteins[65]. However, the reduction in TJ protein expression was not directly due to infection with laboratory-attenuated RABV since neither laboratory-attenuated nor wt RABV are able to infect BMECsin vitro[49]. The brain extracts from mice infected with laboratory-attenuated RABV induce the disruption of TJ proteins[49], indicating that this is an induced rather than direct effect of the virus. Another study showed that laboratory-attenuated RABV-induced chemokines expression, such as CXCL10, CCL5 and MIP-1a, in parallel to changes in BBB permeability, suggesting cytokines and chemokines are important in BBB permeability enhancement in animals infected with laboratory-attenuated RABV[22].

The expression profile of chemokines/cytokines in laboratory-attenuated RABV infected CNS, determined using a cytokine/chemokine magnetic bead panel, showed that 25 out of 30 chemokines are highly upregulated, including CXCL10, CXCL9, CCL11, CXCL2, CXCL1-5,IFN-a, IFN-g, IL-1a, IL-17, IL-13, IL-12, IL-7, IL-6, IL-5, VEGF, CSF3, CSF2, CSF1, and LIF[22,49]. In addition, the ingenuity pathway analysis based on these molecules reveals IFN-g is in the center of the signaling network and directly links with many other chemokines/cytokines, such as CXCL10, CXCL9, CCL5, IL-17, IL-12, IL-6 and VEGF[49]. Moreover, silencing the IFN-g decreased the BBB permeability and increased the TJ protein expression[15], suggesting that the mechanism of BBB permeability enhancement is modulated by these cytokines/chemokines in an IFN-g dependent signaling pathway.

Also, CXCL10, the most highly upregulated chemokine after laboratory-attenuated RABV infection, was found to initiate the change of the BBB permeability (Fig. 1)[53]. CXCL10 is initially secreted by infected neurons, which can be detected as early as three days after laboratory-attenuated RABV infection, and then neuronal CXCL10 initiates the cascade to activate other CNS resident cells, such as microglia or astrocytes, to express more CXCL10 and other chemokines/cytokines[53]. CXCL10 functions to recruit the CXCR3+ CD4+ T cells trafficking into the CNS and subsequently differentiating into Th17 and Th1 cells[49,53]. Th17 cells produce IL-17 in the CNS that initiates the alteration of TJ proteins, resulting in the BBB permeability enhancement. Meanwhile, Th1 cells produce IFN-g that promotes the positive feedback to amplify CXCL10 production, which further boosts the TJ protein breakdown and subsequently enhances the BBB permeability[49,53]. Neutralizing CXCL10 in RABV infected mice using anti-CXCL10 antibody led to downregulation of IFN-g production, amelioration of TJ protein breakdown, and reduction of BBB permeability enhancement[53].

Evidence that rabies virus expression of chemokine/cytokine elicits superior immune response capable of clearing the virus from the central nervous system

The crucial role of chemokines or cytokines in wt-RABV clearance from CNS has been further demonstrated by recombinant RABVs expressing MIP-1a, GM-CSF or IFN-g[36]. RABV expressing MIP-1a induces an early, transient expression of MIP-1a at the inoculation site in mice and enhances the recruitment of antigen presenting DCs and antibody producing B cells in the lymph nodes, and infiltration of inflammatory cells into the CNS. MIP-1a (major chemoattractant) expressed by the recombinant RABV recruits and activates DCs and B cells in the draining lymph nodes and at the peripheral blood, resulting in the production of a high level of VNA and protection from lethal challenge[38].

Then cytokine GM-CSF regulates the production and functional activation of hemopoietic cells, such as monocyte/macrophages and APCs. Recombinant RABV expressing GM-CSF stimulates the activation of DCs, and B and T cells in the periphery, leading to robust production of VNA and strong protection against challenge with virulent RABV in mice and dogs. Furthermore, these recombinant RABVs administered intracerebrally were able to clear an established infection with wt RABV from the CNS and prevent mice from developing rabies[39,40]. The recombinant RABVs induced high levels of chemokine/cytokine expressions (MIP-1a, RANTES, CXCL10, MCP-1, IL-6 and IFN-g) in the CNS, infiltration of inflammatory and immune cells (such as neutrophils, activated microglia/macrophages and T cells) into the CNS, and enhancement of BBB permeability. Similarly, a recombinant RABV expressing dog GM-CSF was found to be efficient in recruitment and activation of DCs and B cells, induction of a high level of VNA production and protection against lethal challenge in dogs[67].

Although chemokines are crucial for RABV attenuation, various studies have shown the importance of interferons, particularly IFN-g, in RABV clearance from the CNS[4143]. To study the role of IFN-g in RABV attenuation and clearance, murine IFN-g gene have been cloned in the RABV genome. This incorporation of IFN-g led to attenuation of pathogenic RABV. Further investigation using knockout mice unable to signal through the type I IFN receptor indicated that the recombinant RABV expressing IFN-g strongly attenuates the pathogenicity via induction of type I IFN[68]. A subsequent study found that the incorporation of the murine IFN-g gene in a highly attenuated GAS backbone can enhance safety and immunogenicity[69].

Conclusions

The immune responses to infection differ between wt and laboratory-attenuated RABV. Comparative studies indicate that wt RABV evades, while laboratory-attenuated RABV activates innate immune responses. Chemokines and cytokines produced in RABV infection are crucial for RAVB clearance from the CNS through modulation of leukocyte recruitment into the CNS, enhancement of BBB permeability and activation of various immune cells that are essential for viral clearance and protection (Fig. 2). In RABV infection, chemokine CXCL10 initially produced by infected neurons activates other CNS resident cells, such as microglia and astrocytes to produce CXCL10 and other chemokines and cytokines, initiates infiltration by inflammatory cells and enhances the BBB permeability. Moreover, recombinant RABV expressing chemokines or cytokines induces strong innate and adaptive immune responses compared with their parental virus, resulting in increased cytokines and chemokines expression, further BBB permeability enhancement as well as higher VNA production to clear wt RABV rapidly from infected CNS.

Prospectives

Rabies is almost fatal once the virus entered into CNS, and no effective treatment is available once the clinical symptoms show. Maintaining the BBB integrity and failure of VNA production are two major reasons contributing to RABV fatality. Chemokines and cytokines are the initiators of the BBB permeability in RNBV infection, and using chemokines will be an effective clinical treatment for rabies to enhance the BBB permeability and let the immune effectors, especially VNA produced or administrated in periphery, enter the CNS for RABV clearance. In addition, recombinant RABVs expressing chemokines or cytokines will also be more efficacious rabies vaccines for prevention as well as for therapy.

References

[1]

Fu Z F. Rabies and rabies research: past, present and future. Vaccine199715: S20–S24

[2]

World Health Organization. WHO expert consultation on rabies: second report. World Health Organization Technical Report Series2013, (982): 1–139

[3]

Wunner W HLarson  J KDietzschold  BSmith C L . The molecular-biology of rabies viruses. Reviews of Infectious Diseases198810(Suppl 4): S771–S784

[4]

Chenik MChebli  KGaudin Y Blondel D In vivo interaction of rabies virus phosphoprotein (P) and nucleoprotein (N): existence of two N-binding sites on P protein. Journal of General Virology199475(11): 2889–2896

[5]

Albertini A A Ruigrok R W Blondel D . Rabies virus transcription and replication. Advances in Virus Research201179: 1–22

[6]

Cox J HDietzschold  BSchneider L G . Rabies virus glycoprotein. II. Biological and serological characterization. Infection and Immunity197716(3): 754–759

[7]

Lentz T LBurrage  T GSmith  A LTignor  G H. The acetylcholine receptor as a cellular receptor for rabies virus. Yale Journal of Biology and Medicine198356(4): 315–322

[8]

Thoulouze M I Lefage M Schacher M Hartmann U Cremer H Lafon M . The neural cell adhesion molecule is a receptor for rabies virus. Journal of Virology199872(9): 7181–7190

[9]

Benmansour ALeblois  HCoulon P Tuffereau C Gaudin Y Flamand A Lafay F . Antigenicity of rabies virus glycoprotein. Journal of Virology199165(8): 4198–4203

[10]

Lafon MWiktor  T JMacfarlan  R I. Antigenic sites on the CVS rabies virus glycoprotein: analysis with monoclonal antibodies. Journal of General Virology198364(4): 843–851

[11]

Dietzschold BWunner  W HWiktor  T JLopes  A DLafon  MSmith C L Koprowski H . Characterization of an antigenic determinant of the glycoprotein that correlates with pathogenicity of rabies virus. Proceedings of the National Academy of Sciences of the United States of America198380(1): 70–74

[12]

Tsiang HLycke  ECeccaldi P E Ermine A Hirardot X . The anterograde transport of rabies virus in rat sensory dorsal root ganglia neurons. Journal of General Virology198970(8): 2075–2085

[13]

Lafon M. Evasive strategies in rabies virus infection. Advances in Virus Research201179: 33–53

[14]

Masatani TIto  NIto Y Nakagawa K Abe MYamaoka  SOkadera K Sugiyama M . Importance of rabies virus nucleoprotein in viral evasion of interferon response in the brain. Microbiology and Immunology201357(7): 511–517

[15]

Roy AHooper  D C. Immune evasion by rabies viruses through the maintenance of blood-brain barrier integrity. Journal of Neurovirology200814(5): 401–411

[16]

Lafon MCalisher  C H, Griffin  D E. Subversive neuroinvasive strategy of rabies virus. Archives of Virology Supplementum200418 (18): 149–159

[17]

Wiktor T JDoherty  P CKoprowski  H. Suppression of cell-mediated-immunity by street rabies virus. Journal of Experimental Medicine1977145(6): 1617–1622

[18]

Zhang G QWang  HMahmood F Fu Z F . Rabies virus glycoprotein is an important determinant for the induction of innate immune responses and the pathogenic mechanisms. Veterinary Microbiology2013162(2–4): 601–613

[19]

Prehaud CLay  SDietzschold B Lafon M . Glycoprotein of nonpathogenic rabies viruses is a key determinant of human cell apoptosis. Journal of Virology200377(19): 10537–10547

[20]

Yan X ZMohankumar  P SDietzschold  BSchnell M J Fu Z F . The rabies virus glycoprotein determines the distribution of different rabies virus strains in the brain. Journal of Neurovirology20028(4): 345–352

[21]

Dietzschold BLi  JFaber M Schnell M . Concepts in the pathogenesis of rabies. Future Virology20083(5): 481–490

[22]

Kuang YLackay  S NZhao  LFu Z F . Role of chemokines in the enhancement of BBB permeability and inflammatory infiltration after rabies virus infection. Virus Research2009144(1–2): 18–26

[23]

Yang YHuang  YGnanadurai C W Cao SLiu  XCui M Fu Z F . The inability of wild-type rabies virus to activate dendritic cells is dependent on the glycoprotein and correlates with its low level of the de novo synthesized leader RNA. Journal of Virology201589(4): 2157–2169

[24]

Wang Z WSarmento  LWang Y Li X Q Dhingra V Tseggai T Jiang B Fu Z F . Attenuated rabies virus activates, while pathogenic rabies virus evades, the host innate immune responses in the central nervous system. Journal of Virology200579(19): 12554–12565

[25]

Tolson N DCharlton  K MLawson  K FCampbell  J BStewart  R B. Studies of Era/Bhk-21 rabies vaccine in skunks and mice. Canadian Journal of Veterinary Research198852(1): 58–62

[26]

Gnanadurai C W Yang YHuang  YLi Z Leyson C M Cooper T L Platt S R Harvey S B Hooper D C Faber M Fu Z F . Differential host immune responses after infection with wild-type or lab-attenuated rabies viruses in dogs. PLoS Neglected Tropical Diseases20159(8): e0004023

[27]

Baloul LCamelo  SLafon M . Up-regulation of Fas ligand (FasL) in the central nervous system: a mechanism of immune evasion by rabies virus. Journal of Neurovirology200410(6): 372–382

[28]

Baloul LLafon  M. Apoptosis and rabies virus neuroinvasion. Biochimie200385(8): 777–788

[29]

Boujrad HGubkina  ORobert N Krantic S Susin S A . AIF-mediated programmed necrosis: a highly regulated way to die. Cell Cycle20076(21): 2612–2619

[30]

Faber MPulmanausahakul  RHodawadekar S S Spitsin S McGettigan J P Schnell M J Dietzschold B . Overexpression of the rabies virus glycoprotein results in enhancement of apoptosis and antiviral immune response. Journal of Virology200276(7): 3374–3381

[31]

Sarmento LLi  X QHowerth  EJackson A C Fu Z F . Glycoprotein-mediated induction of apoptosis limits the spread of attenuated rabies viruses in the central nervous system of mice. Journal of Neurovirology200511(6): 571–581

[32]

Sarmento LTseggai  TDhingra V Fu Z F . Rabies virus-induced apoptosis involves caspase-dependent and caspase-independent pathways. Virus Research2006121(2): 144–151

[33]

Miyamoto KMatsumot  S. Comparative studies between pathogenesis of street and fixed rabies infection. Journal of Experimental Medicine1967125(3): 447–456

[34]

Thompson M RKaminski  J JKurt-Jones  E AFitzgerald  K A. Pattern recognition receptors and the innate immune response to viral infection. Viruses20113(6): 920–940 doi:10.3390/v3060920

[35]

Lawrence T MHudacek  A Wde Zoete  M RFlavell  R ASchnell  M J. Rabies virus is recognized by the NLRP3 inflammasome and activates interleukin-1b release in murine dendritic cells. Journal of Virology201387(10): 5848–5857

[36]

Niu X FWang  H LFu  Z F. Role of chemokines in rabies pathogenesis and protection. Advances in Virus Research201179: 73–89

[37]

Kuang YLackay  S NZhao  LFu Z F . Role of chemokines in the enhancement of BBB permeability and inflammatory infiltration after rabies virus infection. Virus Research2009144(1–2): 18–26

[38]

Zhao LToriumi  HWang H Kuang Y Guo XMorimoto  KFu Z F . Expression of MIP-1α (CCL3) by a recombinant rabies virus enhances its immunogenicity by inducing innate immunity and recruiting dendritic cells and B cells. Journal of Virology201084(18): 9642–9648

[39]

Zhou MZhang  GRen G Gnanadurai C W Li ZChai  QYang Y Leyson C M Wu WCui  MFu Z F . Recombinant rabies viruses expressing GM-CSF or flagellin are effective vaccines for both intramuscular and oral immunizations. PLoS One20138(5): e63384

[40]

Wen Y JWang  HWu H Yang FTripp  R AHogan  R JFu  Z F. Rabies virus expressing dendritic cell-activating molecules enhances the innate and adaptive immune response to vaccination. Journal of Virology201185(4): 1634–1644

[41]

Hooper D CMorimoto  KBette M Weihe E Koprowski H Dietzschold B . Collaboration of antibody and inflammation in clearance of rabies virus from the central nervous system. Journal of Virology199872(5): 3711–3719

[42]

Phares T WKean  R BMikheeva  THooper D C . Regional differences in blood-brain barrier permeability changes and inflammation in the apathogenic clearance of virus from the central nervous system. Journal of Immunology (Baltimore, Md.: 1950)2006176(12): 7666–7675

[43]

Hooper D CRoy  AKean R B Phares T W Barkhouse D A . Therapeutic immune clearance of rabies virus from the CNS. Future Virology20116(3): 387–397

[44]

Gomme E AWirblich  CAddya S Rall G F Schnell M J . Immune clearance of attenuated rabies virus results in neuronal survival with altered gene expression. PLoS Pathogens20128(10): e1002971

[45]

Faber MLi  JKean R B Hooper D C Alugupalli K R Dietzschold B . Effective preexposure and postexposure prophylaxis of rabies with a highly attenuated recombinant rabies virus. Proceedings of the National Academy of Sciences of the United States of America2009106(27): 11300–11305

[46]

Srithayakumar VSribalachandran  HRosatte R Nadin-Davis S A Kyle C J . Innate immune responses in raccoons after raccoon rabies virus infection. Journal of General Virology201495(Pt_1): 16–25

[47]

Engelhardt B. The blood-central nervous system barriers actively control immune cell entry into the central nervous system. Current Pharmaceutical Design200814(16): 1555–1565

[48]

Hooper D CPhares  T WFabis  M JRoy  A. The production of antibody by invading B cells is required for the clearance of rabies virus from the central nervous system. PLoS Neglected Tropical Diseases20093(10): e535

[49]

Chai QHe  W QZhou  MLu H Fu Z F . Enhancement of blood-brain barrier permeability and reduction of tight junction protein expression are modulated by chemokines/cytokines induced by rabies virus infection. Journal of Virology201488(9): 4698–4710

[50]

Johnson NMcKimmie  C SMansfield  K LWakeley  P RBrookes  S MFazakerley  J KFooks  A R. Lyssavirus infection activates interferon gene expression in the brain. Journal of General Virology200687(9): 2663–2667

[51]

Nakamichi KInoue  STakasaki T Morimoto K Kurane I . Rabies virus stimulates nitric oxide production and CXC chemokine ligand 10 expression in macrophages through activation of extracellular signal-regulated kinases 1 and 2. Journal of Virology200478(17): 9376–9388

[52]

Prehaud CMégret  FLafage M Lafon M . Virus infection switches TLR-3-positive human neurons to become strong producers of beta interferon. Journal of Virology200579(20): 12893–12904

[53]

Chai QShe  RHuang Y Fu Z F . Expression of neuronal CXCL10 induced by rabies virus infection initiates infiltration of inflammatory cells, production of chemokines and cytokines, and enhancement of blood-brain barrier permeability. Journal of Virology201589(1): 870–876

[54]

Huang YJiao  STao X Tang QJiao  WXiao J Xu XZhang  YLiang G Wang H. Met-CCL5 represents an immunotherapy strategy to ameliorate rabies virus infection. Journal of Neuroinflammation201411(1): 146

[55]

Zhao LToriumi  HWang H Kuang Y Guo XMorimoto  KFu Z F . Expression of MIP-1α (CCL3) by a recombinant rabies virus enhances its immunogenicity by inducing innate immunity and recruiting dendritic cells and B cells. Journal of Virology201084(18): 9642–9648

[56]

Zhao LToriumi  HKuang Y Chen HFu  Z F. The roles of chemokines in rabies virus infection: overexpression may not always be beneficial. Journal of Virology200983(22): 11808–11818

[57]

Liu W YWang  Z BZhang  L CWei  XLi L . Tight junction in blood-brain barrier: an overview of structure, regulation, and regulator substances. CNS Neuroscience & Therapeutics201218(8): 609–615

[58]

Strazza MPirrone  VWigdahl B Nonnemacher M R . Breaking down the barrier: The effects of HIV-1 on the blood-brain barrier. Brain Research20111399: 96–115

[59]

Gralinski L E Ashley S L Dixon S D Spindler K R . Mouse adenovirus type 1-induced breakdown of the blood-brain barrier. Journal of Virology200983(18): 9398–9410

[60]

Afonso P VOzden  SCumont M C Seilhean D Cartier L Rezaie P Mason S Lambert S Huerre M Gessain A Couraud P O Pique C Ceccaldi P E Romero I A . Alteration of blood-brain barrier integrity by retroviral infection. PLoS Pathogens20084(11): e1000205

[61]

Roy APhares  T WKoprowski  HHooper D C . Failure to open the blood-brain barrier and deliver immune effectors to central nervous system tissues leads to the lethal outcome of silver-haired bat rabies virus infection. Journal of Virology200781(3): 1110–1118

[62]

Roy AHooper  D C. Lethal silver-haired bat rabies virus infection can be prevented by opening the blood-brain barrier. Journal of Virology200781(15): 7993–7998

[63]

Huang C TLi  ZHuang Y Zhang G Zhou MChai  QWu H Fu Z F . Enhancement of blood-brain barrier permeability is required for intravenously administered virus neutralizing antibodies to clear an established rabies virus infection from the brain and prevent the development of rabies in mice. Antiviral Research2014110: 132–141

[64]

Spindler K RHsu  T H. Viral disruption of the blood-brain barrier. Trends in Microbiology201220(6): 282–290

[65]

Rubin L LStaddon  J M. The cell biology of the blood-brain barrier. Annual Review of Neuroscience199922(1): 11–28

[66]

Gnanadurai C W Fu Z F . CXCL10 and blood-brain barrier modulation in rabies virus infection. Oncotarget20167(10): 10694–10695

[67]

Zhou MWang  LZhou S Wang ZRuan  JTang L Jia ZCui  MZhao L Fu Z F . Recombinant rabies virus expressing dog GM-CSF is an efficacious oral rabies vaccine for dogs. Oncotarget20156(36): 38504–38516

[68]

Barkhouse D A Garcia S A Bongiorno E K Lebrun A Faber M Hooper D C . Expression of interferon gamma by a recombinant rabies virus strongly attenuates the pathogenicity of the virus via induction of type I interferon. Journal of Virology201589(1): 312–322

[69]

Barkhouse D A Faber M Hooper D C . Pre- and post-exposure safety and efficacy of attenuated rabies virus vaccines are enhanced by their expression of IFN gamma. Virology2015474: 174–180

RIGHTS & PERMISSIONS

The Author(s) 2016. Published by Higher Education Press. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0)

AI Summary AI Mindmap
PDF (441KB)

8606

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/