Autophagy and the nutritional signaling pathway

Long HE, Shabnam ESLAMFAM, Xi MA, Defa LI

PDF(291 KB)
PDF(291 KB)
Front. Agr. Sci. Eng. ›› 2016, Vol. 3 ›› Issue (3) : 222-230. DOI: 10.15302/J-FASE-2016106
REVIEW
REVIEW

Autophagy and the nutritional signaling pathway

Author information +
History +

Abstract

During their growth and development, animals adapt to tremendous changes in order to survive. These include responses to both environmental and physiological changes and autophagy is one of most important adaptive and regulatory mechanisms. Autophagy is defined as an autolytic process to clear damaged cellular organelles and recycle the nutrients via lysosomic degradation. The process of autophagy responds to special conditions such as nutrient withdrawal. Once autophagy is induced, phagophores form and then elongate and curve to form autophagosomes. Autophagosomes then engulf cargo, fuse with endosomes, and finally fuse with lysosomes for maturation. During the initiation process, the ATG1/ULK1 (unc-51-like kinase 1) and VPS34 (which encodes a class III phosphatidylinositol (PtdIns) 3-kinase) complexes are critical in recruitment and assembly of other complexes required for autophagy. The process of autophagy is regulated by autophagy related genes (ATGs). Amino acid and energy starvation mediate autophagy by activating mTORC1 (mammalian target of rapamycin) and AMP-activated protein kinase (AMPK). AMPK is the energy status sensor, the core nutrient signaling component and the metabolic kinase of cells. This review mainly focuses on the mechanism of autophagy regulated by nutrient signaling especially for the two important complexes, ULK1 and VPS34.

Keywords

Autophagy / ULK1 complex / VPS34 complex / AMPK / mTOR / nutrient signaling

Cite this article

Download citation ▾
Long HE, Shabnam ESLAMFAM, Xi MA, Defa LI. Autophagy and the nutritional signaling pathway. Front. Agr. Sci. Eng., 2016, 3(3): 222‒230 https://doi.org/10.15302/J-FASE-2016106

References

[1]
Xie Z, Klionsky D J. Autophagosome formation: core machinery and adaptations. Nature Cell Biology, 2007, 9(10): 1102–1109
CrossRef Google scholar
[2]
Mizushima N, Levine B, Cuervo A M, Klionsky D J. Autophagy fights disease through cellular self-digestion. Nature, 2008, 451(7182): 1069–1075
CrossRef Google scholar
[3]
Renna M, Bento C F, Ghislat G, Puri C, Ashkenazi A, Vicinanza M, Menzies F M, Rubinsztein D C. Mammalian autophagy-how does it work? Annual Review of Biochemistry, 2016 (first published online)
[4]
Kamada Y, Funakoshi T, Shintani T, Nagano K, Ohsumi M, Ohsumi Y. Tor-mediated induction of autophagy via an Apg1 protein kinase complex. Journal of Cell Biology, 2000, 150(6): 1507–1513
CrossRef Google scholar
[5]
Kim J, Kim Y C, Fang C, Russell R C, Kim J H, Fan W, Liu R, Zhong Q, Guan K L. Differential regulation of distinct Vps34 complexes by AMPK in nutrient stress and autophagy. Cell, 2013, 152(1–2): 290–303
CrossRef Google scholar
[6]
Kuma A, Hatano M, Matsui M, Yamamoto A, Nakaya H, Yoshimori T, Ohsumi Y, Tokuhisa T, Mizushima N. The role of autophagy during the early neonatal starvation period. Nature, 2004, 432(7020): 1032–1036
CrossRef Google scholar
[7]
Zhang S, Li X, Li L, Yan X. Autophagy up-regulation by early weaning in the liver, spleen and skeletal muscle of piglets. British Journal of Nutrition, 2011, 106(2): 213–217
CrossRef Google scholar
[8]
Kuma A, Hatano M, Matsui M, Yamamoto A, Nakaya H, Yoshimori T, Ohsumi Y, Tokuhisa T, Mizushima N. The role of autophagy during the early neonatal starvation period. Nature, 2004, 432(7020): 1032–1036
CrossRef Google scholar
[9]
Komatsu M, Waguri S, Ueno T, Iwata J, Murata S, Tanida I, Ezaki J, Mizushima N, Ohsumi Y, Uchiyama Y, Kominami E, Tanaka K, Chiba T. Impairment of starvation-induced and constitutive autophagy in Atg7-deficient mice. Journal of Cell Biology, 2005, 169(3): 425–434
CrossRef Google scholar
[10]
Rabinowitz J D, White E. Autophagy and metabolism. Science, 2010, 330(6009): 1344–1348
CrossRef Google scholar
[11]
Deretic V, Levine B. Autophagy, immunity, and microbial adaptations. Cell Host & Microbe, 2009, 5(6): 527–549
CrossRef Google scholar
[12]
Levine B, Mizushima N, Virgin H W. Autophagy in immunity and inflammation. Nature, 2011, 469(7330): 323–335
CrossRef Google scholar
[13]
Jia K, Thomas C, Akbar M, Sun Q, Adams-Huet B, Gilpin C, Levine B. Autophagy genes protect against Salmonella typhimurium infection and mediate insulin signaling-regulated pathogen resistance. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(34): 14564–14569
CrossRef Google scholar
[14]
Kuballa P, Huett A, Rioux J D, Daly M J, Xavier R J. Impaired autophagy of an intracellular pathogen induced by a Crohn’s disease associated ATG16L1 variant. PLoS ONE, 2008, 3(10): e3391
CrossRef Google scholar
[15]
Wild P, Farhan H, McEwan D G, Wagner S, Rogov V V, Brady N R, Richter B, Korac J, Waidmann O, Choudhary C, Dötsch V, Bumann D, Dikic I. Phosphorylation of the autophagy receptor optineurin restricts Salmonella growth. Science, 2011, 333(6039): 228–233
CrossRef Google scholar
[16]
Benjamin J L, Sumpter R Jr, Levine B, Hooper L V. Intestinal epithelial autophagy is essential for host defense against invasive bacteria. Cell Host & Microbe, 2013, 13(6): 723–734
CrossRef Google scholar
[17]
Ravikumar B, Moreau K, Jahreiss L, Puri C, Rubinsztein D C. Plasma membrane contributes to the formation of pre-autophagosomal structures. Nature Cell Biology, 2010, 12(8): 747–757
CrossRef Google scholar
[18]
Yamamoto A, Masaki R, Tashiro Y. Characterization of the isolation membranes and the limiting membranes of autophagosomes in rat hepatocytes by lectin cytochemistry. Journal of Histochemistry and Cytochemistry, 1990, 38(4): 573–580
CrossRef Google scholar
[19]
Suzuki K, Kirisako T, Kamada Y, Mizushima N, Noda T, Ohsumi Y. The pre-autophagosomal structure organized by concerted functions of APG genes is essential for autophagosome formation. EMBO Journal, 2001, 20(21): 5971–5981
CrossRef Google scholar
[20]
Itakura E, Mizushima N. Characterization of autophagosome formation site by a hierarchical analysis of mammalian Atg proteins. Autophagy, 2010, 6(6): 764–776
CrossRef Google scholar
[21]
Simonsen A, Stenmark H. Self-eating from an ER-associated cup. Journal of Cell Biology, 2008, 182(4): 621–622
CrossRef Google scholar
[22]
Noda T, Kim J, Huang W, Baba M, Tokunaga C, Ohsumi Y, Klionsky D J. Apg9p/Cvt7p is an integral membrane protein required for transport vesicle formation in the Cvt and autophagy pathways. Journal of Cell Biology, 2000, 148(3): 465–480
CrossRef Google scholar
[23]
Reggiori F, Shintani T, Chong H, Nair U, Klionsky D J. Atg9 cycles between mitochondria and the pre-autophagosomal structure in yeasts. Autophagy, 2005, 1(2): 101–109
CrossRef Google scholar
[24]
Guan J, Stromhaug P E, George M D, Habibzadegah-Tari P, Bevan A, Dunn W A Jr, Klionsky D J. Cvt18/Gsa12 is required for cytoplasm-to-vacuole transport, pexophagy, and autophagy in Saccharomyces cerevisiae and Pichia pastoris. Molecular Biology of the Cell, 2001, 12(12): 3821–3838
CrossRef Google scholar
[25]
Matsuura A, Tsukada M, Wada Y, Ohsumi Y. Apg1p, a novel protein kinase required for the autophagic process in Saccharomyces cerevisiae. Gene, 1997, 192(2): 245–250
CrossRef Google scholar
[26]
Kirisako T, Ichimura Y, Okada H, Kabeya Y, Mizushima N, Yoshimori T, Ohsumi M, Takao T, Noda T, Ohsumi Y. The reversible modification regulates the membrane-binding state of Apg8/Aut7 essential for autophagy and the cytoplasm to vacuole targeting pathway. Journal of Cell Biology, 2000, 151(2): 263–276
CrossRef Google scholar
[27]
Mizushima N, Kuma A, Kobayashi Y, Yamamoto A, Matsubae M, Takao T, Natsume T, Ohsumi Y, Yoshimori T. Mouse Apg16L, a novel WD-repeat protein, targets to the autophagic isolation membrane with the Apg12-Apg5 conjugate. Journal of Cell Science, 2003, 116(9): 1679–1688
CrossRef Google scholar
[28]
Kabeya Y, Mizushima N, Ueno T, Yamamoto A, Kirisako T, Noda T, Kominami E, Ohsumi Y, Yoshimori T. LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO Journal, 2000, 19(21): 5720–5728
CrossRef Google scholar
[29]
Mizushima N, Yamamoto A, Hatano M, Kobayashi Y, Kabeya Y, Suzuki K, Tokuhisa T, Ohsumi Y, Yoshimori T. Dissection of autophagosome formation using Apg5-deficient mouse embryonic stem cells. Journal of Cell Biology, 2001, 152(4): 657–668
CrossRef Google scholar
[30]
Kim J, Kamada Y, Stromhaug P E, Guan J, Hefner-Gravink A, Baba M, Scott S V, Ohsumi Y, Dunn W A Jr, Klionsky D J. Cvt9/Gsa9 functions in sequestering selective cytosolic cargo destined for the vacuole. Journal of Cell Biology, 2001, 153(2): 381–396
CrossRef Google scholar
[31]
Takáts S, Nagy P, Varga Á, Pircs K, Kárpáti M, Varga K, Kovács A L, Hegedűs K, Juhász G. Autophagosomal Syntaxin17-dependent lysosomal degradation maintains neuronal function in Drosophila. Journal of Cell Biology, 2013, 201(4): 531–539
CrossRef Google scholar
[32]
Atlashkin V, Kreykenbohm V, Eskelinen E L, Wenzel D, Fayyazi A, Fischer von Mollard G. Deletion of the SNARE vti1b in mice results in the loss of a single SNARE partner, syntaxin 8. Molecular and Cellular Biology, 2003, 23(15): 5198–5207
CrossRef Google scholar
[33]
Fader C M, Sánchez D G, Mestre M B, Colombo M I. TI-VAMP/VAMP7 and VAMP3/cellubrevin: two v-SNARE proteins involved in specific steps of the autophagy/multivesicular body pathways. Biochimica et Biophysica Acta, 2009, 1793(12): 1901–1916
CrossRef Google scholar
[34]
Itakura E, Kishi-Itakura C, Mizushima N. The hairpin-type tail-anchored SNARE syntaxin 17 targets to autophagosomes for fusion with endosomes/lysosomes. Cell, 2012, 151(6): 1256–1269
CrossRef Google scholar
[35]
Diao J, Liu R, Rong Y, Zhao M, Zhang J, Lai Y, Zhou Q, Wilz L M, Li J, Vivona S, Pfuetzner R A, Brunger A T, Zhong Q. ATG14 promotes membrane tethering and fusion of autophagosomes to endolysosomes. Nature, 2015, 520(7548): 563–566
CrossRef Google scholar
[36]
Razi M, Chan E Y, Tooze S A. Early endosomes and endosomal coatomer are required for autophagy. Journal of Cell Biology, 2009, 185(2): 305–321
CrossRef Google scholar
[37]
Lee J A, Beigneux A, Ahmad S T, Young S G, Gao F B. ESCRT-III dysfunction causes autophagosome accumulation and neurodegeneration. Current Biology, 2007, 17(18): 1561–1567
CrossRef Google scholar
[38]
Nickerson D P, Brett C L, Merz A J. Vps-C complexes: gatekeepers of endolysosomal traffic. Current Opinion in Cell Biology, 2009, 21(4): 543–551
CrossRef Google scholar
[39]
Eskelinen E L, Illert A L, Tanaka Y, Schwarzmann G, Blanz J, von Figura K, Saftig P. Role of LAMP-2 in lysosome biogenesis and autophagy. Molecular Biology of the Cell, 2002, 13(9): 3355– 3368
CrossRef Google scholar
[40]
Hyttinen J M T, Niittykoski M, Salminen A, Kaarniranta K. Maturation of autophagosomes and endosomes: a key role for Rab7. Biochimica et Biophysica Acta, 2013, 1833(3): 503–510
[41]
Liang C, Lee J S, Inn K S, Gack M U, Li Q, Roberts E A, Vergne I, Deretic V, Feng P, Akawa C, Jung J U. Beclin1-binding UVRAG targets the class C Vps complex to coordinate autophagosome maturation and endocytic trafficking. Nature Cell Biology, 2008, 10(7): 776–787
CrossRef Google scholar
[42]
Matsunaga K, Saitoh T, Tabata K, Omori H, Satoh T, Kurotori N, Maejima I, Shirahama-Noda K, Ichimura T, Isobe T, Akira S, Noda T, Yoshimori T. Two Beclin 1-binding proteins, Atg14L and Rubicon, reciprocally regulate autophagy at different stages. Nature Cell Biology, 2009, 11(4): 385–396
CrossRef Google scholar
[43]
Chen D, Fan W, Lu Y, Ding X, Chen S, Zhong Q. A mammalian autophagosome maturation mechanism mediated by TECPR1 and the Atg12-Atg5 conjugate. Molecular Cell, 2012, 45(5): 629–641
CrossRef Google scholar
[44]
Jewell J L, Russell R C, Guan K L. Amino acid signalling upstream of mTOR. Nature Reviews Molecular Cell Biology, 2013, 14(3): 133–139
CrossRef Google scholar
[45]
Avruch J, Long X, Ortiz-Vega S, Rapley J, Papageorgiou A, Dai N. Amino acid regulation of TOR complex 1. American Journal of Physiology: Endocrinology and Metabolism, 2009, 296(4): 592–602
CrossRef Google scholar
[46]
Oshiro N, Takahashi R, Yoshino K I, Tanimura K, Nakashima A, Eguchi S, Miyamoto T, Hara K, Takehana K, Avruch J, Kikkawa U, Yonezawa K. The proline-rich Akt substrate of 40 kDa (PRAS40) is a physiological substrate of mammalian target of rapamycin complex 1. Journal of Biological Chemistry, 2007, 282(28): 20329–20339
CrossRef Google scholar
[47]
Laplante M, Sabatini D M. mTOR signaling in growth control and disease. Cell, 2012, 149(2): 274–293
CrossRef Google scholar
[48]
Hardie D G. AMP-activated protein kinase—an energy sensor that regulates all aspects of cell function. Genes & Development, 2011, 25(18): 1895–1908
CrossRef Google scholar
[49]
Habets D D, Coumans W A, El Hasnaoui M, Zarrinpashneh E, Bertrand L, Viollet B, Kiens B, Jensen T E, Richter E A, Bonen A, Glatz J F. Crucial role for LKB1 to AMPKa2 axis in the regulation of CD36-mediated long-chain fatty acid uptake into cardiomyocytes. Biochimica et Biophysica Acta, 2009, 1791(3): 212–219
CrossRef Google scholar
[50]
Winder W W, Holmes B F, Rubink D S, Jensen E B, Chen M, Holloszy J O. Activation of AMP-activated protein kinase increases mitochondrial enzymes in skeletal muscle. Journal of Applied Physiology, 2000, 88(6): 2219–2226
[51]
Cantó C, Gerhart-Hines Z, Feige J N, Lagouge M, Noriega L, Milne J C, Elliott P J, Puigserver P, Auwerx J. AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity. Nature, 2009, 458(7241): 1056–1060
CrossRef Google scholar
[52]
Ganley I G, Lam D H, Wang J, Ding X, Chen S, Jiang X. ULK1–ATG13–FIP200 complex mediates mTOR signaling and is essential for autophagy. Journal of Biological Chemistry, 2009, 284(18): 12297–12305
CrossRef Google scholar
[53]
Papinski D, Kraft C. Regulation of autophagy by signaling through the Atg1/ULK1 complex. Journal of Molecular Biology, 2016, 428(9): 1725–1741
CrossRef Google scholar
[54]
Ktistakis N T, Tooze S A. Digesting the expanding mechanisms of autophagy. Trends in Cell Biology, 2016, (first published online)
CrossRef Google scholar
[55]
Reggiori F, Tucker K A, Stromhaug P E, Klionsky D J. The Atg1-Atg13 complex regulates Atg9 and Atg23 retrieval transport from the pre-autophagosomal structure. Developmental Cell, 2004, 6(1): 79–90
CrossRef Google scholar
[56]
Kamada Y, Funakoshi T, Shintani T, Nagano K, Ohsumi M, Ohsumi Y. Tor-mediated induction of autophagy via an Apg1 protein kinase complex. Journal of Cell Biology, 2000, 150(6): 1507–1513
CrossRef Google scholar
[57]
Chan E Y, Longatti A, McKnight N C, Tooze S A. Kinase-inactivated ULK proteins inhibit autophagy via their conserved C-terminal domains using an Atg13-independent mechanism. Molecular and Cellular Biology, 2009, 29(1): 157–171
CrossRef Google scholar
[58]
Noda N N, Mizushima N. Atg101: not just an accessory subunit in the autophagy-initiation complex. Cell Structure and Function, 2016, 41(1): 13–20
CrossRef Google scholar
[59]
Mercer C A, Kaliappan A, Dennis P B. A novel, human Atg13 binding protein, Atg101, interacts with ULK1 and is essential for macroautophagy. Autophagy, 2009, 5(5): 649–662
CrossRef Google scholar
[60]
Hara T, Takamura A, Kishi C, Iemura S I, Natsume T, Guan J L, Mizushima N. FIP200, a ULK-interacting protein, is required for autophagosome formation in mammalian cells. Journal of Cell Biology, 2008, 181(3): 497–510
CrossRef Google scholar
[61]
Mizushima N. The role of the Atg1/ULK1 complex in autophagy regulation. Current Opinion in Cell Biology, 2010, 22(2): 132–139
CrossRef Google scholar
[62]
Hosokawa N, Hara T, Kaizuka T, Kishi C, Takamura A, Miura Y, Iemura S I, Natsume T, Takehana K, Yamada N, Guan J L, Oshiro N, Mizushima N. Nutrient-dependent mTORC1 association with the ULK1-Atg13–FIP200 complex required for autophagy. Molecular Biology of the Cell, 2009, 20(7): 1981–1991
CrossRef Google scholar
[63]
Jung C H, Ro S H, Cao J, Otto N M, Kim D H. mTOR regulation of autophagy. FEBS Letters, 2010, 584(7): 1287–1295
CrossRef Google scholar
[64]
Shintani T, Klionsky D J. Autophagy in health and disease: a double-edged sword. Science, 2004, 306(5698): 990–995
CrossRef Google scholar
[65]
Kim J, Kundu M, Viollet B, Guan K L. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nature Cell Biology, 2011, 13(2): 132–141
CrossRef Google scholar
[66]
Hardie D G. AMP-activated protein kinase-an energy sensor that regulates all aspects of cell function. Genes & Development, 2011, 25(18): 1895–1908
CrossRef Google scholar
[67]
Nazio F, Strappazzon F, Antonioli M, Bielli P, Cianfanelli V, Bordi M, Gretzmeier C, Dengjel J, Piacentini M, Fimia G M, Cecconi F. mTOR inhibits autophagy by controlling ULK1 ubiquitylation, self-association and function through AMBRA1 and TRAF6. Nature Cell Biology, 2013, 15(4): 406–416
CrossRef Google scholar
[68]
Liang J, Shao S H, Xu Z X, Hennessy B, Ding Z, Larrea M, Kondo S, Dumont D J, Gutterman J U, Walker C L, Slingerland J M, Mills G B. The energy sensing LKB1-AMPK pathway regulates p27kip1 phosphorylation mediating the decision to enter autophagy or apoptosis. Nature Cell Biology, 2007, 9(2): 218–224
CrossRef Google scholar
[69]
Löffler A S, Alers S, Dieterle A M, Keppeler H, Franz-Wachtel M, Kundu M, Campbell D G, Wesselborg S, Alessi D R, Stork B. Ulk1-mediated phosphorylation of AMPK constitutes a negative regulatory feedback loop. Autophagy, 2011, 7(7): 696–706
CrossRef Google scholar
[70]
Obara K, Ohsumi Y. PtdIns 3-kinase orchestrates autophagosome formation in yeast. Journal of Lipids, 2011, 2011: 498768
CrossRef Google scholar
[71]
Kametaka S, Okano T, Ohsumi M, Ohsumi Y. Apg14p and Apg6/Vps30p form a protein complex essential for autophagy in the yeast, Saccharomyces cerevisiae. Journal of Biological Chemistry, 1998, 273(35): 22284–22291
CrossRef Google scholar
[72]
Obara K, Sekito T, Ohsumi Y. Assortment of phosphatidylinositol 3-kinase complexes-Atg14p directs association of complex I to the pre-autophagosomal structure in Saccharomyces cerevisiae. Molecular Biology of the Cell, 2006, 17(4): 1527–1539
CrossRef Google scholar
[73]
Chen J, Li Y, Tian Y, Huang C, Li D, Zhong Q, Ma X. Interaction between microbes and host intestinal health: modulation by dietary nutrients and gut-brain-endocrine-immune axis. Current Protein & Peptide Science, 2015, 16(7): 572–603
CrossRef Google scholar
[74]
Fan P, Li L, Rezaei A, Eslamfam S, Che D, Ma X. Metabolites of dietary protein and peptides by intestinal microbes and their impacts on gut. Current Protein & Peptide Science, 2015, 16(7): 646–654
CrossRef Google scholar
[75]
Ropolo A, Grasso D, Pardo R, Sacchetti M L, Archange C, Re A L, Seux M, Nowak J, Gonzalez C D, Iovanna J L, Vaccaro M I. The pancreatitis-induced vacuole membrane protein 1 triggers autophagy in mammalian cells. Journal of Biological Chemistry, 2007, 282(51): 37124–37133
CrossRef Google scholar
[76]
Fimia G M, Stoykova A, Romagnoli A, Giunta L, Di Bartolomeo S, Nardacci R, Corazzari M, Fuoco C, Ucar A, Schwartz P, Gruss P. Ambra1 regulates autophagy and development of the nervous system. Nature, 2007, 447(7148): 1121–1125
[77]
Takahashi Y, Coppola D, Matsushita N, Cualing H D, Sun M, Sato Y, Liang C, Jung J U, Cheng J Q, Mul J J, Pledger W J, Wang H G. Bif-1 interacts with Beclin 1 through UVRAG and regulates autophagy and tumorigenesis. Nature Cell Biology, 2007, 9(10): 1142–1151
CrossRef Google scholar
[78]
Zhong Y, Wang Q, Li X, Yan Y, Backer J M, Chait B T, Heintz N, Yue Z. Distinct regulation of autophagic activity by Atg14L and Rubicon associated with Beclin 1-phosphatidylinositol-3-kinase complex. Nature Cell Biology, 2009, 11(4): 468–476
CrossRef Google scholar
[79]
Yuan H, Russell R C, Guan K L. Regulation of PIK3C3/VPS34 complexes by MTOR in nutrient stress-induced autophagy. Autophagy, 2013, 9(12): 1983–1995
CrossRef Google scholar
[80]
Tang Y, Tan B, Xiong X, Li F, Ren W, Kong X, Qiu W, Hardwidge P R, Yin Y. Methionine deficiency reduces autophagy and accelerates death in intestinal epithelial cells infected with enterotoxigenic Escherichia coli. Amino Acids, 2015, 47(10): 2199–2204
CrossRef Google scholar
[81]
Chen R, Wang Q, Song S, Liu F, He B, Gao X. Protective role of autophagy in methionine–choline deficient diet-induced advanced nonalcoholic steatohepatitis in mice. European Journal of Pharmacology, 2016, 5(770): 126–133
CrossRef Google scholar
[82]
Wang S, Tsun Z Y, Wolfson R L, Shen K, Wyant G A, Plovanich M E, Yuan E D, Jones T D, Chantranupong L, Comb W, Wang T, Bar-Peled L, Zoncu R, Straub C, Kim C, Park J, Sabatini B L, Sabatini D M. Lysosomal amino acid transporter SLC38A9 signals arginine sufficiency to mTORC1. Science, 2015, 347(6218): 188–194
CrossRef Google scholar
[83]
Munson M J, Allen G F, Toth R, Campbell D G, Lucocq J M, Ganley I G. mTOR activates the VPS34-UVRAG complex to regulate autolysosomal tubulation and cell survival. EMBO Journal, 2015, 34(17): 2272–2290
CrossRef Google scholar
[84]
Ma X, Chen J, Tian Y. Pregnane X receptor as the “sensor and effector” in regulating epigenome. Journal of Cellular Physiology, 2015, 230(4): 752–757
CrossRef Google scholar

Acknowledgements

The financial support from the China Scholarship Council, the National Basic Research Program of China (2013CB117301), the National Natural Science Foundation of China (31272448, 31472101, 31420103908, and 31528018), the 111 Project (B16044), Beijing Nova Program (xx2013055), Education Foundation of China Agricultural University “Dabeinong Education Fund” (1041-2415001), and National Department Public Benefit Research Foundation (201403047) are gratefully acknowledged

Compliance with ethics guidelines

Long He, Shabnam Eslamfam, Xi Ma, and Defa Li declare that they have no conflicts of interest or financial conflicts to disclose.
This article is a review and does not contain any studies with human or animal subjects performed by any of the authors.

RIGHTS & PERMISSIONS

The Author(s) 2016. Published by Higher Education Press. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0)
AI Summary AI Mindmap
PDF(291 KB)

Accesses

Citations

Detail

Sections
Recommended

/