Systems understanding of plant–pathogen interactions through genome-wide protein–protein interaction networks

Hong LI, Ziding ZHANG

PDF(525 KB)
PDF(525 KB)
Front. Agr. Sci. Eng. ›› 2016, Vol. 3 ›› Issue (2) : 102-112. DOI: 10.15302/J-FASE-2016100
REVIEW
REVIEW

Systems understanding of plant–pathogen interactions through genome-wide protein–protein interaction networks

Author information +
History +

Abstract

Plants are frequently affected by pathogen infections. To effectively defend against such infections, two major modes of innate immunity have evolved in plants; pathogen-associated molecular pattern-triggered immunity and effector-triggered immunity. Although the molecular components as well as the corresponding pathways involved in these two processes have been identified, many aspects of the molecular mechanisms of the plant immune system remain elusive. Recently, the rapid development of omics techniques (e.g., genomics, proteomics and transcriptomics) has provided a great opportunity to explore plant–pathogen interactions from a systems perspective and studies on protein–protein interactions (PPIs) between plants and pathogens have been carried out and characterized at the network level. In this review, we introduce experimental and computational identification methods of PPIs, popular PPI network analysis approaches, and existing bioinformatics resources/tools related to PPIs. Then, we focus on reviewing the progress in genome-wide PPI networks related to plant–pathogen interactions, including pathogen-centric PPI networks, plant-centric PPI networks and interspecies PPI networks between plants and pathogens. We anticipate genome-wide PPI network analysis will provide a clearer understanding of plant–pathogen interactions and will offer some new opportunities for crop protection and improvement.

Keywords

plant–pathogen interactions / systems biology / omics / plant immunity / protein–protein interaction / network

Cite this article

Download citation ▾
Hong LI, Ziding ZHANG. Systems understanding of plant–pathogen interactions through genome-wide protein–protein interaction networks. Front. Agr. Sci. Eng., 2016, 3(2): 102‒112 https://doi.org/10.15302/J-FASE-2016100

References

[1]
Dangl J L, Horvath D M, Staskawicz B J. Pivoting the plant immune system from dissection to deployment. Science, 2013, 341(6147): 746–751
CrossRef Google scholar
[2]
Geber J, Murphy E. Scurvy in the great Irish famine: evidence of vitamin C deficiency from a mid-19th century skeletal population. American Journal of Physical Anthropology, 2012, 148(4): 512–524
CrossRef Google scholar
[3]
Hovmøller M S, Yahyaoui A H, Milus E A, Justesen A F. Rapid global spread of two aggressive strains of a wheat rust fungus. Molecular Ecology, 2008, 17(17): 3818–3826
CrossRef Google scholar
[4]
Jones J D, Dangl J L. The plant immune system. Nature, 2006, 444(7117): 323–329
CrossRef Google scholar
[5]
Dodds P N, Rathjen J P. Plant immunity: towards an integrated view of plant–pathogen interactions. Nature Reviews Genetics, 2010, 11(8): 539–548
CrossRef Google scholar
[6]
Monaghan J, Zipfel C. Plant pattern recognition receptor complexes at the plasma membrane. Current Opinion in Plant Biology, 2012, 15(4): 349–357
CrossRef Google scholar
[7]
Thomma B P, Nurnberger T, Joosten M H. Of PAMPs and effectors: the blurred PTI-ETI dichotomy. Plant Cell, 2011, 23(1): 4–15
CrossRef Google scholar
[8]
Cui H, Tsuda K, Parker J E. Effector-triggered immunity: from pathogen perception to robust defense. Annual Review of Plant Biology, 2015, 66(1): 487–511
CrossRef Google scholar
[9]
Nishimura M T, Dangl J L. Arabidopsis and the plant immune system. The Plant Journal, 2010, 61(6): 1053–1066
CrossRef Google scholar
[10]
Delaunois B, Jeandet P, Clément C, Baillieul F, Dorey S, Cordelier S. Uncovering plant–pathogen crosstalk through apoplastic proteomic studies. Frontiers in Plant Science, 2014, 5: 249
CrossRef Google scholar
[11]
Schulze S, Henkel S G, Driesch D, Guthke R, Linde J. Computational prediction of molecular pathogen–host interactions based on dual transcriptome data. Frontiers in Microbiology, 2015, 6: 65
CrossRef Google scholar
[12]
Mine A, Sato M, Tsuda K. Toward a systems understanding of plant–microbe interactions. Frontiers in Plant Science, 2014, 5: 423
CrossRef Google scholar
[13]
Chae L, Lee I, Shin J, Rhee S Y. Towards understanding how molecular networks evolve in plants. Current Opinion in Plant Biology, 2012, 15(2): 177–184
[14]
Barabási A L, Oltvai Z N. Network biology: understanding the cell’s functional organization. Nature Reviews Genetics, 2004, 5(2): 101–113
CrossRef Google scholar
[15]
Han J D, Bertin N, Hao T, Goldberg D S, Berriz G F, Zhang L V, Dupuy D, Walhout A J, Cusick M E, Roth F P, Vidal M. Evidence for dynamically organized modularity in the yeast protein–protein interaction network. Nature, 2004, 430(6995): 88–93
CrossRef Google scholar
[16]
Kurant M, Thiran P, Hagmann P. Error and attack tolerance of layered complex networks. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics, 2007, 76(2): 026103
CrossRef Google scholar
[17]
Langfelder P, Luo R, Oldham M C, Horvath S. Is my network module preserved and reproducible? PLoS Computational Biology, 2011, 7(1): e1001057
CrossRef Google scholar
[18]
Adamcsek B, Palla G, Farkas I J, Derenyi I, Vicsek T. CFinder: locating cliques and overlapping modules in biological networks. Bioinformatics, 2006, 22(8): 1021–1023
CrossRef Google scholar
[19]
Bader G D, Hogue C W. An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinformatics, 2003, 4(1): 2
CrossRef Google scholar
[20]
Wu H, Gao L, Dong J, Yang X. Detecting overlapping protein complexes by rough-fuzzy clustering in protein–protein interaction networks. PLoS ONE, 2014, 9(3): e91856
CrossRef Google scholar
[21]
Gillis J, Pavlidis P. “Guilt by association” is the exception rather than the rule in gene networks. PLoS Computational Biology, 2012, 8(3): e1002444
CrossRef Google scholar
[22]
Tian W, Zhang L V, Tasan M, Gibbons F D, King O D, Park J, Wunderlich Z, Cherry J M, Roth F P. Combining guilt-by-association and guilt-by-profiling to predict Saccharomyces cerevisiae gene function. Genome biology, 2008, 9(2): S7
[23]
Hwang S, Rhee S Y, Marcotte E M, Lee I. Systematic prediction of gene function in Arabidopsis thaliana using a probabilistic functional gene network. Nature Protocols, 2011, 6(9): 1429–1442
CrossRef Google scholar
[24]
Li W, Chen L, He W, Qu X, Liang B, Gao Q, Feng C, Jia X, Lv Y, Zhang S, Li X. Prioritizing disease candidate proteins in cardiomyopathy-specific protein–protein interaction networks based on “guilt by association” analysis. PLoS ONE, 2013, 8(8): e71191
CrossRef Google scholar
[25]
Hou L, Chen M, Zhang C K, Cho J, Zhao H. Guilt by rewiring: gene prioritization through network rewiring in genome wide association studies. Human Molecular Genetics, 2014, 23(10): 2780–2790
CrossRef Google scholar
[26]
Zhang Y, Gao P, Yuan J S. Plant protein–protein interaction network and interactome. Current Genomics, 2010, 11(1): 40–46
CrossRef Google scholar
[27]
Braun P, Aubourg S, Van Leene J, De Jaeger G, Lurin C. Plant protein interactomes. Annual Review of Plant Biology, 2013, 64(1): 161–187
CrossRef Google scholar
[28]
Shoemaker B A, Panchenko A R. Deciphering protein–protein interactions. Part I. Experimental techniques and databases. PLoS Computational Biology, 2007, 3(3): e42
CrossRef Google scholar
[29]
Morsy M, Gouthu S, Orchard S, Thorneycroft D, Harper J F, Mittler R, Cushman J C. Charting plant interactomes: possibilities and challenges. Trends in Plant Science, 2008, 13(4): 183–191
CrossRef Google scholar
[30]
Dreze M, Carvunis A R, Charloteaux B, Galli M, Pevzner S J, Tasan M, Ahn Y Y, Balumuri P, Barabasi A L, Bautista V, Braun P, Byrdsong D, Chen H, Chesnut J D, Cusick M E, Dangl J L, de los Reyes C, Dricot A, Duarte M, Ecker J R, Fan C, Gai L, Gebreab F, Ghoshal G, Gilles P, Gutierrez B J, Hao T, Hill D E, Kim C J, Kim R C, Lurin C, MacWilliams A, Matrubutham U, Milenkovic T, Mirchandani J, Monachello D, Moore J, Mukhtar M S, Olivares E, Patnaik S, Poulin M M, Przulj N, Quan R, Rabello S, Ramaswamy G, Reichert P, Rietman E A, Rolland T, Romero V, Roth F P, Santhanam B, Schmitz R J, Shinn P, Spooner W, Stein J, Swamilingiah G M, Tam S, Vandenhaute J, Vidal M, Waaijers S, Ware D, Weiner E M, Wu S, Yazaki J, 0. Evidence for network evolution in an Arabidopsis interactome map. Science, 2011, 333(6042): 601–607
CrossRef Google scholar
[31]
Shoemaker B A, Panchenko A R. Deciphering protein–protein interactions. Part II. Computational methods to predict protein and domain interaction partners. PLoS Computational Biology, 2007, 3(4): e43
CrossRef Google scholar
[32]
Matthews L R, Vaglio P, Reboul J, Ge H, Davis B P, Garrels J, Vincent S, Vidal M. Identification of potential interaction networks using sequence-based searches for conserved protein–protein interactions or “interologs”. Genome Research, 2001, 11(12): 2120–2126
CrossRef Google scholar
[33]
Kim W K, Park J, Suh J K. Large scale statistical prediction of protein–protein interaction by potentially interacting domain (PID) pair. Genome Informatics, 2002, 13: 42–50
[34]
Reddy A S, Ben-Hur A, Day I S. Experimental and computational approaches for the study of calmodulin interactions. Phytochemistry, 2011, 72(10): 1007–1019
CrossRef Google scholar
[35]
Zhang Q C, Petrey D, Deng L, Qiang L, Shi Y, Thu C A, Bisikirska B, Lefebvre C, Accili D, Hunter T, Maniatis T, Califano A, Honig B. Structure-based prediction of protein–protein interactions on a genome-wide scale. Nature, 2012, 490(7421): 556–560
CrossRef Google scholar
[36]
Zhou Y, Zhou Y S, He F, Song J, Zhang Z. Can simple codon pair usage predict protein–protein interaction? Molecular BioSystems, 2012, 8(5): 1396–1404
CrossRef Google scholar
[37]
Maere S, Heymans K, Kuiper M. BiNGO: a Cytoscape plugin to assess overrepresentation of gene ontology categories in biological networks. Bioinformatics, 2005, 21(16): 3448–3449
CrossRef Google scholar
[38]
Bindea G, Mlecnik B, Hackl H, Charoentong P, Tosolini M, Kirilovsky A, Fridman W H, Pages F, Trajanoski Z, Galon J. ClueGO: a Cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks. Bioinformatics, 2009, 25(8): 1091–1093
CrossRef Google scholar
[39]
Montojo J, Zuberi K, Rodriguez H, Kazi F, Wright G, Donaldson S L, Morris Q, Bader G D. GeneMANIA Cytoscape plugin: fast gene function predictions on the desktop. Bioinformatics, 2010, 26(22): 2927–2928
CrossRef Google scholar
[40]
Wu G, Feng X, Stein L. A human functional protein interaction network and its application to cancer data analysis. Genome Biology, 2010, 11(5): R53
CrossRef Google scholar
[41]
Nishida K, Ono K, Kanaya S, Takahashi K. KEGGscape: a Cytoscape app for pathway data integration. F1000 Research, 2014, 3: 144
[42]
Morris J H, Apeltsin L, Newman A M, Baumbach J, Wittkop T, Su G, Bader G D, Ferrin T E. clusterMaker: a multi-algorithm clustering plugin for Cytoscape. BMC Bioinformatics, 2011, 12(1): 436
CrossRef Google scholar
[43]
Stark C, Breitkreutz B J, Reguly T, Boucher L, Breitkreutz A, Tyers M. BioGRID: a general repository for interaction datasets. Nucleic Acids Research, 2006, 34(S1): D535–D539
CrossRef Google scholar
[44]
Orchard S, Ammari M, Aranda B, Breuza L, Briganti L, Broackes-Carter F, Campbell N H, Chavali G, Chen C, del-Toro N, Duesbury M, Dumousseau M, Galeota E, Hinz U, Iannuccelli M, Jagannathan S, Jimenez R, Khadake J, Lagreid A, Licata L, Lovering R C, Meldal B, Melidoni A N, Milagros M, Peluso D, Perfetto L, Porras P, Raghunath A, Ricard-Blum S, Roechert B, Stutz A, Tognolli M, van Roey K, Cesareni G, Hermjakob H. The MIntAct project–IntAct as a common curation platform for 11 molecular interaction databases. Nucleic Acids Research, 2014, 42(D1): D358–D363
CrossRef Google scholar
[45]
Krishnakumar V, Hanlon M R, Contrino S, Ferlanti E S, Karamycheva S, Kim M, Rosen B D, Cheng C Y, Moreira W, Mock S A, Stubbs J, Sullivan J M, Krampis K, Miller J R, Micklem G, Vaughn M, Town C D. Araport: the Arabidopsis information portal. Nucleic Acids Research, 2015, 43(D1): D1003–D1009
CrossRef Google scholar
[46]
Urban M, Pant R, Raghunath A, Irvine A G, Pedro H, Hammond-Kosack K E. The Pathogen-Host Interactions database (PHI-base): additions and future developments. Nucleic Acids Research, 2015, 43(D1): D645–D655
CrossRef Google scholar
[47]
He F, Zhang Y, Chen H, Zhang Z, Peng Y L. The prediction of protein–protein interaction networks in rice blast fungus. BMC Genomics, 2008, 9(1): 519
CrossRef Google scholar
[48]
Zhao X M, Zhang X W, Tang W H, Chen L. FPPI: Fusarium graminearum protein–protein interaction database. Journal of Proteome Research, 2009, 8(10): 4714–4721
CrossRef Google scholar
[49]
Liu X, Zhang X, Tang W H, Chen L, Zhao X M.eFG: an electronic resource for Fusarium graminearum. Database: The Journal of Biological Databases and Curation, 2013, 2013: bat042
[50]
Lei D, Lin R, Yin C, Li P, Zheng A. Global protein–protein interaction network of rice sheath blight pathogen. Journal of Proteome Research, 2014, 13(7): 3277–3293
CrossRef Google scholar
[51]
Kim J G, Park D, Kim B C, Cho S W, Kim Y T, Park Y J, Cho H J, Park H, Kim K B, Yoon K O, Park S J, Lee B M, Bhak J. Predicting the interactome of Xanthomonas oryzae pathovar oryzae for target selection and DB service. BMC Bioinformatics, 2008, 9(1): 41
CrossRef Google scholar
[52]
Jeong H, Mason S P, Barabasi A L, Oltvai Z N. Lethality and centrality in protein networks. Nature, 2001, 411(6833): 41–42
CrossRef Google scholar
[53]
Guo J, Li H, Chang J W, Lei Y, Li S, Chen L L. Prediction and characterization of protein–protein interaction network in Xanthomonas oryzae pv. oryzae PXO99 A. Research in Microbiology, 2013, 164(10): 1035–1044
CrossRef Google scholar
[54]
Han D, Kim H S, Seo J, Jang W. A domain combination based probabilistic framework for protein–protein interaction prediction. Genome Informatics, 2003, 14: 250–259
[55]
Shen J, Zhang J, Luo X, Zhu W, Yu K, Chen K, Li Y, Jiang H. Predicting protein–protein interactions based only on sequences information. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(11): 4337–4341
CrossRef Google scholar
[56]
Zhu G, Wu A, Xu X J, Xiao P P, Lu L, Liu J, Cao Y, Chen L, Wu J, Zhao X M. PPIM: a protein–protein interaction database for maize. Plant Physiology, 2016, 170(2): 618–626
CrossRef Google scholar
[57]
Sapkota A, Liu X, Zhao X M, Cao Y, Liu J, Liu Z P, Chen L. DIPOS: database of interacting proteins in Oryza sativa. Molecular BioSystems, 2011, 7(9): 2615–2621
CrossRef Google scholar
[58]
Lee T, Oh T, Yang S, Shin J, Hwang S, Kim C Y, Kim H, Shim H, Shim J E, Ronald P C, Lee I. RiceNet v2: an improved network prioritization server for rice genes. Nucleic Acids Research, 2015, 43(W1): W122–W127
CrossRef Google scholar
[59]
Geisler-Lee J, O'Toole N, Ammar R, Provart N J, Millar A H, Geisler M. A predicted interactome for Arabidopsis. Plant Physiology, 2007, 145(2): 317–329
CrossRef Google scholar
[60]
Lin M, Hu B, Chen L, Sun P, Fan Y, Wu P, Chen X. Computational identification of potential molecular interactions in Arabidopsis. Plant Physiology, 2009, 151(1): 34–46
CrossRef Google scholar
[61]
Gu H, Zhu P, Jiao Y, Meng Y, Chen M. PRIN: a predicted rice interactome network. BMC Bioinformatics, 2011, 12(1): 161
CrossRef Google scholar
[62]
Cui J, Li P, Li G, Xu F, Zhao C, Li Y, Yang Z, Wang G, Yu Q, Shi T. AtPID: Arabidopsis thaliana protein interactome database–an integrative platform for plant systems biology. Nucleic Acids Research, 2008, 36(S1): D999–D1008
[63]
Wang C, Marshall A, Zhang D, Wilson Z A. ANAP: an integrated knowledge base for Arabidopsis protein interaction network analysis. Plant Physiology, 2012, 158(4): 1523–1533
CrossRef Google scholar
[64]
Lee I, Ambaru B, Thakkar P, Marcotte E M, Rhee S Y. Rational association of genes with traits using a genome-scale gene network for Arabidopsis thaliana. Nature Biotechnology, 2010, 28(2): 149–156
CrossRef Google scholar
[65]
Dong X, Jiang Z, Peng Y L, Zhang Z. Revealing shared and distinct gene network organization in Arabidopsis immune responses by integrative analysis. Plant Physiology, 2015, 167(3): 1186–1203
CrossRef Google scholar
[66]
Dutkowski J, Ideker T. Protein networks as logic functions in development and cancer. PLoS Computational Biology, 2011, 7(9): e1002180
CrossRef Google scholar
[67]
Weßling R, Epple P, Altmann S, He Y, Yang L, Henz S R, McDonald N, Wiley K, Bader K C, Gläßer C, Mukhtar M S, Haigis S, Ghamsari L, Stephens A E, Ecker J R, Vidal M, Jones J D G, Mayer K F X, Ver Loren van Themaat E, Weigel D, Schulze-Lefert P, Dangl J L, Panstruga R, Braun P. Convergent targeting of a common host protein-network by pathogen effectors from three kingdoms of life. Cell Host & Microbe, 2014, 16(3): 364–375
CrossRef Google scholar
[68]
Mukhtar M S, Carvunis A R, Dreze M, Epple P, Steinbrenner J, Moore J, Tasan M, Galli M, Hao T, Nishimura M T, Pevzner S J, Donovan S E, Ghamsari L, Santhanam B, Romero V, Poulin M M, Gebreab F, Gutierrez B J, Tam S, Monachello D, Boxem M, Harbort C J, McDonald N, Gai L, Chen H, He Y, Vandenhaute J, Roth F P, Hill D E, Ecker J R, Vidal M, Beynon J, Braun P, Dangl J L. Independently evolved virulence effectors converge onto hubs in a plant immune system network. Science, 2011, 333(6042): 596–601
CrossRef Google scholar
[69]
Garamszegi S, Franzosa E A, Xia Y. Signatures of pleiotropy, economy and convergent evolution in a domain-resolved map of human–virus protein–protein interaction networks. PLoS Pathogens, 2013, 9(12): e1003778
CrossRef Google scholar
[70]
Franzosa E A, Xia Y. Structural principles within the human-virus protein–protein interaction network. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(26): 10538–10543
CrossRef Google scholar
[71]
Li Z G, He F, Zhang Z, Peng Y L. Prediction of protein–protein interactions between Ralstonia solanacearum and Arabidopsis thaliana. Amino Acids, 2012, 42(6): 2363–2371
CrossRef Google scholar
[72]
Sahu S S, Weirick T, Kaundal R. Predicting genome-scale Arabidopsis–Pseudomonas syringae interactome using domain and interolog-based approaches. BMC Bioinformatics, 2014, 15(S11): S13
CrossRef Google scholar
[73]
Stahl E A, Bishop J G. Plant–pathogen arms races at the molecular level. Current Opinion in Plant Biology, 2000, 3(4): 299–304
CrossRef Google scholar
[74]
Kshirsagar M, Carbonell J, Klein-Seetharaman J. Multitask learning for host–pathogen protein interactions. Bioinformatics, 2013, 29(13): i217–i226
CrossRef Google scholar
[75]
Liu X, Tang W H, Zhao X M, Chen L. A network approach to predict pathogenic genes for Fusarium graminearum. PLoS ONE, 2010, 5(10): e13021
CrossRef Google scholar
[76]
Kuzu G, Keskin O, Gursoy A, Nussinov R. Constructing structural networks of signaling pathways on the proteome scale. Current Opinion in Structural Biology, 2012, 22(3): 367–377
CrossRef Google scholar
[77]
Katiyar-Agarwal S, Jin H. Role of small RNAs in host–microbe interactions. Annual Review of Phytopathology, 2010, 48(1): 225–246
CrossRef Google scholar
[78]
Meng X, Zhang S. MAPK cascades in plant disease resistance signaling. Annual Review of Phytopathology, 2013, 51(1): 245–266
CrossRef Google scholar
[79]
Cheng Y T, Li X. Ubiquitination in NB-LRR-mediated immunity. Current Opinion in Plant Biology, 2012, 15(4): 392–399
CrossRef Google scholar
[80]
Garbutt C C, Bangalore P V, Kannar P, Mukhtar M S. Getting to the edge: protein dynamical networks as a new frontier in plant–microbe interactions. Frontiers in Plant Science, 2014, 5: 312
CrossRef Google scholar

Acknowledgements

This work was supported by grants from the National Natural Science Foundation of China (31271414, 31471249).

Compliance with ethics guidelines

Hong Li and Ziding Zhang declare that they have no conflict of interest or financial conflicts to disclose.
This article is a review and does not contain any studies with human or animal subjects performed by any of the authors.

RIGHTS & PERMISSIONS

The Author(s) 2016. Published by Higher Education Press. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0)
AI Summary AI Mindmap
PDF(525 KB)

Accesses

Citations

Detail

Sections
Recommended

/