Oral administration of Allium sativum extract protects against infectious bursal disease in chickens

Sufen ZHAO, Yuanyuan JIA, Weiwei ZHANG, Lili WANG, Yunfei MA, Kedao TENG

PDF(1535 KB)
PDF(1535 KB)
Front. Agr. Sci. Eng. ›› 2015, Vol. 2 ›› Issue (4) : 318-326. DOI: 10.15302/J-FASE-2015080
RESEARCH ARTICLE
RESEARCH ARTICLE

Oral administration of Allium sativum extract protects against infectious bursal disease in chickens

Author information +
History +

Abstract

Garlic (Allium sativum, Liliaceae) has been safely used for more than 5000 years, and research on garlic extract is rapidly increasing because of its multiple biological functions. The in vivo effects of oral administration of garlic mixture (GM, water-soluble extract) on infectious bursal disease virus (IBDV)-infected specific pathogen free male white leghorn chicken were examined through histopathological, immunohistochemical, and Western blot analyses, and enzyme-linked immunosorbent assay. The results confirmed the protective effects of oral administration of 5 mg·kg1 BW GM (Group GM1) on bursal lesions after IBDV infection. In particular, protein expression of IBDV in the bursa decreased in Group GM1, indicating that GM administration decreased IBDV replication in the bursa. Furthermore, immunoglobulin M- and A-bearing B lymphocytes significantly increased 7 days post infection in bursae in Group GM1 (P<0.01), suggesting that the oral administration of 5 mg·kg1 GM offers moderate protection against B cell destruction after IBDV infection. During infection, the concentration of bursal interferon gamma (IFN-g) increased and peaked in Group GM1 earlier than in Group T (IBDV-exposed), demonstrating that GM administration prompted the production of IFN-g to protect against IBDV infection.

Keywords

garlic / infectious bursal disease virus (IBDV) / antiviral effect / IgM-bearing B lymphocyte

Cite this article

Download citation ▾
Sufen ZHAO, Yuanyuan JIA, Weiwei ZHANG, Lili WANG, Yunfei MA, Kedao TENG. Oral administration of Allium sativum extract protects against infectious bursal disease in chickens. Front. Agr. Sci. Eng., 2015, 2(4): 318‒326 https://doi.org/10.15302/J-FASE-2015080

References

[1]
Abdel-Moneim A S, Abdel-Gawad M M. Genetic variations in maternal transfer and immune responsiveness to infectious bursal disease virus. Veterinary Microbiology, 2006, 114(1–2): 16–24
CrossRef Google scholar
[2]
Khatri M, Palmquist J M, Cha R M, Sharma J M. Infection and activation of bursal macrophages by virulent infectious bursal disease virus. Virus Research, 2005, 113(1): 44–50
CrossRef Google scholar
[3]
Petek M, D'Aprile P N, Cancellotti F. Biological and physico-chemical properties of the infectious bursal disease virus (IBDV). Avian Pathology, 1973, 2(2): 135–152
[4]
Stoute S T, Jackwood D J, Sommer-Wagner S E, Crossley B M, Woolcock P R, Charlton B R. Pathogenicity associated with coinfection with very virulent infectious bursal disease and Infectious bursal disease virus strains endemic in the United States. Journal of Veterinary Diagnostic Investigation, 2013, 25(3): 352–358
CrossRef Google scholar
[5]
Li Z, Wang Y, Li X, Cao H, Zheng S J. Critical roles of glucocorticoid-induced leucine zipper in infectious bursal disease virus (IBDV)-induced suppression of type I Interferon expression and enhancement of IBDV growth in host cells via interaction with VP4. Journal of Virology, 2013, 87(2): 1221–1231
CrossRef Google scholar
[6]
Müller H, Islam M R, Raue R. Research on infectious bursal disease-the past, the present and the future. Veterinary Microbiology, 2003, 97(1-2): 153–165
CrossRef Google scholar
[7]
Liang J F, Yin Y Y, Qin T, Yang Q. Chicken bone marrow-derived dendritic cells maturation in response to infectious bursal disease virus. Veterinary Immunology and Immunopathology, 2015, 164(1–2): 51–55
CrossRef Google scholar
[8]
Stricker R L, Behrens S E, Mundt E. Nuclear factor NF45 interacts with viral proteins of infectious bursal disease virus and inhibits viral replication. Journal of Virology, 2010, 84(20): 10592–10605
CrossRef Google scholar
[9]
Hirai K, Funakoshi T, Nakai T, Shimakura S. Sequential changes in the number of surface immunoglobulin-bearing B lymphocytes in infectious bursal disease virus-infected chickens. Avian Diseases, 1981, 25(2): 484–496
CrossRef Google scholar
[10]
Rodenberg J, Sharma J M, Belzer S W, Nordgren R M, Naqi S. Flow cytometric analysis of B cell and T cell subpopulations in specific-pathogen-free chickens infected with infectious bursal disease virus. Avian Diseases, 1994, 38(1): 16–21
CrossRef Google scholar
[11]
Mundt E, Beyer J, Müller H. Identification of a novel viral protein in infectious bursal disease virus-infected cells. Journal of General Virology, 1995, 76(2): 437–443
CrossRef Google scholar
[12]
Xu H, Yuan L, Wang F, Wang Y, Wang R, Song C, Xia Q, Zhao P. Overexpression of recombinant infectious bursal disease virus (IBDV) capsid protein VP2 in the middle silk gland of transgenic silkworm. Transgenic Research, 2014, 23(5): 809–816
CrossRef Google scholar
[13]
Wang A R, Liu F H, Wang Z P, Jiang X, Wang W, Teng K D, Xu J. Pathological study of SPF chickens experimentally infected with a Chinese IBDV strain BC6/85. Asian Journal of Animal and Veterinary Advances, 2011, 6(1): 36–50
CrossRef Google scholar
[14]
Li Y, Wang L, Li S, Chen X, Shen Y, Zhang Z, He H, Xu W, Shu Y, Liang G, Fang R, Hao X. Seco-pregnane steroids target the subgenomic RNA of alphavirus-like RNA viruses. Proceedings of the National Academy of Sciences of the United States of America, 2008, 104(19): 8083–8088
CrossRef Google scholar
[15]
Amagase H. Significance of garlic and its constituents in cancer and cardiovascular disease. Clarifying the real bioactive constituents of garlic. Journal of Nutrition, 2006, 136: 716S–725S
[16]
Boonpeng S, Siripongvutikorn S, Sae-Wong C, Sutthirak P. The antioxidant and anti-cadmium toxicity properties of garlic extracts. Food Science & Nutrition, 2014, 2(6): 792–801
CrossRef Google scholar
[17]
Milner J A. Significance of garlic and its constituents in cancer and cardiovascular disease. Preclinical perspectives on garlic and cancer. Journal of Nutrition, 2006, 136: 827S–831S
[18]
Thomas S, Senthilkumar G P, Sivaraman K, Bobby Z, Paneerselvam S, Harichandrakumar K T. Effect of s-methyl-L-cysteine on oxidative stress, inflammation and insulin resistance in male wistar rats fed with high fructose diet. Iranian Journal of Basic Medical Sciences, 2015, 40(1): 45–50
[19]
Majewski M. Allium sativum: facts and myths regarding human health. Roczniki Panstwowego Zakladu Higieny, 2014, 65(1): 1–8
[20]
Asadpour R, Azari M, Hejazi M, Tayefi H, Zaboli N. Protective effects of garlic aquous extract (Allium sativum), vitamin E, and N-acetylcysteine on reproductive quality of male rats exposed to lead. Veterinary Research Forum : An International Quarterly Journal, 2013, 4(4): 251–257
[21]
Miron T, Rabinkov A, Mirelman D, Wilchek M, Weiner L. The mode of action of allicin: its ready permeability through phospholipid membranes may contribute to its biological activity. Biochimica et Biophysica Acta, 2000, 1463(1): 20–30
CrossRef Google scholar
[22]
Weber N D, Andersen D O, North J A, Murray B K, Lawson L D, Hughes B G. In vitro virucidal effects of Allium sativum (garlic) extract and compounds. Planta Medica, 1992, 58(5): 417–423 doi:10.1055/s-2006-961504
[23]
Zeng T, Zhang C L, Song F Y, Han X Y, Xie K Q. The modulatory effects of garlic oil on hepatic cytochrome P450s in mice. Human and Experimental Toxicology, 2009, 28(12): 777–783
CrossRef Google scholar
[24]
Lawson L D, Wang Z J, Hughes B G. Identification and HPLC quantitation of the sulfides and dialk(en)yl thiosulfinates in commercial garlic products. Planta Medica, 1991, 57(04): 363–370
CrossRef Google scholar
[25]
Wang A R. Development of an experimental model of IBDV infection and a preliminary study for antiviral action of garlic oil. Dissertation for the Doctoral Degree. Beijing: China Agriculture University, 2009 (in Chinese)
[26]
Maity H K, Dey S, Mohan C M, Khulape S A, Pathak D C, Vakharia V N. Protective efficacy of a DNA vaccine construct encoding the VP2 gene of infectious bursal disease and a truncated HSP70 of Mycobacterium tuberculosis in chickens. Vaccine, 2015, 33(8): 1033–1039
CrossRef Google scholar
[27]
Ma H, Zhao S, Ma Y, Guo X, Han D, Jia Y, Zhang W, Teng K. Susceptibility of Kupffer cells to virus in chickens experimentally infected with Chinese virulent IBDV. Veterinary Microbiology, 2013, 164(3-4): 270–280
CrossRef Google scholar
[28]
Bíró E, Kocsis K, Nagy N, Molnár D, Kabell S, Palya V, Oláh I. Origin of the chicken splenic reticular cells influences the effect of the infectious bursal disease virus on the extracellular matrix. Avian Pathology, 2011, 40(2): 199–206
CrossRef Google scholar
[29]
Dobrosavljević I, Vidanović D, Velhne M, Miljkovi Bć B, Lako. Simultaneous detection of vaccinal and field infectious bursal disease viruses in layer chickens challenged with a very virulent strain after vaccination. Acta Veterinaria Hungarica, 2014, 62(2): 264–273
CrossRef Google scholar
[30]
Käufer I, Weiss E. Significance of bursa of Fabricius as target organ in infectious bursal disease of chickens. Infection and Immunity, 1980, 27: 364–367
[31]
Salman H, Bergman M, Bessler H, Punsky I, Djaldetti M. Effect of a garlic derivative (alliin) on peripheral blood cell immune responses. International Journal of Immunopharmacology, 1999, 21(9): 589–597
CrossRef Google scholar
[32]
Kim I J, You S K, Kim H, Yeh H Y, Sharma J M. Characteristics of bursal T lymphocytes induced by infectious bursal disease virus. Journal of Virology, 2000, 74(19): 8884–8892
CrossRef Google scholar
[33]
Rautenschlein S, Yeh H Y, Sharma J M. The role of T cells in protection by an inactivated infectious bursal disease virus vaccine. Veterinary Immunology and Immunopathology, 2002, 89(3–4): 159–167
CrossRef Google scholar

Acknowledgements

The authors wish to thank Prof. Jianqin Xu and Fenghua Liu for their expert technical assistance in preparation of GM. This work was supported by the Twelfth Five-Year-Plan of the National Science and Technology Support Project (2011BAD34B01) and National Natural Science Foundation of China (31502025).
Sufen Zhao, Yuanyuan Jia, Weiwei Zhang, Lili Wang, Yunfei Ma, and Kedao Teng declare that they have no conflict of interest or financial conflicts to disclose.
All applicable institutional and national guidelines for the care and use of animals were followed.

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(1535 KB)

Accesses

Citations

Detail

Sections
Recommended

/