Risk analysis methods of the water resources system under uncertainty

Zeying GUI, Chenglong ZHANG, Mo Li, Ping GUO

PDF(748 KB)
PDF(748 KB)
Front. Agr. Sci. Eng. ›› 2015, Vol. 2 ›› Issue (3) : 205-215. DOI: 10.15302/J-FASE-2015073
REVIEW
REVIEW

Risk analysis methods of the water resources system under uncertainty

Author information +
History +

Abstract

The main characteristic of the water resources system (WRS) is its great complexity and uncertainty, which makes it highly desirable to carry out a risk analysis of the WRS. The natural environmental, social economic conditions as well as limitations of human cognitive ability are possible sources of the uncertainties that need to be taken into account in the risk analysis process. In this paper the inherent stochastic uncertainty and cognitive subjective uncertainty of the WRS are discussed first, from both objective and subjective perspectives. Then the quantitative characterization methods of risk analysis are introduced, including three criteria (reliability, resiliency and vulnerability) and five basic optimization models (the expected risk value model, conditional value at risk model, chance-constrained risk model, minimizing probability of risk events model, and the multi-objective optimization model). Finally, this paper focuses on the various methods of risk analysis under uncertainty, which are summarized as random, fuzzy and mixed methods. A more comprehensive risk analysis methodology for the WRS is proposed based on the comparison of the advantages, disadvantages and applicable conditions of these three methods. This paper provides a decision support of risk analysis for researchers, policy makers and stakeholders of the WRS.

Keywords

water resources system / evaluation criterion / optimization model / risk analysis method / uncertainty

Cite this article

Download citation ▾
Zeying GUI, Chenglong ZHANG, Mo Li, Ping GUO. Risk analysis methods of the water resources system under uncertainty. Front. Agr. Sci. Eng., 2015, 2(3): 205‒215 https://doi.org/10.15302/J-FASE-2015073

References

[1]
Li Y P, Huang G H. Risk analysis and management for water resources systems. Stochastic Environmental Research and Risk Assessment, 2013, 27(3): 593–597
CrossRef Google scholar
[2]
Wang X Q. A study on regional difference of fresh water resources shortage in China. Journal of Natural Resources. 2001, 16(6): 516, 520
[3]
Loucks D P, Van B E, Stedinger J R, Dijkman J P M, Villars M T. Water resources systems planning and management: an introduction to methods, models and applications. Paris: UNESCO, 2005
[4]
Hashimoto T, Stedinger J R, Loucks D P. Reliability, resiliency, and vulnerability criteria for water resource system performance evaluation. Water Resources Research, 1982, 18(1): 14–20
CrossRef Google scholar
[5]
Haimes Y Y. Total Risk Management. Risk Analysis, 1991, 11(2): 169–171
CrossRef Google scholar
[6]
Kaplan S, Garrick B J. On the quantitative definition of risk. Risk Analysis, 1981, 1(01): 11–27
CrossRef Pubmed Google scholar
[7]
Paté-Cornell M E. Uncertainties in risk analysis: six levels of treatment. Reliability Engineering & System Safety, 1996, 54(2): 95–111
CrossRef Google scholar
[8]
U. S. Water Resources Council. Principles and standards for water and related land resources planning. Federal Register, 1980, (September): 28 (S)
[9]
Tartakovsky D M. Assessment and management of risk in subsurface hydrology: a review and perspective. Advances in Water Resources, 2013, 51: 247–260
CrossRef Google scholar
[10]
Ruan B Q, Han Y P, Wang H, Jiang R F. Fuzzy comprehensive assessment of water shortage risk. Journal of Hydraulic Engineering, 2005, (08): 906–912 (in Chinese)
[11]
Simonivic S P. Risk in sustainable water resources management, in Sustainability of Water Resources Under Increasing Uncertainty. Proceedings of the Rabat Symposium. 1997, 240: 3–17
[12]
Ruan B Q, Liang R J, Chen S J. A method for risk analysis and evaluation of water supply and demand. Journal of Hydraulic Engineering, 2000, (09): 1–7 (in Chinese)
[13]
Ang A H S, Tang W H. Probability concepts in engineering planning and design. Beijing: Metallurgical Industry Press, 1991, 430–460 (in Chinese)
[14]
Tang W H, Yucemen M S, Ang A H S. Probability-based short-term design of soil slopes. Canadian Geotechnical Journal, 1976, 13(3): 201–215
CrossRef Google scholar
[15]
Helton J C. Treatment of uncertainty in performance assessments for complex systems. Risk Analysis, 1994, 14(4): 483–511
CrossRef Google scholar
[16]
Dechant C M, Moradkhani H. On the assessment of reliability in probabilistic hydro meteorological event forecasting. Water Resources Research, 2015, 51(6): 3867–3883
CrossRef Google scholar
[17]
Babel M S, Das G A, Nayak D K. A model for optimal allocation of water to competing demands. Water Resources Management, 2005, 19(6): 693–712
CrossRef Google scholar
[18]
Wang H R, Qian L X, Xu X Y, Wang Y. Model for evaluating water shortage risk based on fuzzy probability and its application. Journal of Hydraulic Engineering, 2009, (07): 813–821 (in Chinese)
[19]
Brekke L D, Maurer E P, Anderson J D, Dettinger M D, Townsley E S, Harrison A, Pruitt T. Assessing reservoir operations risk under climate change. Water Resources Research, 2009, 45(4): n/a
CrossRef Google scholar
[20]
Loaiciga H A, Mariño M A. Risk analysis for reservoir operation. Water Resources Research, 1986, 22(4): 483–488
CrossRef Google scholar
[21]
Mcbean E A. Risk characterization for arsenic-impacted water sources, including ground-trothing. Stochastic Environmental Research and Risk Assessment, 2013, 27(3): 705–711
CrossRef Google scholar
[22]
Ghosh S, Mujumdar P P. Risk minimization in water quality control problems of a river system. Advances in Water Resources, 2006, 29(3): 458–470
CrossRef Google scholar
[23]
Mujumdar P P, Sasikumar K. A fuzzy risk approach for seasonal water quality management of a river system. Water Resources Research. 2002, 38(1): 1–5, 5–9
[24]
Sasikumar K, Mujumdar P P. Application of fuzzy probability in water quality management of a river system. International Journal of Systems Science, 2000, 31(5): 575–591
CrossRef Google scholar
[25]
Ahmad S S, Simonovic S P. Spatial and temporal analysis of urban flood risk assessment. Urban Water Journal, 2013, 10(1): 26–49
CrossRef Google scholar
[26]
Yu J J, Qin X S, Larsen O. Joint Monte Carlo and possibilistic simulation for flood damage assessment. Stochastic Environmental Research and Risk Assessment, 2013, 27(3): 725–735
CrossRef Google scholar
[27]
Thumerer T, Jones A P, Brown D. A GIS based coastal management system for climate change associated flood risk assessment on the east coast of England. International Journal of Geographical Information Science, 2000, 14(3): 265–281
CrossRef Google scholar
[28]
Anselmo V, Galeati G, Palmieri S, Rossi U, Todini E. Flood risk assessment using an integrated hydrological and hydraulic modelling approach: A case study. Journal of Hydrology, 1996, 175(1−4): 533–554
CrossRef Google scholar
[29]
Dyck J, Willems P. Probabilistic flood risk assessment over large geographical regions. Water Resources Research, 2013, 49(6): 3330–3344
CrossRef Google scholar
[30]
James A L, Oldenburg C M. Linear and Monte Carlo uncertainty analysis for subsurface contaminant transport simulation. Water Resources Research, 1997, 33(11): 2495–2508
CrossRef Google scholar
[31]
Whitehead P, Young P. Water quality in river systems: Monte-Carlo analysis. Water Resources Research, 1979, 15(2): 451–459
CrossRef Google scholar
[32]
El-Baroudy I, Simonovic S P. Fuzzy criteria for the evaluation of water resource systems performance. Water Resources Research, 2004, 40(10): W10503
CrossRef Google scholar
[33]
Wang Z U, Jin J L, Li R Z, Wang M W, Zhou Y L. Risk based regional water security assessment method using stochastic simulation and triangular fuzzy numbers. Journal of Sichuan University, 2010, 42(6): 1–5
[34]
Han Y P. Study on risk management of water resources shortage. Xi'an University of Technology. 2003 (in Chinese)
[35]
Kenji J, Xu Z X, Akika D, Kaname T. Risk assessment of a water supply system during drought. Water Resources Development., 1995, 11(2): 185–204
CrossRef Google scholar
[36]
Moy W S, Cohon J L, Revelle C S. A programming model for analysis of the reliability, resilience, and vulnerability of a water supply reservoir. Water Resources Research, 1986, 22(4): 489–498
CrossRef Google scholar
[37]
Kjeldsen T R, Rosbjerg D. Choice of reliability, resilience and vulnerability estimators for risk assessments of water resources systems. Hydrological Sciences Journal, 2004, 49(5): 755–767
CrossRef Google scholar
[38]
Guo P, Huang G H, He L, Sun B W. ITSSIP: Interval-parameter two-stage stochastic semi-infinite programming for environmental management under uncertainty. Environmental Modelling & Software, 2008, 23(12): 1422–1437
CrossRef Google scholar
[39]
Guo P, Huang G H, Zhu H, Wang X L. A two-stage programming approach for water resources management under randomness and fuzziness.Environmental Modelling &amp. Software, 2010, 25(12): 1573–1581
[40]
Fan Y R, Huang G H, Guo P, Yang A L. Inexact two-stage stochastic partial programming: application to water resources management under uncertainty. Stochastic Environmental Research and Risk Assessment, 2012, 26(2): 281–293
CrossRef Google scholar
[41]
Li M, Guo P, Fang S Q, Zhang L D. An inexact fuzzy parameter two-stage stochastic programming model for irrigation water allocation under uncertainty. Stochastic Environmental Research and Risk Assessment, 2013, 27(6): 1441–1452
CrossRef Google scholar
[42]
Mark G, Joseph Y S L, Meng F W. A stochastic model for risk management in global supply chain networks. European Journal of Operational Research, 2007, 182(1): 164–173
CrossRef Google scholar
[43]
Andersson F, Mausser H, Rosen D, Uryasev S. Credit risk optimization with Conditional Value-at-Risk criterion. Mathematical Programming, 2001, 89(2): 273–291
CrossRef Google scholar
[44]
Rockafellar R T, Royset J O, Miranda S I. Superquantile regression with applications to buffered reliability, uncertainty quantification, and conditional value-at-risk. European Journal of Operational Research, 2014, 234(1): 140–154
CrossRef Google scholar
[45]
Wang Y Q. Robust v-support vector machine based on worst-case conditional value-at-risk minimization. Optimization Methods & Software, 2012, 27(6): 1025–1038
CrossRef Google scholar
[46]
Guo P, Chen X H, Li M, Li J B. Fuzzy chance-constrained linear fractional programming approach for optimal water allocation. Stochastic Environmental Research and Risk Assessment, 2014, 28(6): 1601–1612
CrossRef Google scholar
[47]
Guo P, Huang G H, Li Y P. An inexact fuzzy-chance-constrained two-stage mixed-integer linear programming approach for flood diversion planning under multiple uncertainties. Advances in Water Resources, 2010, 33(1): 81–91
CrossRef Google scholar
[48]
Huang G H. A hybrid inexact-stochastic water management model. European Journal of Operational Research, 1998, 107(1): 137–158
CrossRef Google scholar
[49]
Morgan D R, Eheart J W, Valocchi A J. Aquifer remediation design under uncertainty using a new chance constrained programming technique. Water Resources Research, 1993, 29(3): 551–561
CrossRef Google scholar
[50]
Li M, Guo P. A multi-objective optimal allocation model for irrigation water resources under multiple uncertainties. Applied Mathematical Modelling, 2014, 38(19−20): 4897–4911
CrossRef Google scholar
[51]
Zeng X T, Kang S Z, Li F S, Zhang L, Guo P. Fuzzy multi-objective linear programming applying to crop area planning. Agricultural Water Management, 2010, 98(1): 134–142
CrossRef Google scholar
[52]
Guo P, Huang G H. Two-stage fuzzy chance-constrained programming: application to water resources management under dual uncertainties. Stochastic Environmental Research and Risk Assessment, 2009, 23(3): 349–359
CrossRef Google scholar
[53]
Fu X, Wang L P, Ji C M. Application of statistics of extremes of flood hazard risk evaluation. Journal of Hydraulic Engineering, 2001, (07): 8–12 (in Chinese)
[54]
Lambert J H, Li D. Evaluating risk of extreme events for univariate-loss functions. Journal of Water Resources Planning and Management, 1994, 120(3): 382–399
CrossRef Google scholar
[55]
Huang M C, Xie J C, Ruan B Q, Wang Y M. Model for assessing water shortage risk based on support vector machine. Journal of Hydraulic Engineering, 2007, (03): 255–259 (in Chinese)
[56]
Luo J G, Xie J C, Ruan B Q. Fuzzy comprehensive assessment model for water shortage risk based on entropy weight. Journal of Hydraulic Engineering, 2008, (09): 1092–1097 (in Chinese)
[57]
Gu W Q, Shao D G, Huang X F, Dai T. Multi-objective risk assessment on water resources optimal deployment. Journal of Hydraulic Engineering, 2008, (03): 339–345 (in Chinese)
[58]
Gu W Q, Shao D G, Jiang Y F. Risk Evaluation of Water Shortage in Source Area of Middle Route Project for South-to-North Water Transfer in China. Water Resources Management, 2012, 26(12): 3479–3493
CrossRef Google scholar
[59]
Ashofteh P S, Haddad O B, Marino M A. Risk analysis of water demand for agricultural crops under climate change. Journal of Hydrologic Engineering, 2015.nbsp;(first published online)
CrossRef Google scholar
[60]
Donald M, Cook A, Mengersen K. Bayesian network for risk of diarrhea associated with the use of recycled water. Risk Analysis, 2009, 29(12): 1672–1685
CrossRef Pubmed Google scholar
[61]
Qian L X, Wang H R, Zhang K N. Evaluation criteria and model for risk between water supply and water demand and its application in Beijing. Water Resources Management, 2014, 28(13): 4433–4447
CrossRef Google scholar
[62]
Koutsoyiannis D. Uncertainty, entropy, scaling and hydrological stochastics. 1. Marginal distributional properties of hydrological processes and state scaling. Hydrological Sciences Journal, 2005, 50(3): 381–404
[63]
Koutsoyiannis D. Uncertainty, entropy, scaling and hydrological stochastics. 2. Time dependence of hydrological processes and time scaling. Hydrological Sciences Journal, 2005, 50(3): 405–426
[64]
Coles S, Tawn J. Seasonal effects of extreme surges. Stochastic Environmental Research and Risk Assessment, 2005, 19(6): 417–427
CrossRef Google scholar
[65]
Marshall L, Nott D, Sharma A. A comparative study of Markov chain Monte Carlo methods for conceptual rainfall-runoff modeling. Water Resources Research, 2004, 40(2): W02501
CrossRef Google scholar
[66]
Firat F K, Yucemen M S. Determination of reliabffity based new load and resistance factors for reinforced concrete structural members. Teknik Dergi, 2014, 25(3): 6805–6829
[67]
Wu S J, Lien H C, Chang C H. Modeling risk analysis for forecasting peak discharge during flooding prevention and warning operation. Stochastic Environmental Research and Risk Assessment, 2010, 24(8): 1175–1191
CrossRef Google scholar
[68]
Cacuci D G, Ionescu-Bujor M. A comparative review of sensitivity and uncertainty analysis of large-scale systems- II: Statistical methods. Nuclear Science and Engineering, 2004, 147(3): 204–217
CrossRef Google scholar
[69]
Helton J C, Davis F J. Latin hypercube sampling and the propagation of uncertainty in analyses of complex systems. Reliability Engineering & System Safety, 2003, 81(1): 23–69
CrossRef Google scholar
[70]
Jiang Y, Nan Z, Yang S. Risk assessment of water quality using Monte Carlo simulation and artificial neural network method. Journal of Environmental Management, 2013, 122: 130–136
CrossRef Pubmed Google scholar
[71]
Zhang X, Ma W, Chen L. New similarity of triangular fuzzy number and its application. The Scientific World Journal, 2014, 2014: 215047
Pubmed
[72]
Patra K, Mondal S K. Fuzzy risk analysis using area and height based similarity measure on generalized trapezoidal fuzzy numbers and its application. Applied Soft Computing, 2015, 28: 276–284
CrossRef Google scholar
[73]
Qin X S, Huang G H, Zeng G M, Chakma A, Huang Y F. An interval-parameter fuzzy nonlinear optimization model for stream water quality management under uncertainty. European Journal of Operational Research, 2007, 180(3): 1331–1357
CrossRef Google scholar
[74]
Maqsood I, Huang G H, Yeomans J S. An interval-parameter fuzzy two-stage stochastic program for water resources management under uncertainty. European Journal of Operational Research, 2005, 167(1): 208–225
CrossRef Google scholar
[75]
Karimi I, Huellermeier E. Risk assessment system of natural hazards: A new approach based on fuzzy probability. Fuzzy Sets and Systems, 2007, 158(9): 987–999
CrossRef Google scholar
[76]
Khan U T, Valeo C, He J X. Non-linear fuzzy-set based uncertainty propagation for improved DO prediction using multiple-linear regression. Stochastic Environmental Research and Risk Assessment, 2013, 27(3): 599–616
CrossRef Google scholar
[77]
Zhu Y, Li Y P, Huang G H, Guo L. Risk assessment of agricultural irrigation water under interval functions. Stochastic Environmental Research and Risk Assessment, 2013, 27(3): 693–704
CrossRef Google scholar
[78]
Gu J J, Guo P, Huang G H, Shen N. Optimization of the industrial structure facing sustainable development in resource-based city subjected to water resources under uncertainty. Stochastic Environmental Research and Risk Assessment, 2013, 27(3): 659–673
CrossRef Google scholar
[79]
Chen C, Huang G H, Li Y P, Zhou Y. A robust risk analysis method for water resources allocation under uncertainty. Stochastic Environmental Research and Risk Assessment, 2013, 27(3): 713–723
CrossRef Google scholar
[80]
García Nieto P J, Alonso Fernández J R, de Cos Juez F J, Sánchez Lasheras F, Díaz Muñiz C. Hybrid modelling based on support vector regression with genetic algorithms in forecasting the cyanotoxins presence in the Trasona reservoir (Northern Spain). Environmental Research, 2013, 122: 1–10
CrossRef Pubmed Google scholar
[81]
Merabtene T, Kawamura A, Jinno K, Olsson J. Risk assessment for optimal drought management of an integrated water resources system using a genetic algorithm. Hydrological Processes, 2002, 16(11): 2189–2208
CrossRef Google scholar

Acknowledgements

This research was supported by the National Nature Sciences Foundation of China (41271536, 51439006, and 91425302).
Compliance with ethics guidelines
Zeying Gui, Chenglong Zhang, Mo Li, and Ping Guo declare that they have no conflict of interest or financial conflicts to disclose.
This article does not contain any studies with human or animal subjects performed by any of the authors.

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(748 KB)

Accesses

Citations

Detail

Sections
Recommended

/