Current perspectives on shoot branching regulation
Cunquan YUAN, Lin XI, Yaping KOU, Yu ZHAO, Liangjun ZHAO
Current perspectives on shoot branching regulation
Shoot branching is regulated by the complex interactions among hormones, development, and environmental factors. Recent studies into the regulatory mecha-nisms of shoot branching have focused on strigolactones, which is a new area of investigation in shoot branching regulation. Elucidation of the function of the D53 gene has allowed exploration of detailed mechanisms of action of strigolactones in regulating shoot branching. In addition, the recent discovery that sucrose is key for axillary bud release has challenged the established auxin theory, in which auxin is the principal agent in the control of apical dominance. These developments increase our understan-ding of branching control and indicate that regulation of shoot branching involves a complex network. Here, we first summarize advances in the systematic regulatory network of plant shoot branching based on current information. Then we describe recent developments in the synthesis and signal transduction of strigolactones. Based on these considerations, we further summarize the plant shoot branching regulatory network, including long distance systemic signals and local gene activity mediated by strigolactones following perception of external envi-ronmental signals, such as shading, in order to provide a comprehensive overview of plant shoot branching.
apical dominance / decapitation / shade / shoot branching / strigolactones / sugar demand
[1] |
Janssen B J, Drummond R S, Snowden K C. Regulation of axillary shoot development. Current Opinion in Plant Biology, 2014, 17: 28–35
CrossRef
Pubmed
Google scholar
|
[2] |
Dun E A, Hanan J, Beveridge C A. Computational modeling and molecular physiology experiments reveal new insights into shoot branching in pea. Plant Cell Online, 2009, 21(11): 3459–3472
CrossRef
Pubmed
Google scholar
|
[3] |
Leyser O. The control of shoot branching: an example of plant information processing. Plant, Cell & Environment, 2009, 32(6): 694–703
CrossRef
Pubmed
Google scholar
|
[4] |
Beveridge C A. Axillary bud outgrowth: sending a message. Current Opinion in Plant Biology, 2006, 9(1): 35–40
CrossRef
Pubmed
Google scholar
|
[5] |
Shimizu-Sato S, Mori H. Control of outgrowth and dormancy in axillary buds. Plant Physiology, 2001, 127(4): 1405–1413
CrossRef
Pubmed
Google scholar
|
[6] |
Domagalska M A, Leyser O. Signal integration in the control of shoot branching. Nature Reviews Molecular Cell Biology, 2011, 12(4): 211–221
CrossRef
Pubmed
Google scholar
|
[7] |
Wolters H, Jürgens G. Survival of the flexible: hormonal growth control and adaptation in plant development. Nature Reviews Genetics, 2009, 10(5): 305–317
CrossRef
Pubmed
Google scholar
|
[8] |
Ljung K, Bhalerao R P, Sandberg G. Sites and homeostatic control of auxin biosynthesis in Arabidopsis during vegetative growth. Plant Journal, 2001, 28(4): 465–474
CrossRef
Pubmed
Google scholar
|
[9] |
Gälweiler L, Guan C, Müller A, Wisman E, Mendgen K, Yephremov A, Palme K. Regulation of polar auxin transport by AtPIN1 in Arabidopsis vascular tissue. Science, 1998, 282(5397): 2226–2230
CrossRef
Pubmed
Google scholar
|
[10] |
Wiśniewska J, Xu J, Seifertová D, Brewer P B, Ruzicka K, Blilou I, Rouquié D, Benková E, Scheres B, Friml J. Polar PIN localization directs auxin flow in plants. Science, 2006, 312(5775): 883–883
CrossRef
Pubmed
Google scholar
|
[11] |
Kohlen W, Ruyter-Spira C, Bouwmeester H J. Strigolactones: a new musician in the orchestra of plant hormones. Botany, 2011,89(12): 827–840
CrossRef
Google scholar
|
[12] |
Umehara M, Hanada A, Yoshida S, Akiyama K, Arite T, Takeda-Kamiya N, Magome H, Kamiya Y, Shirasu K, Yoneyama K, Kyozuka J, Yamaguchi S. Inhibition of shoot branching by new terpenoid plant hormones. Nature, 2008, 455(7210): 195–200
CrossRef
Pubmed
Google scholar
|
[13] |
Kebrom T H, Spielmeyer W, Finnegan E J. Grasses provide new insights into regulation of shoot branching. Trends in Plant Science, 2013, 18(1): 41–48
CrossRef
Pubmed
Google scholar
|
[14] |
Li C J, Bangerth F. Autoinhibition of indoleacetic acid transport in the shoots of two-branched pea (Pisum sativum) plants and its relationship to correlative dominance. Physiologia Plantarum, 1999, 106(4): 415–420
CrossRef
Google scholar
|
[15] |
Balla J, Kalousek P, Reinöhl V, Friml J, Procházka S. Competitive canalization of PIN-dependent auxin flow from axillary buds controls pea bud outgrowth. Plant Journal, 2011, 65(4): 571–577
CrossRef
Pubmed
Google scholar
|
[16] |
Ishikawa S, Maekawa M, Arite T, Onishi K, Takamure I, Kyozuka J. Suppression of tiller bud activity in tillering dwarf mutants of rice. Plant & Cell Physiology, 2005, 46(1): 79–86
CrossRef
Pubmed
Google scholar
|
[17] |
Bennett T, Sieberer T, Willett B, Booker J, Luschnig C, Leyser O. The Arabidopsis MAX pathway controls shoot branching by regulating auxin transport. Current Biology, 2006, 16(6): 553–563
CrossRef
Pubmed
Google scholar
|
[18] |
Arite T, Iwata H, Ohshima K, Maekawa M, Nakajima M, Kojima M, Sakakibara H, Kyozuka J. DWARF10, an RMS1/MAX4/DAD1 ortholog, controls lateral bud outgrowth in rice. Plant Journal, 2007, 51(6): 1019–1029
CrossRef
Pubmed
Google scholar
|
[19] |
Lin H, Wang R, Qian Q, Yan M, Meng X, Fu Z, Yan C, Jiang B, Su Z, Li J, Wang Y. DWARF27, an iron-containing protein required for the biosynthesis of strigolactones, regulates rice tiller bud outgrowth. Plant Cell Online, 2009, 21(5): 1512–1525
CrossRef
Pubmed
Google scholar
|
[20] |
Sachs T. The control of the patterned differentiation of vascular tissues. Advances in Botanical Research, 1981, 9: 151–262
CrossRef
Google scholar
|
[21] |
Prusinkiewicz P, Crawford S, Smith R S, Ljung K, Bennett T, Ongaro V, Leyser O. Control of bud activation by an auxin transport switch. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(41): 17431–17436
CrossRef
Pubmed
Google scholar
|
[22] |
Lazar G, Goodman H M. MAX1, a regulator of the flavonoid pathway, controls vegetative axillary bud outgrowth in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(2): 472–476
CrossRef
Pubmed
Google scholar
|
[23] |
Crawford S, Shinohara N, Sieberer T, Williamson L, George G, Hepworth J, Müller D, Domagalska M A, Leyser O. Strigolactones enhance competition between shoot branches by dampening auxin transport. Development, 2010, 137(17): 2905–2913
CrossRef
Pubmed
Google scholar
|
[24] |
Liang J, Zhao L, Challis R, Leyser O. Strigolactone regulation of shoot branching in chrysanthemum (Dendranthema grandiflorum). Journal of Experimental Botany, 2010, 61(11): 3069–3078
CrossRef
Pubmed
Google scholar
|
[25] |
Shinohara N, Taylor C, Leyser O. Strigolactone can promote or inhibit shoot branching by triggering rapid depletion of the auxin efflux protein PIN1 from the plasma membrane. PLoS Biology, 2013, 11(1): e1001474
CrossRef
Pubmed
Google scholar
|
[26] |
Davies C R, Seth A K, Wareing P F. Auxin and kinetin interaction in apical dominance. Science, 1966, 151(3709): 468–469
CrossRef
Pubmed
Google scholar
|
[27] |
Chatfield S P, Stirnberg P, Forde B G, Leyser O. The hormonal regulation of axillary bud growth in Arabidopsis. Plant Journal, 2000, 24(2): 159–169
CrossRef
Pubmed
Google scholar
|
[28] |
Li C, Bangerth F. Stimulatory effect of cytokinins and interaction with IAA on the release of lateral buds of pea plants from apical dominance. Journal of Plant Physiology, 2003, 160(9): 1059–1063
CrossRef
Pubmed
Google scholar
|
[29] |
Jones B, Gunnerås S A, Petersson S V, Tarkowski P, Graham N, May S, Dolezal K, Sandberg G, Ljung K. Cytokinin regulation of auxin synthesis in Arabidopsis involves a homeostatic feedback loop regulated via auxin and cytokinin signal transduction. Plant Cell Online, 2010, 22(9): 2956–2969
CrossRef
Pubmed
Google scholar
|
[30] |
Kalousek P, Buchtova D, Balla J, Reinohl V, Prochazka S. Cytokinins and polar transport of auxin in axillary pea buds. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, 2014, 58(4): 79–88
CrossRef
Google scholar
|
[31] |
Brewer P B, Dun E A, Ferguson B J, Rameau C, Beveridge C A. Strigolactone acts downstream of auxin to regulate bud outgrowth in pea and Arabidopsis. Plant Physiology, 2009, 150(1): 482–493
CrossRef
Pubmed
Google scholar
|
[32] |
Renton M, Hanan J, Ferguson B J, Beveridge C A. Models of long-distance transport: how is carrier-dependent auxin transport regulated in the stem? New Phytologist, 2012, 194(3): 704–715
CrossRef
Pubmed
Google scholar
|
[33] |
Morris S E, Cox M C, Ross J J, Krisantini S, Beveridge C A. Auxin dynamics after decapitation are not correlated with the initial growth of axillary buds. Plant Physiology, 2005, 138(3): 1665–1672
CrossRef
Pubmed
Google scholar
|
[34] |
Ferguson B J, Beveridge C A. Roles for auxin, cytokinin, and strigolactone in regulating shoot branching. Plant Physiology, 2009, 149(4): 1929–1944
CrossRef
Pubmed
Google scholar
|
[35] |
Durbak A, Yao H, McSteen P. Hormone signaling in plant development. Current Opinion in Plant Biology, 2012, 15(1): 92–96
CrossRef
Pubmed
Google scholar
|
[36] |
Hayward A, Stirnberg P, Beveridge C, Leyser O. Interactions between auxin and strigolactone in shoot branching control. Plant Physiology, 2009, 151(1): 400–412
CrossRef
Pubmed
Google scholar
|
[37] |
Sorefan K, Booker J, Haurogné K, Goussot M, Bainbridge K, Foo E, Chatfield S, Ward S, Beveridge C, Rameau C, Leyser O. MAX4 and RMS1 are orthologous dioxygenase-like genes that regulate shoot branching in Arabidopsis and pea. Genes & Development, 2003, 17(12): 1469–1474
CrossRef
Pubmed
Google scholar
|
[38] |
Foo E, Bullier E, Goussot M, Foucher F, Rameau C, Beveridge C A. The branching gene RAMOSUS1 mediates interactions among two novel signals and auxin in pea. Plant Cell Online, 2005, 17(2): 464–474
CrossRef
Pubmed
Google scholar
|
[39] |
Zou J, Zhang S, Zhang W, Li G, Chen Z, Zhai W, Zhao X, Pan X, Xie Q, Zhu L. The rice HIGH-TILLERING DWARF1 encoding an ortholog of Arabidopsis MAX3 is required for negative regulation of the outgrowth of axillary buds. Plant Journal, 2006, 48(5): 687–698
CrossRef
Pubmed
Google scholar
|
[40] |
Dun E A, de Saint Germain A, Rameau C, Beveridge C A. Dynamics of strigolactone function and shoot branching responses in Pisum sativum. Molecular Plant, 2013, 6(1): 128–140
CrossRef
Pubmed
Google scholar
|
[41] |
Faiss M, Zalubìlová J, Strnad M, Schmülling T. Conditional transgenic expression of the ipt gene indicates a function for cytokinins in paracrine signaling in whole tobacco plants. Plant Journal, 1997, 12(2): 401–415
CrossRef
Pubmed
Google scholar
|
[42] |
Nordström A, Tarkowski P, Tarkowska D, Norbaek R, Astot C, Dolezal K, Sandberg G. Auxin regulation of cytokinin biosynthesis in Arabidopsis thaliana: a factor of potential importance for auxin-cytokinin-regulated development. Proceedings of the National Academy of Sciences ofthe United States of America, 2004, 101(21): 8039–8044
CrossRef
Pubmed
Google scholar
|
[43] |
Tanaka M, Takei K, Kojima M, Sakakibara H, Mori H. Auxin controls local cytokinin biosynthesis in the nodal stem in apical dominance. Plant Journal, 2006, 45(6): 1028–1036
CrossRef
Pubmed
Google scholar
|
[44] |
Morris D A. Hormonal regulation of source-sink relationships: an overview of potential control mechanisms. In: Zamski E, Schaffer A A, eds. Photoassimilate distribution in plants and crops. Source-sink relationships. New York: Marcel Dekker, 1996, 441–466
|
[45] |
Mason M G, Ross J J, Babst B A, Wienclaw B N, Beveridge C A. Sugar demand, not auxin, is the initial regulator of apical dominance. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(16): 6092–6097
CrossRef
Pubmed
Google scholar
|
[46] |
Jiang L, Liu X, Xiong G, Liu H, Chen F, Wang L, Meng X, Liu G, Yu H, Yuan Y, Yi W, Zhao L, Ma H, He Y, Wu Z, Melcher K, Qian Q, Xu H E, Wang Y, Li J. DWARF 53 acts as a repressor of strigolactone signalling in rice. Nature, 2013, 504(7480): 401–405
Pubmed
|
[47] |
Zhou F, Lin Q, Zhu L, Ren Y, Zhou K, Shabek N, Wu F, Mao H, Dong W, Gan L, Ma W, Gao H, Chen J, Yang C, Wang D, Tan J, Zhang X, Guo X, Wang J, Jiang L, Liu X, Chen W, Chu J, Yan C, Ueno K, Ito S, Asami T, Cheng Z, Wang J, Lei C, Zhai H, Wu C, Wang H, Zheng N, Wan J. D14-SCF(D3)-dependent degradation of D53 regulates strigolactone signalling. Nature, 2013, 504(7480): 406–410
CrossRef
Pubmed
Google scholar
|
[48] |
Janssen B J, Snowden K C. Strigolactone and karrikin signal perception: receptors, enzymes, or both? Frontiers in Plant Science, 2012, 3: 1–13
|
[49] |
Brewer P B, Koltai H, Beveridge C A. Diverse roles of strigolactones in plant development. Molecular Plant, 2013, 6(1): 18–28
CrossRef
Pubmed
Google scholar
|
[50] |
de Saint Germain A, Bonhomme S, Boyer F D, Rameau C. Novel insights into strigolactone distribution and signalling. Current Opinion in Plant Biology, 2013, 16(5): 583–589
CrossRef
Pubmed
Google scholar
|
[51] |
Foo E, Reid J B. Strigolactones: new physiological roles for an ancient signal. Journal of Plant Growth Regulation, 2013, 32(2): 429–442
CrossRef
Google scholar
|
[52] |
Ruyter-Spira C, Al-Babili S, van der Krol S, Bouwmeester H. The biology of strigolactones. Trends in Plant Science, 2013, 18(2): 72–83
CrossRef
Pubmed
Google scholar
|
[53] |
Waldie T, McCulloch H, Leyser O. Strigolactones and the control of plant development: lessons from shoot branching. Plant Journal, 2014, 79(4): 607–622
CrossRef
Pubmed
Google scholar
|
[54] |
Smith S M, Li J. Signalling and responses to strigolactones and karrikins. Current Opinion in Plant Biology, 2014, 21: 23–29
CrossRef
Pubmed
Google scholar
|
[55] |
Seto Y, Yamaguchi S. Strigolactone biosynthesis and perception. Current Opinion in Plant Biology, 2014, 21: 1–6
CrossRef
Pubmed
Google scholar
|
[56] |
Cheng X, Ruyter-Spira C, Bouwmeester H. The interaction between strigolactones and other plant hormones in the regulation of plant development. Frontiers in Plant Science, 2013, 4: 199
CrossRef
Pubmed
Google scholar
|
[57] |
Rameau C, Bertheloot J, Leduc N, Andrieu B, Foucher F, Sakr S. Multiple pathways regulate shoot branching. Frontiers in Plant Science, 2014, 5: 741
Pubmed
|
[58] |
Bainbridge K, Sorefan K, Ward S, Leyser O. Hormonally controlled expression of the Arabidopsis MAX4 shoot branching regulatory gene. Plant Journal, 2005, 44(4): 569–580
CrossRef
Pubmed
Google scholar
|
[59] |
Waters M T, Nelson D C, Scaffidi A, Flematti G R, Sun Y K, Dixon K W, Smith S M. Specialisation within the DWARF14 protein family confers distinct responses to karrikins and strigolactones in Arabidopsis. Development, 2012, 139(7): 1285–1295
CrossRef
Pubmed
Google scholar
|
[60] |
Waters M T, Scaffidi A, Flematti G R, Smith S M. Karrikins force a rethink of strigolactone mode of action. Plant Signaling & Behavior, 2012, 7(8): 969–972
CrossRef
Pubmed
Google scholar
|
[61] |
Booker J, Auldridge M, Wills S, McCarty D, Klee H, Leyser O. MAX3/CCD7 is a carotenoid cleavage dioxygenase required for the synthesis of a novel plant signaling molecule. Current Biology, 2004, 14(14): 1232–1238
CrossRef
Pubmed
Google scholar
|
[62] |
Schwartz S H, Qin X, Loewen M C. The biochemical characterization of two carotenoid cleavage enzymes from Arabidopsis indicates that a carotenoid-derived compound inhibits lateral branching. Journal of Biological Chemistry, 2004, 279(45): 46940–46945
CrossRef
Pubmed
Google scholar
|
[63] |
Alder A, Jamil M, Marzorati M, Bruno M, Vermathen M, Bigler P, Ghisla S, Bouwmeester H, Beyer P, Al-Babili S. The path from β-carotene to carlactone, a strigolactone-like plant hormone. Science, 2012, 335(6074): 1348–1351
CrossRef
Pubmed
Google scholar
|
[64] |
Zhang S, Li G, Fang J, Chen W, Jiang H, Zou J, Liu X, Zhao X, Li X, Chu C, Xie Q, Jiang X, Zhu L. The interactions among DWARF10, auxin and cytokinin underlie lateral bud outgrowth in rice. Journal of Integrative Plant Biology, 2010, 52(7): 626–638
Pubmed
|
[65] |
Morris S E, Turnbull C G, Murfet I C, Beveridge C A. Mutational analysis of branching in pea. Evidence that Rms1 and Rms5 regulate the same novel signal. Plant Physiology, 2001, 126(3): 1205–1213
CrossRef
Pubmed
Google scholar
|
[66] |
Drummond R S, Martínez-Sánchez N M, Janssen B J, Templeton K R, Simons J L, Quinn B D, Karunairetnam S, Snowden K C. Petunia hybrida CAROTENOID CLEAVAGE DIOXYGENASE7 is involved in the production of negative and positive branching signals in petunia. Plant Physiology, 2009, 151(4): 1867–1877
CrossRef
Pubmed
Google scholar
|
[67] |
Snowden K C, Simkin A J, Janssen B J, Templeton K R, Loucas H M, Simons J L, Karunairetnam S, Gleave A P, Clark D G, Klee H J. The Decreased apical dominance1/Petunia hybrida CAROTENOID CLEAVAGE DIOXYGENASE8 gene affects branch production and plays a role in leaf senescence, root growth, and flower development. Plant Cell Online, 2005, 17(3): 746–759
CrossRef
Pubmed
Google scholar
|
[68] |
Zhang Y, van Dijk A D, Scaffidi A, Flematti G R, Hofmann M, Charnikhova T, Verstappen F, Hepworth J, van der Krol S, Leyser O, Smith S M, Zwanenburg B, Al-Babili S, Ruyter-Spira C, Bouwmeester H J. Rice cytochrome P450 MAX1 homologs catalyze distinct steps in strigolactone biosynthesis. Nature Chemical Biology, 2014, 10(12): 1028–1033
CrossRef
Pubmed
Google scholar
|
[69] |
Booker J, Sieberer T, Wright W, Williamson L, Willett B, Stirnberg P, Turnbull C, Srinivasan M, Goddard P, Leyser O. MAX1 encodes a cytochrome P450 family member that acts downstream of MAX3/4 to produce a carotenoid-derived branch-inhibiting hormone. Developmental Cell, 2005, 8(3): 443–449
CrossRef
Pubmed
Google scholar
|
[70] |
Koltai H. LekKala S P, Bhattacharya C, Mayzlish-Gati E, Resnick N, Wininger S, Dor E, Yoneyama K, Hershenhorn J, Joel D M, Kapulnik Y. A tomato strigolactone-impaired mutant displays aberrant shoot morphology and plant interactions. Journal of Experimental Botany, 2010, 61(6): 1739–1749
|
[71] |
Roose J L, Frankel L K, Bricker T M. Developmental defects in mutants of the PsbP domain protein 5 in Arabidopsis thaliana. PLoS ONE, 2011, 6(12): e28624
CrossRef
Pubmed
Google scholar
|
[72] |
Liu W, Kohlen W, Lillo A, Op den Camp R, Ivanov S, Hartog M, Limpens E, Jamil M, Smaczniak C, Kaufmann K, Yang W C, Hooiveld G J E J, Charnikhova T, Bouwmeester H J, Bisseling T, Geurts R. Strigolactone biosynthesis in Medicago truncatula and rice requires the symbiotic GRAS-type transcription factors NSP1 and NSP2. Plant Cell Online, 2011, 23(10): 3853–3865
CrossRef
Pubmed
Google scholar
|
[73] |
Sasse J, Simon S, Gübeli C, Liu G W, Cheng X, Friml J, Bouwmeester H, Martinoia E, Borghi L. Asymmetric localizations of the ABC transporter PaPDR1 trace paths of directional strigolactone transport. Current Biology, 2015, 25(5): 647–655
CrossRef
Pubmed
Google scholar
|
[74] |
Shen H, Luong P, Huq E. The F-box protein MAX2 functions as a positive regulator of photomorphogenesis in Arabidopsis. Plant Physiology, 2007, 145(4): 1471–1483
CrossRef
Pubmed
Google scholar
|
[75] |
Stirnberg P, Furner I J, Ottoline Leyser H M. MAX2 participates in an SCF complex which acts locally at the node to suppress shoot branching. Plant Journal, 2007,50(1): 80–94
CrossRef
Pubmed
Google scholar
|
[76] |
Chevalier F, Nieminen K, Sánchez-Ferrero J C, Rodríguez M L, Chagoyen M, Hardtke C S, Cubas P. Strigolactone promotes degradation of DWARF14, an α/β hydrolase essential for strigolactone signaling in Arabidopsis. Plant Cell Online, 2014, 26(3): 1134–1150
CrossRef
Pubmed
Google scholar
|
[77] |
Foo E, Turnbull C G, Beveridge C A. Long-distance signaling and the control of branching in the rms1 mutant of pea. Plant Physiology, 2001, 126(1): 203–209
CrossRef
Pubmed
Google scholar
|
[78] |
Mashiguchi K, Sasaki E, Shimada Y, Nagae M, Ueno K, Nakano T, Yoneyama K, Suzuki Y, Asami T. Feedback-regulation of strigolactone biosynthetic genes and strigolactone-regulated genes in Arabidopsis. Bioscience, Biotechnology, and Biochemistry, 2009,73(11): 2460–2465
CrossRef
Pubmed
Google scholar
|
[79] |
Kretzschmar T, Kohlen W, Sasse J, Borghi L, Schlegel M, Bachelier J B, Reinhardt D, Bours R, Bouwmeester H J, Martinoia E. A petunia ABC protein controls strigolactone-dependent symbiotic signalling and branching. Nature, 2012, 483(7389): 341–344
CrossRef
Pubmed
Google scholar
|
[80] |
Xie X, Wang G, Yang L, Cheng T, Gao J, Wu Y, Xia Q. Cloning and characterization of a novel Nicotiana tabacum ABC transporter involved in shoot branching. Physiologia Plantarum, 2015, 153(2): 299–306
CrossRef
Pubmed
Google scholar
|
[81] |
Arite T, Umehara M, Ishikawa S, Hanada A, Maekawa M, Yamaguchi S, Kyozuka J. d14, a strigolactone-insensitive mutant of rice, shows an accelerated outgrowth of tillers. Plant & Cell Physiology, 2009, 50(8): 1416–1424
CrossRef
Pubmed
Google scholar
|
[82] |
Gao Z, Qian Q, Liu X, Yan M, Feng Q, Dong G, Liu J, Han B. Dwarf 88, a novel putative esterase gene affecting architecture of rice plant. Plant Molecular Biology, 2009, 71(3): 265–276
CrossRef
Pubmed
Google scholar
|
[83] |
Zhao L H, Zhou X E, Wu Z S, Yi W, Xu Y, Li S, Xu T H, Liu Y, Chen R Z, Kovach A, Kang Y, Hou L, He Y, Xie C, Song W, Zhong D, Xu Y, Wang Y, Li J, Zhang C, Melcher K, Xu H E. Crystal structures of two phytohormone signal-transducing α/β hydrolases: karrikin-signaling KAI2 and strigolactone-signaling DWARF14. Cell Research, 2013, 23(3): 436–439
CrossRef
Pubmed
Google scholar
|
[84] |
Kagiyama M, Hirano Y, Mori T, Kim S Y, Kyozuka J, Seto Y, Yamaguchi S, Hakoshima T. Structures of D14 and D14L in the strigolactone and karrikin signaling pathways. Genes to Cells, 2013, 18(2): 147–160
CrossRef
Pubmed
Google scholar
|
[85] |
Aguilar-Martínez J A, Poza-Carrión C, Cubas P. ArabidopsisBRANCHED1 acts as an integrator of branching signals within axillary buds. Plant Cell Online, 2007, 19(2): 458–472
CrossRef
Pubmed
Google scholar
|
[86] |
Minakuchi K, Kameoka H, Yasuno N, Umehara M, Luo L, Kobayashi K, Hanada A, Ueno K, Asami T, Yamaguchi S, Kyozuka J. FINE CULM1 (FC1) works downstream of strigolactones to inhibit the outgrowth of axillary buds in rice. Plant & Cell Physiology, 2010, 51(7): 1127–1135
CrossRef
Pubmed
Google scholar
|
[87] |
Braun N, de Saint Germain A, Pillot J P, Boutet-Mercey S, Dalmais M, Antoniadi I, Li X, Maia-Grondard A, Le Signor C, Bouteiller N, Luo D, Bendahmane A, Turnbull C, Rameau C. The pea TCP transcription factor PsBRC1 acts downstream of strigolactones to control shoot branching. Plant Physiology, 2012, 158(1): 225–238
CrossRef
Pubmed
Google scholar
|
[88] |
Doebley J, Wang R L. Genetics and the evolution of plant form: an example from maize. Cold Spring Harbor symposia on quantitative biology, 1997, 62: 361–367.
|
[89] |
Takeda T, Suwa Y, Suzuki M, Kitano H, Ueguchi-Tanaka M, Ashikari M, Matsuoka M, Ueguchi C. The OsTB1 gene negatively regulates lateral branching in rice. Plant Journal, 2003, 33(3): 513–520
CrossRef
Pubmed
Google scholar
|
[90] |
Guan J C, Koch K E, Suzuki M, Wu S, Latshaw S, Petruff T, Goulet C, Klee H J, McCarty D R. Diverse roles of strigolactone signaling in maize architecture and the uncoupling of a branching-specific subnetwork. Plant Physiology, 2012, 160(3): 1303–1317
CrossRef
Pubmed
Google scholar
|
[91] |
Guo S, Xu Y, Liu H, Mao Z, Zhang C, Ma Y, Zhang Q, Meng Z, Chong K. The interaction between OsMADS57 and OsTB1 modulates rice tillering via DWARF14. Nature Communications, 2013, 4: 1566
CrossRef
Pubmed
Google scholar
|
[92] |
Wang Y, Sun S, Zhu W, Jia K, Yang H, Wang X. Strigolactone/MAX2-induced degradation of brassinosteroid transcriptional effector BES1 regulates shoot branching. Developmental Cell, 2013, 27(6): 681–688
CrossRef
Pubmed
Google scholar
|
[93] |
Kebrom T H, Burson B L, Finlayson S A. Phytochrome B represses Teosinte Branched1 expression and induces sorghum axillary bud outgrowth in response to light signals. Plant Physiology, 2006, 140(3): 1109–1117
CrossRef
Pubmed
Google scholar
|
[94] |
Kebrom T H, Chandler P M, Swain S M, King R W, Richards R A, Spielmeyer W. Inhibition of tiller bud outgrowth in the tin mutant of wheat is associated with precocious internode development. Plant Physiology, 2012, 160(1): 308–318
CrossRef
Pubmed
Google scholar
|
[95] |
Martín-Trillo M, Grandío E G, Serra F, Marcel F, Rodríguez-Buey M L, Schmitz G, Theres K, Bendahmane A, Dopazo H, Cubas P. Role of tomato BRANCHED1-like genes in the control of shoot branching. Plant Journal, 2011, 67(4): 701–714
CrossRef
Pubmed
Google scholar
|
[96] |
Chen X L, Zhou X Y, Xi L, Li J X, Zhao R Y, Ma N, Zhao L J. Roles of DgBRC1 in regulation of lateral branching in chrysanthemum (Dendranthema× grandiflora cv. Jinba). PLoS ONE, 2013, 8(4): 1–11
|
[97] |
Dun E A, de Saint Germain A, Rameau C, Beveridge C A. Antagonistic action of strigolactone and cytokinin in bud outgrowth control. Plant Physiology, 2012, 158(1): 487–498
CrossRef
Pubmed
Google scholar
|
[98] |
Casal J J, Sanchez R A, Deregibus V A. The effect of plant density on tillering: the involvement of R/FR ratio and the proportion of radiation intercepted per plant. Environmental and Experimental Botany, 1986, 26(4): 365–371
CrossRef
Google scholar
|
[99] |
Casal J J. Shade avoidance. The Arabidopsis book, 2012, 10: e0157
|
[100] |
Kebrom T H, Brutnell T P, Finlayson S A. Suppression of sorghum axillary bud outgrowth by shade, phyB and defoliation signalling pathways. Plant, Cell & Environment, 2010, 33(1): 48–58
Pubmed
|
[101] |
González-Grandío E, Poza-Carrión C, Sorzano C O S, Cubas P. BRANCHED1 promotes axillary bud dormancy in response to shade in Arabidopsis. Plant Cell Online, 2013, 25(3): 834–850
CrossRef
Pubmed
Google scholar
|
[102] |
Finlayson S A, Krishnareddy S R, Kebrom T H, Casal J J. Phytochrome regulation of branching in Arabidopsis. Plant Physiology, 2010, 152(4): 1914–1927
CrossRef
Pubmed
Google scholar
|
[103] |
Tao Y, Ferrer J L, Ljung K, Pojer F, Hong F, Long J A, Li L, Moreno J E, Bowman M E, Ivans L J, Cheng Y, Lim J, Zhao Y, Ballaré C L, Sandberg G, Noel J P, Chory J. Rapid synthesis of auxin via a new tryptophan-dependent pathway is required for shade avoidance in plants. Cell, 2008, 133(1): 164–176
CrossRef
Pubmed
Google scholar
|
/
〈 | 〉 |