Genomics approaches to unlock the high yield potential of cassava, a tropical model plant

Shengkui ZHANG, Ping’an MA, Haiyan WANG, Cheng LU, Xin CHEN, Zhiqiang XIA, Meiling ZOU, Xinchen ZHOU, Wenquan WANG

PDF(603 KB)
PDF(603 KB)
Front. Agr. Sci. Eng. ›› 2014, Vol. 1 ›› Issue (4) : 259-266. DOI: 10.15302/J-FASE-2014043
REVIEW
REVIEW

Genomics approaches to unlock the high yield potential of cassava, a tropical model plant

Author information +
History +

Abstract

Cassava, a tropical food, feed and biofuel crop, has great capacity for biomass accumulation and an extraordinary efficiency in water use and mineral nutrition, which makes it highly suitable as a model plant for tropical crops. However, the understanding of the metabolism and genomics of this important crop is limited. The recent breakthroughs in the genomics of cassava, including whole-genome sequencing and transcriptome analysis, as well as advances in the biology of photosynthesis, starch biosynthesis, adaptation to drought and high temperature, and resistance to virus and bacterial diseases, are reviewed here. Many of the new developments have come from comparative analyses between a wild ancestor and existing cultivars. Finally, the current challenges and future potential of cassava as a model plant are discussed.

Keywords

cassava / genomics / yield potential / adaptability / tropical model

Cite this article

Download citation ▾
Shengkui ZHANG, Ping’an MA, Haiyan WANG, Cheng LU, Xin CHEN, Zhiqiang XIA, Meiling ZOU, Xinchen ZHOU, Wenquan WANG. Genomics approaches to unlock the high yield potential of cassava, a tropical model plant. Front. Agr. Sci. Eng., 2014, 1(4): 259‒266 https://doi.org/10.15302/J-FASE-2014043

References

[1]
Li P, Brutnell T P. Setaria viridis and Setaria italica, model genetic systems for the Panicoid grasses. Journal of Experimental Botany, 2011, 62(9): 3031–3037
CrossRef Google scholar
[2]
Doust A N, Kellogg E A, Devos K M, Bennetzen J L. Foxtail millet: a sequence- driven grass model system. Plant Physiology, 2009, 149(1): 137–141
CrossRef Google scholar
[3]
Brutnell T P, Wang L, Swartwood K, Goldschmidt A, Jackson D, Zhu X G, Kellogg E, Van Eck J. Setaria viridis: a model for C4 photosynthesis. Plant Cell, 2010, 22(8): 2537–2544
CrossRef Google scholar
[4]
Diao X, Schnable J, Bennetzen J L, Li J. Initiation of Setaria as a model plant. Frontiers of Agricultural Science and Engineering, 2014, 1(1): 16–20
CrossRef Google scholar
[5]
Fregene M. Cassava biotechnology. In: Hillocks R J. Cassava: biology, production and utilization. CAB International, 2002: 179–207
[6]
Allem A C. The origin of Manihot esculenta Crantz (Euphorbiaceae). Genetic Resources and Crop Evolution, 1994, 41(3): 133–150
CrossRef Google scholar
[7]
Allem A C. The closest wild relatives of cassava (Manihot esculenta Crantz). Euphytica, 1999, 107(1): 123–133
CrossRef Google scholar
[8]
Olsen K M, Schaal B A. Evidence on the origin of cassava: phylogeography of Manihot esculenta. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96(10): 5586–5591
CrossRef Google scholar
[9]
Bartlett A S, Barghoorn E S, Berger R. Fossil maize from Panama. Science, 1969, 165(3891): 389–390
CrossRef Google scholar
[10]
Gibbons A. New view of early Amazonia: recent findings suggest complex culture was indigenous to the Amazon Basin–upsetting some received opinions about environment and culture. Science, 1990, 248(4962): 1488–1490
CrossRef Google scholar
[11]
El-Sharkawy M A, Cock J H. Photosynthesis of cassava (Manihot esculenta). Experimental Agriculture, 1990, 26(03): 325–340
CrossRef Google scholar
[12]
El-Sharkawy M A, Cock J H, Lynam J K, del Pilar Hernàndez A, Cadavid L F L. Relationships between biomass, root-yield and single-leaf photosynthesis in field-grown cassava. Field Crops Research, 1990, 25(3–4): 183–201
CrossRef Google scholar
[13]
El-Sharkawy M A, Cock J H, Held A A. Photosynthetic responses of cassava cultivars (Manihot esculenta Crantz) from different habitats to temperature. Photosynthesis Research, 1984, 5(3): 243–250
CrossRef Google scholar
[14]
El-Sharkawy M A, De Tafur S M, Cadavid L F. Potential photosynthesis of cassava as affected by growth conditions. Crop Science, 1992, 32(6): 1336–1342
CrossRef Google scholar
[15]
El-Sharkawy M A, Cock J H, De Cadena G. Influence of differences in leaf anatomy on net photosynthetic rates of some cultivars of cassava. Photosynthesis Research, 1984, 5(3): 235–242
CrossRef Google scholar
[16]
Cock J H, Riaño N M, El-Sharkawy M A, Lopez Y, Bastidas G. C3–C4 intermediate photosynthetic characteristics of cassava (Manihot esculenta Crantz). II. Initial products of 14CO2 fixation. Photosynthesis Research, 1987, 12(3): 237–241
CrossRef Google scholar
[17]
El-Sharkawy M A, Cock J H. C3–C4 intermediate photosynthetic characteristics of cassava (Manihot esculenta Crantz). I. Gas exchange. Photosynthesis Research, 1987, 12(3): 219–235
CrossRef Google scholar
[18]
Calatayud P A, Barón C H, Velásquez H, Arroyave J A, Lamaze T. Wild manihot species do not possess C4 photosynthesis. Annals of Botany, 2002, 89(1): 125–127
CrossRef Google scholar
[19]
Prochnik S, Marri P R, Desany B, Rabinowicz P D, Kodira C, Mohiuddin M, Rodriguez F, Fauquet C, Tohme J, Harkins T, Rokhsar D S, Rounsley S. The cassava genome: current progress, future directions. Tropical Plant Biology, 2012, 5(1): 88–94
CrossRef Google scholar
[20]
Wang W, Feng B, Xiao J, Xia Z, Zhou X, Li P, Zhang W, Wang Y, Møller B L, Zhang P, Luo M C, Xiao G, Liu J, Yang J, Chen S, Rabinowicz P D, Chen X, Zhang H B, Ceballos H, Lou Q, Zou M, Carvalho L J, Zeng C, Xia J, Sun S, Fu Y, Wang H, Lu C, Ruan M, Zhou S, Wu Z, Liu H, Kannangara R M, Jørgensen K, Neale R L, Bonde M, Heinz N, Zhu W, Wang S, Zhang Y, Pan K, Wen M, Ma P A, Li Z, Hu M, Liao W, Hu W, Zhang S, Pei J, Guo A, Guo J, Zhang J, Zhang Z, Ye J, Ou W, Ma Y, Liu X, Tallon L J, Galens K, Ott S, Huang J, Xue J, An F, Yao Q, Lu X, Fregene M, López-Lavalle L A B, Wu J, You F M, Chen M, Hu S, Wu G, Zhong S, Ling P, Chen Y, Wang Q, Liu G, Liu B, Li K, Peng M. Cassava genome from a wild ancestor to cultivated varieties. Nature Communications, 2014, 5: 5110
CrossRef Google scholar
[21]
Morris G P, Ramu P, Deshpande S P, Hash C T, Shah T, Upadhyaya H D, Riera-Lizarazu O, Brown P J, Acharya C B, Mitchell S E, Harriman J, Glaubitz J C, Buckler E S, Kresovich S. Population genomic and genome-wide association studies of agroclimatic traits in sorghum. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(2): 453–458
CrossRef Google scholar
[22]
Rabbi I Y, Kulembeka H P, Masumba E, Marri P R, Ferguson M. An EST-derived SNP and SSR genetic linkage map of cassava (Manihot esculenta Crantz). Theoretical and Applied Genetics, 2012, 125(2): 329–342
CrossRef Google scholar
[23]
Chen X, Xia Z, Fu Y, Lu C, Wang W. Constructing a genetic linkage map using an F1 population of non-inbred parents in cassava (Manihot esculenta Crantz). Plant Molecular Biology Reporter, 2010, 28(4): 676–683
CrossRef Google scholar
[24]
Kunkeaw S, Yoocha T, Sraphet S, Boonchanawiwat A, Boonseng O, Lightfoot D A, Triwitayakorn K, Tangphatsornruang S. Construction of a genetic linkage map using simple sequence repeat markers from expressed sequence tags for cassava (Manihot esculenta Crantz). Molecular Breeding, 2011, 27(1): 67–75
CrossRef Google scholar
[25]
El-Sharkawy M A, De Tafur S M, Cadavid L F. Photosynthesis of cassava and its relation to crop productivity. Photosynthetica, 1993, 28: 431–438
[26]
El-Sharkawy M A, Cock J H. The humidity factor in stomatal control and its effects on crop productivity. In: R. Marcelle R, Clijsters H, van Poucke M, eds. Biological Control of Photosynthesis. Dordrecht: Martinus Nijhoff Publishers, 1986, 187–198
[27]
El-Sharkawy M A, Cock J H, Held K A A. Water use efficiency of cassava. II. Differing sensitivity of stomata to air humidity in cassava and other warm-climate species. Crop Science, 1984, 24(3): 503–507
[28]
El-Sharkawy M A, Cock J H, Del Pilar Hernandez A. Stomatal response to air humidity and its relation to stomatal density in a wide range of warm climate species. Photosynthesis Research, 1985, 7(2): 137–149
CrossRef Google scholar
[29]
Alves A A, Setter T L. Response of cassava leaf area expansion to water deficit: cell proliferation, cell expansion and delayed development. Annals of Botany, 2004, 94(4): 605–613
CrossRef Google scholar
[30]
Okogbenin E, Setter T L, Ferguson M, Mutegi R, Ceballos H, Olasanmi B, Fregene M. Phenotypic approaches to drought in cassava: review. Frontiers in Physiology, 2013, 4: 1–15
CrossRef Google scholar
[31]
Hubbard K E, Nishimura N, Hitomi K, Getzoff E D, Schroeder J I. Early abscisic acid signal transduction mechanisms: newly discovered components and newly emerging questions. Genes & Development, 2010, 24(16): 1695–1708
CrossRef Google scholar
[32]
Zelazny E, Vert G. Plant nutrition: root transporters on the move. Plant Physiology, 2014, 166(2): 500–508
CrossRef Google scholar
[33]
Alves A A C, Setter T L. Abscisic acid accumulation and osmotic adjustment in cassava under water deficit. Environmental and Experimental Botany, 2004, 51(3): 259–271
CrossRef Google scholar
[34]
Utsumi Y, Tanaka M, Morosawa T, Kurotani A, Yoshida T, Mochida K, Matsui A, Umemura Y, Ishitani M, Shinozaki K, Sakurai T, Seki M. Transcriptome analysis using a high-density Oligomicroarray under drought stress in various genotypes of cassava: an important tropical Crop. DNA Research, 2012, 19(4): 335–345
CrossRef Google scholar
[35]
Li H Q, Sautter C, Potrykus I, Puonti-Kaerlas J. Genetic transformation of cassava (Manihot esculenta Crantz). Nature Biotechnology, 1996, 14(6): 736–740
CrossRef Google scholar
[36]
Schöpke C, Taylor N, Cárcamo R, Konan N K, Marmey P, Henshaw G G, Beachy R N, Fauquet C. Regeneration of transgenic cassava plants (Manihot esculenta Crantz) from microbombarded embryogenic suspension cultures. Nature Biotechnology, 1996, 14(6): 731–735
CrossRef Google scholar
[37]
Zhang P, Jaynes J M, Potrykus I, Gruissem W, Puonti-Kaerlas J. Transfer and expression of an artificial storage protein (ASP1) gene in cassava (Manihot esculenta Crantz). Transgenic Research, 2003, 12(2): 243–250
CrossRef Google scholar
[38]
Zhang P, Bohl-Zenger S, Puonti-Kaerlas J, Potrykus I, Gruissem W. Two cassava promoters related to vascular expression and storage root formation. Planta, 2003, 218(2): 192–203
CrossRef Google scholar
[39]
Welsch R, Arango J, Bär C, Salazar B, Al-Babili S, Beltrán J, Chavarriaga P, Ceballos H, Tohme J, Beyer P. Provitamin A accumulation in cassava (Manihot esculenta) roots driven by a single nucleotide polymorphism in a phytoene synthase gene. Plant Cell, 2010, 22(10): 3348–3356
CrossRef Google scholar
[40]
Legg J P, Thresh J M. Cassava virus diseases in Africa. In: Hughes J d’A, Odu B O, eds. Plant Virology in Sub-Saharan Africa, Ibadan, Nigeria. International Institute of Tropical Agriculture, 2004, 517–552
[41]
Legg J P, Thresh J M. Cassava mosaic virus disease in East Africa: a dynamic disease in a changing environment. Virus Research, 2000, 71(1–2): 135–149
CrossRef Google scholar
[42]
Monger W A, Seal S, Isaac A M, Foster G D. Molecular characterization of the cassava brownstreak virus coat protein. Plant Pathology, 2001, 50(4): 527–534
CrossRef Google scholar
[43]
Maruthi M N, Hillocks R J, Mtunda K, Raya M D, Muhanna M, Kiozia H, Rekha A R, Colvin J, Thresh J M. Transmission of Cassava brown streak virus by Bemisia tabaci (Gennadius). Journal of Phytopathology, 2005, 153(5): 307–312
CrossRef Google scholar
[44]
Ogwok E, Odipio J, Halsey M, Gaitán-Solís E, Bua A, Taylor N J, Fauquet C M, Alicai T. Transgenic RNA interference (RNAi)-derived field resistance to cassava brown streak disease. Molecular Plant Pathology, 2012, 13(9): 1019–1031
CrossRef Google scholar
[45]
Vanderschuren H, Moreno I, Anjanappa R B, Zainuddin I M, Gruissem W. Exploiting the combination of natural and genetically engineered resistance to cassava mosaic and cassava Brown streak viruses impacting cassava production in Africa. PLoS ONE, 2012, 7(9): e45277
CrossRef Google scholar
[46]
Pineda B, Jayasinghe U, Lozano J C. La enfermedad “cuero de sapo” en yuca (Manihot esculenta Crantz). Asiava, 1983, 4: 10–12
[47]
Carvajal-Yepes M, Olaya C, Lozano I, Cuervo M, Castaño M, Cuellar W J. Unraveling complex viral infections in cassava (Manihot esculenta Crantz) from Colombia. Virus Research, 2014, 186: 76–86
CrossRef Google scholar
[48]
Lozano J C. Cassava bacterial blight: a manageable disease. Plant Disease, 1986, 70(12): 1089–1093
CrossRef Google scholar
[49]
Maraite H. Xanthomonas campestris pathovars on cassava: cause of bacterial blight and bacterial necrosis. In: Swings J G, Civerolo E L, eds. Xanthomonas. Chapman and Hall, 1993, 18–24
[50]
Arrieta-Ortiz M L, Rodríguez-R L M, Pérez-Quintero Á, Poulin L, Díaz A C, Arias Rojas N, Trujillo C, Restrepo Benavides M, Bart R, Boch J, Boureau T, Darrasse A, David P, Dugé de Bernonville T, Fontanilla P, Gagnevin L, Guérin F, Jacques M A, Lauber E, Lefeuvre P, Medina C, Medina E, Montenegro N, Muñoz Bodnar A, Noël L D, Ortiz Quiñones J F, Osorio D, Pardo C, Patil P B, Poussier S, Pruvost O, Robène-Soustrade I, Ryan R P, Tabima J, Urrego Morales O G, Vernière C, Carrere S, Verdier V, Szurek B, Restrepo S, López C, Koebnik R, Bernal A. Genomic survey of pathogenicity determinants and VNTR markers in the cassava bacterial pathogen Xanthomonas axonopodis pv. Manihotis strain CIO151. PLoS ONE, 2013, 8(11): e79704
CrossRef Google scholar
[51]
Reilly K, Gómez-Vásquez R, Buschmann H, Tohme J, Beeching J R. Oxidative stress responses during cassava post-harvest physiological deterioration. Plant Molecular Biology, 2004, 56(4): 625–641
CrossRef Google scholar
[52]
Owiti J, Grossmann J, Gehrig P, Dessimoz C, Laloi C, Hansen M B, Gruissem W, Vanderschuren H. iTRAQ-based analysis of changes in the cassava root proteome reveals pathways associated with post-harvest physiological deterioration. Plant Journal, 2011, 67(1): 145–156
CrossRef Google scholar
[53]
Reilly K, Bernal D, Cortés D F, Gómez-Vásquez R, Tohme J, Beeching J R. Towards identifying the full set of genes expressed during cassava post-harvest physiological deterioration. Plant Molecular Biology, 2007, 64(1–2): 187–203
CrossRef Google scholar
[54]
Vanderschuren H, Nyaboga E, Poon J S, Baerenfaller K, Grossmann J, Hirsch-Hoffmann M, Kirchgessner N, Nanni P, Gruissem W. Large-scale proteomics of the cassava storage root and identification of a target gene to reduce postharvest deterioration. Plant Cell, 2014, 26(5): 1913–1924
CrossRef Google scholar
[55]
Zidenga T, Leyva-Guerrero E, Moon H, Siritunga D, Sayre R. Extending cassava root shelf life via reduction of reactive oxygen species production. Plant Physiology, 2012, 159(4): 1396–1407
CrossRef Google scholar
[56]
Xu J, Duan X, Yang J, Beeching J R, Zhang P. Enhanced reactive oxygen species scavenging by overproduction of superoxide dismutase and catalase delays postharvest physiological deterioration of cassava storage roots. Plant Physiology, 2013, 161(3): 1517–1528
CrossRef Google scholar
[57]
Nassar N, Ortiz R. Breeding cassava to feed the poor. Scientific American, 2010, 302(5): 78–84
CrossRef Google scholar
[58]
Gbadegesin M, Olaiya C O, Beeching J R. African cassava: biotechnology and molecular breeding to the rescue. British Biotechnology Journal, 2013, 3(3): 305–317
CrossRef Google scholar
[59]
Marris E. Agronomy: five crop researchers who could change the world. Nature, 2008, 456(7222): 563–568
CrossRef Google scholar

Acknowledgement

This work was funded by the National Basic Research Program of China (2010CB126601), the National Natural Science Foundation of China (31261140363 and 31171230), the China Agriculture Research System (CARS-12), the National International Science and Technology Cooperation Plan (2011DFB31690), and the National High Technology Research and Development Program of China (2012AA101204-2).
Compliance with ethics guidelinesƒShengkui Zhang, Ping’an Ma, Haiyan Wang, Cheng Lu, Xin Chen, Zhiqiang Xia, Meiling Zou, Xinchen Zhou and Wenquan Wang declare that they have no conflict of interest or financial conflicts to disclose.ƒThis article is a review and does not contain any studies with human or animal subjects performed by any of the authors.

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(603 KB)

Accesses

Citations

Detail

Sections
Recommended

/