A brief review of microRNA and its role in PRRSV infection and replication
Xuekun GUO, Wenhai FENG
A brief review of microRNA and its role in PRRSV infection and replication
Porcine reproductive and respiratory syndrome virus (PRRSV), a single-stranded RNA virus, mainly infects cells of monocyte/macrophage lineage. Recently, host microRNAs were shown to be capable of modulating PRRSV infection and replication by multiple ways such as targeting viral genomic RNA, targeting viral receptor and inducing antiviral response. MicroRNAs are small RNAs and have emerged as important regulators of virus-host cell interactions. In this review, we discuss the identified functions of host microRNAs in relation to PRRSV infection and propose that cellular microRNAs may have a substantial effect on cell or tissue tropism of PRRSV.
porcine reproductive and respiratory syndrome virus (PRRSV) / microRNA / antiviral / viral tropism
[1] |
Kimman T G, Cornelissen L A, Moormann R J, Rebel J M, Stockhofe-Zurwieden N. Challenges for porcine reproductive and respiratory syndrome virus (PRRSV) vaccinology. Vaccine, 2009, 27(28): 3704–3718
CrossRef
Pubmed
Google scholar
|
[2] |
Bartel D P. MicroRNAs: target recognition and regulatory functions. Cell, 2009, 136(2): 215–233
CrossRef
Pubmed
Google scholar
|
[3] |
Carthew R W, Sontheimer E J. Origins and mechanisms of miRNAs and siRNAs. Cell, 2009, 136(4): 642–655
CrossRef
Pubmed
Google scholar
|
[4] |
Krol J, Loedige I, Filipowicz W. The widespread regulation of microRNA biogenesis, function and decay. Nature Reviews Genetics, 2010, 11(9): 597–610
Pubmed
|
[5] |
Guo X K, Zhang Q, Gao L, Li N, Chen X X, Feng W H. Increasing expression of microRNA 181 inhibits porcine reproductive and respiratory syndrome virus replication and has implications for controlling virus infection. Journal of Virology, 2013, 87(2): 1159–1171
CrossRef
Pubmed
Google scholar
|
[6] |
Gao L, Guo X K, Wang L, Zhang Q, Li N, Chen X X, Wang Y, Feng W H. MicroRNA 181 suppresses porcine reproductive and respiratory syndrome virus (PRRSV) infection by targeting PRRSV receptor CD163. Journal of Virology, 2013, 87(15): 8808–8812
CrossRef
Pubmed
Google scholar
|
[7] |
Zhang Q, Guo X K, Gao L, Huang C, Li N, Jia X, Liu W, Feng W H. MicroRNA-23 inhibits PRRSV replication by directly targeting PRRSV RNA and possibly by upregulating type I interferons. Virology, 2014, 450–451: 182–195
CrossRef
Pubmed
Google scholar
|
[8] |
Hicks J A, Yoo D, Liu H C. Characterization of the microRNAome in porcine reproductive and respiratory syndrome virus infected macrophages. PLoS ONE, 2013, 8(12): e82054
CrossRef
Pubmed
Google scholar
|
[9] |
Kim V N, Han J, Siomi M C. Biogenesis of small RNAs in animals. Nature Reviews Molecular Cell Biology, 2009, 10(2): 126–139
CrossRef
Pubmed
Google scholar
|
[10] |
Kim V N. MicroRNA biogenesis: coordinated cropping and dicing. Nature Reviews Molecular Cell Biology, 2005, 6(5): 376–385
CrossRef
Pubmed
Google scholar
|
[11] |
Pasquinelli A E. MicroRNAs and their targets: recognition, regulation and an emerging reciprocal relationship. Nature Reviews Genetics, 2012, 13(4): 271–282
Pubmed
|
[12] |
Huntzinger E, Izaurralde E. Gene silencing by microRNAs: contributions of translational repression and mRNA decay. Nature Reviews Genetics, 2011, 12(2): 99–110
CrossRef
Pubmed
Google scholar
|
[13] |
Doench J G, Sharp P A. Specificity of microRNA target selection in translational repression. Genes & Development, 2004, 18(5): 504–511
CrossRef
Pubmed
Google scholar
|
[14] |
Reinhart B J, Slack F J, Basson M, Pasquinelli A E, Bettinger J C, Rougvie A E, Horvitz H R, Ruvkun G. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature, 2000, 403(6772): 901–906
CrossRef
Pubmed
Google scholar
|
[15] |
Slack F J, Basson M, Liu Z, Ambros V, Horvitz H R, Ruvkun G. The lin-41 RBCC gene acts in the C. elegans heterochronic pathway between the let-7 regulatory RNA and the LIN-29 transcription factor. Molecular Cell, 2000, 5(4): 659–669
CrossRef
Pubmed
Google scholar
|
[16] |
Vella M C, Choi E Y, Lin S Y, Reinert K, Slack F J. The C. elegans microRNA let-7 binds to imperfect let-7 complementary sites from the lin-41 3′ UTR. Genes & Development, 2004, 18(2): 132–137
CrossRef
Pubmed
Google scholar
|
[17] |
Shin C, Nam J W, Farh K K, Chiang H R, Shkumatava A, Bartel D P. Expanding the microRNA targeting code: functional sites with centered pairing. Molecular Cell, 2010, 38(6): 789–802
CrossRef
Pubmed
Google scholar
|
[18] |
Rigoutsos I. New tricks for animal microRNAS: targeting of amino acid coding regions at conserved and nonconserved sites. Cancer Research, 2009, 69(8): 3245–3248
CrossRef
Pubmed
Google scholar
|
[19] |
Tay Y, Zhang J, Thomson A M, Lim B, Rigoutsos I. MicroRNAs to Nanog, Oct4 and Sox2 coding regions modulate embryonic stem cell differentiation. Nature, 2008, 455(7216): 1124–1128
CrossRef
Pubmed
Google scholar
|
[20] |
Akira S, Uematsu S, Takeuchi O. Pathogen recognition and innate immunity. Cell, 2006, 124(4): 783–801
CrossRef
Pubmed
Google scholar
|
[21] |
Kawai T, Akira S. The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nature Immunology, 2010, 11(5): 373–384
CrossRef
Pubmed
Google scholar
|
[22] |
O’Neill L A, Sheedy F J, McCoy C E. MicroRNAs: the fine-tuners ofToll-like receptor signalling. Nature Reviews Immunology, 2011, 11(3): 163–175
CrossRef
Pubmed
Google scholar
|
[23] |
O’Connell R M, Rao D S, Chaudhuri A A, Baltimore D. Physiological and pathological roles for microRNAs in the immune system. Nature Reviews Immunology, 2010, 10(2): 111–122
CrossRef
Pubmed
Google scholar
|
[24] |
O’Connell R M, Taganov K D, Boldin M P, Cheng G, Baltimore D. MicroRNA-155 is induced during the macrophage inflammatory response. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(5): 1604–1609
CrossRef
Pubmed
Google scholar
|
[25] |
Taganov K D, Boldin M P, Chang K J, Baltimore D. NF-κB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(33): 12481–12486
CrossRef
Pubmed
Google scholar
|
[26] |
Thai T H, Calado D P, Casola S, Ansel K M, Xiao C, Xue Y, Murphy A, Frendewey D, Valenzuela D, Kutok J L, Schmidt-Supprian M, Rajewsky N, Yancopoulos G, Rao A, Rajewsky K. Regulation of the germinal center response by microRNA-155. Science, 2007, 316(5824): 604–608
CrossRef
Pubmed
Google scholar
|
[27] |
O’Connell R M, Chaudhuri A A, Rao D S, Baltimore D. Inositol phosphatase SHIP1 is a primary target of miR-155. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(17): 7113–7118
CrossRef
Pubmed
Google scholar
|
[28] |
Androulidaki A, Iliopoulos D, Arranz A, Doxaki C, Schworer S, Zacharioudaki V, Margioris A N, Tsichlis P N, Tsatsanis C. The kinase Akt1 controls macrophage response to lipopolysaccharide by regulating microRNAs. Immunity, 2009, 31(2): 220–231
CrossRef
Pubmed
Google scholar
|
[29] |
Wang P, Hou J, Lin L, Wang C, Liu X, Li D, Ma F, Wang Z, Cao X. Inducible microRNA-155 feedback promotes type I IFN signaling in antiviral innate immunity by targeting suppressor of cytokine signaling 1. Journal of Immunology, 2010, 185(10): 6226–6233
CrossRef
Pubmed
Google scholar
|
[30] |
Hou J, Wang P, Lin L, Liu X, Ma F, An H, Wang Z, Cao X. MicroRNA-146a feedback inhibits RIG-I-dependent Type I IFN production in macrophages by targeting TRAF6, IRAK1, and IRAK2. Journal of Immunology, 2009, 183(3): 2150–2158
CrossRef
Pubmed
Google scholar
|
[31] |
Sheedy F J, Palsson-McDermott E, Hennessy E J, Martin C, O’Leary J J, Ruan Q, Johnson D S, Chen Y, O’Neill L A. Negative regulation of TLR4 via targeting of the proinflammatory tumor suppressor PDCD4 by the microRNA miR-21. Nature Immunology, 2010, 11(2): 141–147
CrossRef
Pubmed
Google scholar
|
[32] |
Chen Y, Chen J, Wang H, Shi J, Wu K, Liu S, Liu Y, Wu J. HCV-induced miR-21 contributes to evasion of host immune system by targeting MyD88 and IRAK1. PLoS Pathogens, 2013, 9(4): e1003248
CrossRef
Pubmed
Google scholar
|
[33] |
Cohen T S, Prince A S. Bacterial pathogens activate a common inflammatory pathway through IFNλ regulation of PDCD4. PLoS Pathogens, 2013, 9(10): e1003682
CrossRef
Pubmed
Google scholar
|
[34] |
Moschos S A, Williams A E, Perry M M, Birrell M A, Belvisi M G, Lindsay M A. Expression profiling in vivo demonstrates rapid changes in lung microRNA levels following lipopolysaccharide-induced inflammation but not in the anti-inflammatory action of glucocorticoids. BMC Genomics, 2007, 8(1): 240
CrossRef
Pubmed
Google scholar
|
[35] |
Pedersen I M, Cheng G, Wieland S, Volinia S, Croce C M, Chisari F V, David M. Interferon modulation of cellular microRNAs as an antiviral mechanism. Nature, 2007, 449(7164): 919–922
CrossRef
Pubmed
Google scholar
|
[36] |
Lecellier C H, Dunoyer P, Arar K, Lehmann-Che J, Eyquem S, Himber C, Saïb A, Voinnet O. A cellular microRNA mediates antiviral defense in human cells. Science, 2005, 308(5721): 557–560
CrossRef
Pubmed
Google scholar
|
[37] |
Li H W, Ding S W. Antiviral silencing in animals. FEBS Letters, 2005, 579(26): 5965–5973
CrossRef
Pubmed
Google scholar
|
[38] |
Nathans R, Chu C Y, Serquina A K, Lu C C, Cao H, Rana T M. Cellular microRNA and P bodies modulate host-HIV-1 interactions. Molecular Cell, 2009, 34(6): 696–709
CrossRef
Pubmed
Google scholar
|
[39] |
Otsuka M, Jing Q, Georgel P, New L, Chen J, Mols J, Kang Y J, Jiang Z, Du X, Cook R, Das S C, Pattnaik A K, Beutler B, Han J. Hypersusceptibility to vesicular stomatitis virus infection in Dicer1-deficient mice is due to impaired miR24 and miR93 expression. Immunity, 2007, 27(1): 123–134
CrossRef
Pubmed
Google scholar
|
[40] |
Song L, Liu H, Gao S, Jiang W, Huang W. Cellular microRNAs inhibit replication of the H1N1 influenza A virus in infected cells. Journal of Virology, 2010, 84(17): 8849–8860
CrossRef
Pubmed
Google scholar
|
[41] |
Gottwein E, Cullen B R. Viral and cellular microRNAs as determinants of viral pathogenesis and immunity. Cell Host & Microbe, 2008, 3(6): 375–387
CrossRef
Pubmed
Google scholar
|
[42] |
Chen Y, Shen A, Rider P J, Yu Y, Wu K, Mu Y, Hao Q, Liu Y, Gong H, Zhu Y, Liu F, Wu J. A liver-specific microRNA binds to a highly conserved RNA sequence of hepatitis B virus and negatively regulates viral gene expression and replication. FASEB Journal, 2011, 25(12): 4511–4521
CrossRef
Pubmed
Google scholar
|
[43] |
Huang J, Wang F, Argyris E, Chen K, Liang Z, Tian H, Huang W, Squires K, Verlinghieri G, Zhang H. Cellular microRNAs contribute to HIV-1 latency in resting primary CD4+ T lymphocytes. Nature Medicine, 2007, 13(10): 1241–1247
CrossRef
Pubmed
Google scholar
|
[44] |
Umbach J L, Kramer M F, Jurak I, Karnowski H W, Coen D M, Cullen B R. MicroRNAs expressed by herpes simplex virus 1 during latent infection regulate viral mRNAs. Nature, 2008, 454(7205): 780–783
Pubmed
|
[45] |
Pfeffer S, Zavolan M, Grässer F A, Chien M, Russo J J, Ju J, John B, Enright A J, Marks D, Sander C, Tuschl T. Identification of virus-encoded microRNAs. Science, 2004, 304(5671): 734–736
CrossRef
Pubmed
Google scholar
|
[46] |
Lu C C, Li Z, Chu C Y, Feng J, Feng J, Sun R, Rana T M. MicroRNAs encoded by Kaposi’s sarcoma-associated herpesvirus regulate viral life cycle. EMBO Reports, 2010, 11(10): 784–790
CrossRef
Pubmed
Google scholar
|
[47] |
Kim S, Lee S, Shin J, Kim Y, Evnouchidou I, Kim D, Kim Y K, Kim Y E, Ahn J H, Riddell S R, Stratikos E, Kim V N, Ahn K. Human cytomegalovirus microRNA miR-US4-1 inhibits CD8+ T cell responses by targeting the aminopeptidase ERAP1. Nature Immunology, 2011, 12(10): 984–991
CrossRef
Pubmed
Google scholar
|
[48] |
Nachmani D, Lankry D, Wolf D G, Mandelboim O. The human cytomegalovirus microRNA miR-UL112 acts synergistically with a cellular microRNA to escape immune elimination. Nature Immunology, 2010, 11(9): 806–813
CrossRef
Pubmed
Google scholar
|
[49] |
Jopling C L, Yi M, Lancaster A M, Lemon S M, Sarnow P. modulation of hepatitis C virus RNA abundance by a liver-specific microRNA. Science, 2005, 309(5740): 1577–1581
CrossRef
Pubmed
Google scholar
|
[50] |
Mortimer S A, Doudna J A. Unconventional miR-122 binding stabilizes the HCV genome by forming a trimolecular RNA structure. Nucleic Acids Research, 2013, 41(7): 4230–4240
CrossRef
Pubmed
Google scholar
|
[51] |
Shimakami T, Yamane D, Jangra R K, Kempf B J, Spaniel C, Barton D J, Lemon S M. Stabilization of hepatitis C virus RNA by an Ago2-miR-122 complex. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(3): 941–946
CrossRef
Pubmed
Google scholar
|
[52] |
Shimakami T, Yamane D, Welsch C, Hensley L, Jangra R K, Lemon S M. Base pairing between hepatitis C virus RNA and microRNA 122 3′ of its seed sequence is essential for genome stabilization and production of infectious virus. Journal of Virology, 2012, 86(13): 7372–7383
CrossRef
Pubmed
Google scholar
|
[53] |
Henke J I, Goergen D, Zheng J, Song Y, Schüttler C G, Fehr C, Jünemann C, Niepmann M. microRNA-122 stimulates translation of hepatitis C virus RNA. EMBO Journal, 2008, 27(24): 3300–3310
CrossRef
Pubmed
Google scholar
|
[54] |
Jangra R K, Yi M, Lemon S M. Regulation of hepatitis C virus translation and infectious virus production by the microRNA miR-122. Journal of Virology, 2010, 84(13): 6615–6625
CrossRef
Pubmed
Google scholar
|
[55] |
Niepmann M. Activation of hepatitis C virus translation by a liver-specific microRNA. Cell Cycle, 2009, 8(10): 1473–1477
CrossRef
Pubmed
Google scholar
|
[56] |
Fukuhara T, Kambara H, Shiokawa M, Ono C, Katoh H, Morita E, Okuzaki D, Maehara Y, Koike K, Matsuura Y. Expression of microRNA miR-122 facilitates an efficient replication in nonhepatic cells upon infection with hepatitis C virus. Journal of Virology, 2012, 86(15): 7918–7933
CrossRef
Pubmed
Google scholar
|
[57] |
Schwartz R E, Trehan K, Andrus L, Sheahan T P, Ploss A, Duncan S A, Rice C M, Bhatia S N. Modeling hepatitis C virus infection using human induced pluripotent stem cells. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(7): 2544–2548
CrossRef
Pubmed
Google scholar
|
[58] |
Wu X, Robotham J M, Lee E, Dalton S, Kneteman N M, Gilbert D M, Tang H. Productive hepatitis C virus infection of stem cell-derived hepatocytes reveals a critical transition to viral permissiveness during differentiation. PLoS Pathogens, 2012, 8(4): e1002617
CrossRef
Pubmed
Google scholar
|
[59] |
Wang L, Zhang H, Suo X, Zheng S, Feng W H. Increase of CD163 but not sialoadhesin on cultured peripheral blood monocytes is coordinated with enhanced susceptibility to porcine reproductive and respiratory syndrome virus infection. Veterinary Immunology and Immunopathology, 2011, 141(3–4): 209–220
CrossRef
Pubmed
Google scholar
|
[60] |
Cullen B R. Viruses and microRNAs. Nature Genetics, 2006, 38(Suppl): S25–S30
CrossRef
Pubmed
Google scholar
|
[61] |
Duan X, Nauwynck H J, Pensaert M B. Effects of origin and state of differentiation and activation of monocytes/macrophages on their susceptibility to porcine reproductive and respiratory syndrome virus (PRRSV). Archives of Virology, 1997, 142(12): 2483–2497
CrossRef
Pubmed
Google scholar
|
[62] |
Duan X, Nauwynck H J, Pensaert M B. Virus quantification and identification of cellular targets in the lungs and lymphoid tissues of pigs at different time intervals after inoculation with porcine reproductive and respiratory syndrome virus (PRRSV). Veterinary Microbiology, 1997, 56(1–2): 9–19
CrossRef
Pubmed
Google scholar
|
/
〈 | 〉 |