A brief review of microRNA and its role in PRRSV infection and replication

Xuekun GUO, Wenhai FENG

PDF(367 KB)
PDF(367 KB)
Front. Agr. Sci. Eng. ›› 2014, Vol. 1 ›› Issue (2) : 114-120. DOI: 10.15302/J-FASE-2014022
REVIEW
REVIEW

A brief review of microRNA and its role in PRRSV infection and replication

Author information +
History +

Abstract

Porcine reproductive and respiratory syndrome virus (PRRSV), a single-stranded RNA virus, mainly infects cells of monocyte/macrophage lineage. Recently, host microRNAs were shown to be capable of modulating PRRSV infection and replication by multiple ways such as targeting viral genomic RNA, targeting viral receptor and inducing antiviral response. MicroRNAs are small RNAs and have emerged as important regulators of virus-host cell interactions. In this review, we discuss the identified functions of host microRNAs in relation to PRRSV infection and propose that cellular microRNAs may have a substantial effect on cell or tissue tropism of PRRSV.

Keywords

porcine reproductive and respiratory syndrome virus (PRRSV) / microRNA / antiviral / viral tropism

Cite this article

Download citation ▾
Xuekun GUO, Wenhai FENG. A brief review of microRNA and its role in PRRSV infection and replication. Front. Agr. Sci. Eng., 2014, 1(2): 114‒120 https://doi.org/10.15302/J-FASE-2014022

References

[1]
Kimman T G, Cornelissen L A, Moormann R J, Rebel J M, Stockhofe-Zurwieden N. Challenges for porcine reproductive and respiratory syndrome virus (PRRSV) vaccinology. Vaccine, 2009, 27(28): 3704–3718
CrossRef Pubmed Google scholar
[2]
Bartel D P. MicroRNAs: target recognition and regulatory functions. Cell, 2009, 136(2): 215–233
CrossRef Pubmed Google scholar
[3]
Carthew R W, Sontheimer E J. Origins and mechanisms of miRNAs and siRNAs. Cell, 2009, 136(4): 642–655
CrossRef Pubmed Google scholar
[4]
Krol J, Loedige I, Filipowicz W. The widespread regulation of microRNA biogenesis, function and decay. Nature Reviews Genetics, 2010, 11(9): 597–610
Pubmed
[5]
Guo X K, Zhang Q, Gao L, Li N, Chen X X, Feng W H. Increasing expression of microRNA 181 inhibits porcine reproductive and respiratory syndrome virus replication and has implications for controlling virus infection. Journal of Virology, 2013, 87(2): 1159–1171
CrossRef Pubmed Google scholar
[6]
Gao L, Guo X K, Wang L, Zhang Q, Li N, Chen X X, Wang Y, Feng W H. MicroRNA 181 suppresses porcine reproductive and respiratory syndrome virus (PRRSV) infection by targeting PRRSV receptor CD163. Journal of Virology, 2013, 87(15): 8808–8812
CrossRef Pubmed Google scholar
[7]
Zhang Q, Guo X K, Gao L, Huang C, Li N, Jia X, Liu W, Feng W H. MicroRNA-23 inhibits PRRSV replication by directly targeting PRRSV RNA and possibly by upregulating type I interferons. Virology, 2014, 450–451: 182–195
CrossRef Pubmed Google scholar
[8]
Hicks J A, Yoo D, Liu H C. Characterization of the microRNAome in porcine reproductive and respiratory syndrome virus infected macrophages. PLoS ONE, 2013, 8(12): e82054
CrossRef Pubmed Google scholar
[9]
Kim V N, Han J, Siomi M C. Biogenesis of small RNAs in animals. Nature Reviews Molecular Cell Biology, 2009, 10(2): 126–139
CrossRef Pubmed Google scholar
[10]
Kim V N. MicroRNA biogenesis: coordinated cropping and dicing. Nature Reviews Molecular Cell Biology, 2005, 6(5): 376–385
CrossRef Pubmed Google scholar
[11]
Pasquinelli A E. MicroRNAs and their targets: recognition, regulation and an emerging reciprocal relationship. Nature Reviews Genetics, 2012, 13(4): 271–282
Pubmed
[12]
Huntzinger E, Izaurralde E. Gene silencing by microRNAs: contributions of translational repression and mRNA decay. Nature Reviews Genetics, 2011, 12(2): 99–110
CrossRef Pubmed Google scholar
[13]
Doench J G, Sharp P A. Specificity of microRNA target selection in translational repression. Genes & Development, 2004, 18(5): 504–511
CrossRef Pubmed Google scholar
[14]
Reinhart B J, Slack F J, Basson M, Pasquinelli A E, Bettinger J C, Rougvie A E, Horvitz H R, Ruvkun G. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature, 2000, 403(6772): 901–906
CrossRef Pubmed Google scholar
[15]
Slack F J, Basson M, Liu Z, Ambros V, Horvitz H R, Ruvkun G. The lin-41 RBCC gene acts in the C. elegans heterochronic pathway between the let-7 regulatory RNA and the LIN-29 transcription factor. Molecular Cell, 2000, 5(4): 659–669
CrossRef Pubmed Google scholar
[16]
Vella M C, Choi E Y, Lin S Y, Reinert K, Slack F J. The C. elegans microRNA let-7 binds to imperfect let-7 complementary sites from the lin-41 3′ UTR. Genes & Development, 2004, 18(2): 132–137
CrossRef Pubmed Google scholar
[17]
Shin C, Nam J W, Farh K K, Chiang H R, Shkumatava A, Bartel D P. Expanding the microRNA targeting code: functional sites with centered pairing. Molecular Cell, 2010, 38(6): 789–802
CrossRef Pubmed Google scholar
[18]
Rigoutsos I. New tricks for animal microRNAS: targeting of amino acid coding regions at conserved and nonconserved sites. Cancer Research, 2009, 69(8): 3245–3248
CrossRef Pubmed Google scholar
[19]
Tay Y, Zhang J, Thomson A M, Lim B, Rigoutsos I. MicroRNAs to Nanog, Oct4 and Sox2 coding regions modulate embryonic stem cell differentiation. Nature, 2008, 455(7216): 1124–1128
CrossRef Pubmed Google scholar
[20]
Akira S, Uematsu S, Takeuchi O. Pathogen recognition and innate immunity. Cell, 2006, 124(4): 783–801
CrossRef Pubmed Google scholar
[21]
Kawai T, Akira S. The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nature Immunology, 2010, 11(5): 373–384
CrossRef Pubmed Google scholar
[22]
O’Neill L A, Sheedy F J, McCoy C E. MicroRNAs: the fine-tuners of‚Toll-like receptor signalling. Nature Reviews Immunology, 2011, 11(3): 163–175
CrossRef Pubmed Google scholar
[23]
O’Connell R M, Rao D S, Chaudhuri A A, Baltimore D. Physiological and pathological roles for microRNAs in the immune system. Nature Reviews Immunology, 2010, 10(2): 111–122
CrossRef Pubmed Google scholar
[24]
O’Connell R M, Taganov K D, Boldin M P, Cheng G, Baltimore D. MicroRNA-155 is induced during the macrophage inflammatory response. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(5): 1604–1609
CrossRef Pubmed Google scholar
[25]
Taganov K D, Boldin M P, Chang K J, Baltimore D. NF-κB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(33): 12481–12486
CrossRef Pubmed Google scholar
[26]
Thai T H, Calado D P, Casola S, Ansel K M, Xiao C, Xue Y, Murphy A, Frendewey D, Valenzuela D, Kutok J L, Schmidt-Supprian M, Rajewsky N, Yancopoulos G, Rao A, Rajewsky K. Regulation of the germinal center response by microRNA-155. Science, 2007, 316(5824): 604–608
CrossRef Pubmed Google scholar
[27]
O’Connell R M, Chaudhuri A A, Rao D S, Baltimore D. Inositol phosphatase SHIP1 is a primary target of miR-155. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(17): 7113–7118
CrossRef Pubmed Google scholar
[28]
Androulidaki A, Iliopoulos D, Arranz A, Doxaki C, Schworer S, Zacharioudaki V, Margioris A N, Tsichlis P N, Tsatsanis C. The kinase Akt1 controls macrophage response to lipopolysaccharide by regulating microRNAs. Immunity, 2009, 31(2): 220–231
CrossRef Pubmed Google scholar
[29]
Wang P, Hou J, Lin L, Wang C, Liu X, Li D, Ma F, Wang Z, Cao X. Inducible microRNA-155 feedback promotes type I IFN signaling in antiviral innate immunity by targeting suppressor of cytokine signaling 1. Journal of Immunology, 2010, 185(10): 6226–6233
CrossRef Pubmed Google scholar
[30]
Hou J, Wang P, Lin L, Liu X, Ma F, An H, Wang Z, Cao X. MicroRNA-146a feedback inhibits RIG-I-dependent Type I IFN production in macrophages by targeting TRAF6, IRAK1, and IRAK2. Journal of Immunology, 2009, 183(3): 2150–2158
CrossRef Pubmed Google scholar
[31]
Sheedy F J, Palsson-McDermott E, Hennessy E J, Martin C, O’Leary J J, Ruan Q, Johnson D S, Chen Y, O’Neill L A. Negative regulation of TLR4 via targeting of the proinflammatory tumor suppressor PDCD4 by the microRNA miR-21. Nature Immunology, 2010, 11(2): 141–147
CrossRef Pubmed Google scholar
[32]
Chen Y, Chen J, Wang H, Shi J, Wu K, Liu S, Liu Y, Wu J. HCV-induced miR-21 contributes to evasion of host immune system by targeting MyD88 and IRAK1. PLoS Pathogens, 2013, 9(4): e1003248
CrossRef Pubmed Google scholar
[33]
Cohen T S, Prince A S. Bacterial pathogens activate a common inflammatory pathway through IFNλ regulation of PDCD4. PLoS Pathogens, 2013, 9(10): e1003682
CrossRef Pubmed Google scholar
[34]
Moschos S A, Williams A E, Perry M M, Birrell M A, Belvisi M G, Lindsay M A. Expression profiling in vivo demonstrates rapid changes in lung microRNA levels following lipopolysaccharide-induced inflammation but not in the anti-inflammatory action of glucocorticoids. BMC Genomics, 2007, 8(1): 240
CrossRef Pubmed Google scholar
[35]
Pedersen I M, Cheng G, Wieland S, Volinia S, Croce C M, Chisari F V, David M. Interferon modulation of cellular microRNAs as an antiviral mechanism. Nature, 2007, 449(7164): 919–922
CrossRef Pubmed Google scholar
[36]
Lecellier C H, Dunoyer P, Arar K, Lehmann-Che J, Eyquem S, Himber C, Saïb A, Voinnet O. A cellular microRNA mediates antiviral defense in human cells. Science, 2005, 308(5721): 557–560
CrossRef Pubmed Google scholar
[37]
Li H W, Ding S W. Antiviral silencing in animals. FEBS Letters, 2005, 579(26): 5965–5973
CrossRef Pubmed Google scholar
[38]
Nathans R, Chu C Y, Serquina A K, Lu C C, Cao H, Rana T M. Cellular microRNA and P bodies modulate host-HIV-1 interactions. Molecular Cell, 2009, 34(6): 696–709
CrossRef Pubmed Google scholar
[39]
Otsuka M, Jing Q, Georgel P, New L, Chen J, Mols J, Kang Y J, Jiang Z, Du X, Cook R, Das S C, Pattnaik A K, Beutler B, Han J. Hypersusceptibility to vesicular stomatitis virus infection in Dicer1-deficient mice is due to impaired miR24 and miR93 expression. Immunity, 2007, 27(1): 123–134
CrossRef Pubmed Google scholar
[40]
Song L, Liu H, Gao S, Jiang W, Huang W. Cellular microRNAs inhibit replication of the H1N1 influenza A virus in infected cells. Journal of Virology, 2010, 84(17): 8849–8860
CrossRef Pubmed Google scholar
[41]
Gottwein E, Cullen B R. Viral and cellular microRNAs as determinants of viral pathogenesis and immunity. Cell Host & Microbe, 2008, 3(6): 375–387
CrossRef Pubmed Google scholar
[42]
Chen Y, Shen A, Rider P J, Yu Y, Wu K, Mu Y, Hao Q, Liu Y, Gong H, Zhu Y, Liu F, Wu J. A liver-specific microRNA binds to a highly conserved RNA sequence of hepatitis B virus and negatively regulates viral gene expression and replication. FASEB Journal, 2011, 25(12): 4511–4521
CrossRef Pubmed Google scholar
[43]
Huang J, Wang F, Argyris E, Chen K, Liang Z, Tian H, Huang W, Squires K, Verlinghieri G, Zhang H. Cellular microRNAs contribute to HIV-1 latency in resting primary CD4+ T lymphocytes. Nature Medicine, 2007, 13(10): 1241–1247
CrossRef Pubmed Google scholar
[44]
Umbach J L, Kramer M F, Jurak I, Karnowski H W, Coen D M, Cullen B R. MicroRNAs expressed by herpes simplex virus 1 during latent infection regulate viral mRNAs. Nature, 2008, 454(7205): 780–783
Pubmed
[45]
Pfeffer S, Zavolan M, Grässer F A, Chien M, Russo J J, Ju J, John B, Enright A J, Marks D, Sander C, Tuschl T. Identification of virus-encoded microRNAs. Science, 2004, 304(5671): 734–736
CrossRef Pubmed Google scholar
[46]
Lu C C, Li Z, Chu C Y, Feng J, Feng J, Sun R, Rana T M. MicroRNAs encoded by Kaposi’s sarcoma-associated herpesvirus regulate viral life cycle. EMBO Reports, 2010, 11(10): 784–790
CrossRef Pubmed Google scholar
[47]
Kim S, Lee S, Shin J, Kim Y, Evnouchidou I, Kim D, Kim Y K, Kim Y E, Ahn J H, Riddell S R, Stratikos E, Kim V N, Ahn K. Human cytomegalovirus microRNA miR-US4-1 inhibits CD8+ T cell responses by targeting the aminopeptidase ERAP1. Nature Immunology, 2011, 12(10): 984–991
CrossRef Pubmed Google scholar
[48]
Nachmani D, Lankry D, Wolf D G, Mandelboim O. The human cytomegalovirus microRNA miR-UL112 acts synergistically with a cellular microRNA to escape immune elimination. Nature Immunology, 2010, 11(9): 806–813
CrossRef Pubmed Google scholar
[49]
Jopling C L, Yi M, Lancaster A M, Lemon S M, Sarnow P. modulation of hepatitis C virus RNA abundance by a liver-specific microRNA. Science, 2005, 309(5740): 1577–1581
CrossRef Pubmed Google scholar
[50]
Mortimer S A, Doudna J A. Unconventional miR-122 binding stabilizes the HCV genome by forming a trimolecular RNA structure. Nucleic Acids Research, 2013, 41(7): 4230–4240
CrossRef Pubmed Google scholar
[51]
Shimakami T, Yamane D, Jangra R K, Kempf B J, Spaniel C, Barton D J, Lemon S M. Stabilization of hepatitis C virus RNA by an Ago2-miR-122 complex. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(3): 941–946
CrossRef Pubmed Google scholar
[52]
Shimakami T, Yamane D, Welsch C, Hensley L, Jangra R K, Lemon S M. Base pairing between hepatitis C virus RNA and microRNA 122 3′ of its seed sequence is essential for genome stabilization and production of infectious virus. Journal of Virology, 2012, 86(13): 7372–7383
CrossRef Pubmed Google scholar
[53]
Henke J I, Goergen D, Zheng J, Song Y, Schüttler C G, Fehr C, Jünemann C, Niepmann M. microRNA-122 stimulates translation of hepatitis C virus RNA. EMBO Journal, 2008, 27(24): 3300–3310
CrossRef Pubmed Google scholar
[54]
Jangra R K, Yi M, Lemon S M. Regulation of hepatitis C virus translation and infectious virus production by the microRNA miR-122. Journal of Virology, 2010, 84(13): 6615–6625
CrossRef Pubmed Google scholar
[55]
Niepmann M. Activation of hepatitis C virus translation by a liver-specific microRNA. Cell Cycle, 2009, 8(10): 1473–1477
CrossRef Pubmed Google scholar
[56]
Fukuhara T, Kambara H, Shiokawa M, Ono C, Katoh H, Morita E, Okuzaki D, Maehara Y, Koike K, Matsuura Y. Expression of microRNA miR-122 facilitates an efficient replication in nonhepatic cells upon infection with hepatitis C virus. Journal of Virology, 2012, 86(15): 7918–7933
CrossRef Pubmed Google scholar
[57]
Schwartz R E, Trehan K, Andrus L, Sheahan T P, Ploss A, Duncan S A, Rice C M, Bhatia S N. Modeling hepatitis C virus infection using human induced pluripotent stem cells. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(7): 2544–2548
CrossRef Pubmed Google scholar
[58]
Wu X, Robotham J M, Lee E, Dalton S, Kneteman N M, Gilbert D M, Tang H. Productive hepatitis C virus infection of stem cell-derived hepatocytes reveals a critical transition to viral permissiveness during differentiation. PLoS Pathogens, 2012, 8(4): e1002617
CrossRef Pubmed Google scholar
[59]
Wang L, Zhang H, Suo X, Zheng S, Feng W H. Increase of CD163 but not sialoadhesin on cultured peripheral blood monocytes is coordinated with enhanced susceptibility to porcine reproductive and respiratory syndrome virus infection. Veterinary Immunology and Immunopathology, 2011, 141(3–4): 209–220
CrossRef Pubmed Google scholar
[60]
Cullen B R. Viruses and microRNAs. Nature Genetics, 2006, 38(Suppl): S25–S30
CrossRef Pubmed Google scholar
[61]
Duan X, Nauwynck H J, Pensaert M B. Effects of origin and state of differentiation and activation of monocytes/macrophages on their susceptibility to porcine reproductive and respiratory syndrome virus (PRRSV). Archives of Virology, 1997, 142(12): 2483–2497
CrossRef Pubmed Google scholar
[62]
Duan X, Nauwynck H J, Pensaert M B. Virus quantification and identification of cellular targets in the lungs and lymphoid tissues of pigs at different time intervals after inoculation with porcine reproductive and respiratory syndrome virus (PRRSV). Veterinary Microbiology, 1997, 56(1–2): 9–19
CrossRef Pubmed Google scholar

Acknowledgement

The support of the State Key Laboratory of Agrobiotechnology (2010SKLAB06-1 and 2012SKLAB01-6) and the Research Fund for the Doctoral Program of Higher Education of China (20130008110028) is gratefully acknowledged.Compliance with ethics guidelinesƒXuekun Guo and Wenhai Feng declare that they have no conflict of interest or financial conflicts to disclose.‚‚This article does not contain any studies with human or animal subjects performed by the any of the authors.

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(367 KB)

Accesses

Citations

Detail

Sections
Recommended

/