Transcriptome resources and genome-wide marker development for Japanese larch (Larix kaempferi)

Wanfeng LI, Suying HAN, Liwang QI, Shougong ZHANG

PDF(621 KB)
PDF(621 KB)
Front. Agr. Sci. Eng. ›› 2014, Vol. 1 ›› Issue (1) : 77-84. DOI: 10.15302/J-FASE-2014010
RESEARCH ARTICLE
RESEARCH ARTICLE

Transcriptome resources and genome-wide marker development for Japanese larch (Larix kaempferi)

Author information +
History +

Abstract

While the differential responses of trees to changes in climatic and environmental conditions have been demonstrated as they age, the underlying mechanisms and age control of tree growth and development are complex and poorly understood particularly at a molecular level. In this paper, we present a transcriptome analysis of Larix kaempferi, a deciduous conifer that is widely-grown in the northern hemisphere and of significant ecological and economic value. Using high-throughput RNA sequencing, we obtained about 26 million reads from the stems of 1-, 2-, 5-, 10-, 25- and 50-year-old L. kaempferi trees. Combining these with the published Roche 454 sequencing reads and the expressed sequence tags (both mainly from Larix embryogenic cell cultures), we assembled 26670549 reads into 146786 transcripts, of which we annotated 79182 to support investigations of the molecular basis of tree aging and adaption, somatic embryogenesis and wood formation. Using these sequences we also identified many single-nucleotide polymorphisms, simple sequence repeats, and insertion and deletion markers to assist breeding and genetic diversity studies of Larix.

Keywords

Larix / transcriptome / age / wood formation / somatic embryogenesis / molecular marker

Cite this article

Download citation ▾
Wanfeng LI, Suying HAN, Liwang QI, Shougong ZHANG. Transcriptome resources and genome-wide marker development for Japanese larch (Larix kaempferi). Front. Agr. Sci. Eng., 2014, 1(1): 77‒84 https://doi.org/10.15302/J-FASE-2014010

References

[1]
Rossi S, Deslauriers A, Anfodillo T, Carrer M. Age-dependent xylogenesis in timberline conifers. New Phytologist, 2008, 177(1): 199–208
CrossRef Google scholar
[2]
Rossi S, Deslauriers A, Grićar J, Seo J W, Rathgeber C B K, Anfodillo T, Morin H, Levanic T, Oven P, Jalkanen R. Critical temperatures for xylogenesis in conifers of cold climates. Global Ecology and Biogeography, 2008, 17(6): 696–707
CrossRef Google scholar
[3]
Begum S, Nakaba S, Oribe Y, Kubo T, Funada R. Cambial sensitivity to rising temperatures by natural condition and artificial heating from late winter to early spring in the evergreen conifer Cryptomeria japonica. Trees-Structure and Function, 2010, 24(1): 43–52
CrossRef Google scholar
[4]
Li X, Liang E, Gričar J, Prislan P, Rossi S, Čufar K. Age dependence of xylogenesis and its climatic sensitivity in Smith fir on the south-eastern Tibetan Plateau. Tree Physiology, 2013, 33(1): 48–56
CrossRef Pubmed Google scholar
[5]
Li W F, Ding Q, Chen J J, Cui K M, He X Q. Induction of PtoCDKB and PtoCYCB transcription by temperature during cambium reactivation in Populus tomentosa Carr. Journal of Experimental Botany, 2009, 60(9): 2621–2630
CrossRef Pubmed Google scholar
[6]
Little C H A, Bonga J M. Rest in cambium of Abies balsamea. Canadian Journal of Botany, 1974, 52(7): 1723–1730
CrossRef Google scholar
[7]
Mwange K N, Wang X W, Cui K M. Mechanism of dormancy in the buds and cambium of Eucommia ulmoides. Acta Botanica Sinica, 2003, 45(6): 698–704
[8]
Mwange K N, Hou H W, Wang Y Q, He X Q, Cui K M. Opposite patterns in the annual distribution and time-course of endogenous abscisic acid and indole-3-acetic acid in relation to the periodicity of cambial activity in Eucommia ulmoides Oliv. Journal of Experimental Botany, 2005, 56(413): 1017–1028
CrossRef Pubmed Google scholar
[9]
Sundberg B, Little C H A. Tracheid production in response to changes in the internal level of indole-3-acetic Acid in 1-year-old shoots of scots pine. Plant Physiology, 1990, 94(4): 1721–1727
CrossRef Pubmed Google scholar
[10]
Baba K, Karlberg A, Schmidt J, Schrader J, Hvidsten T R, Bako L, Bhalerao R P. Activity-dormancy transition in the cambial meristem involves stage-specific modulation of auxin response in hybrid aspen. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(8): 3418–3423
CrossRef Pubmed Google scholar
[11]
Nilsson J, Karlberg A, Antti H, Lopez-Vernaza M, Mellerowicz E, Perrot-Rechenmann C, Sandberg G, Bhalerao R P. Dissecting the molecular basis of the regulation of wood formation by auxin in hybrid aspen. Plant Cell, 2008, 20(4): 843–855
CrossRef Pubmed Google scholar
[12]
Savidge R A, Wareing P F. A tracheid-differentiation factor from pine needles. Planta, 1981, 153(5): 395–404
CrossRef Pubmed Google scholar
[13]
Little C H A, Sundberg B. Tracheid production in response to indole-3-acetic-acid varies with internode age in Pinus sylvestris stems. Trees-Structure and Function, 1991, 5(2): 101–106
CrossRef Google scholar
[14]
Savidge R A. The role of plant hormones in higher plant cellular differentiation. II. Experiments with the vascular cambium, and sclereid and tracheid differentiation in the pine, Pinus contorta. Histochemical Journal, 1983, 15(5): 447–466
CrossRef Pubmed Google scholar
[15]
Alvarez C, Valledor L. R. H, Sanchez-Olate M, Ríos D. Variation in gene expression profile with aging of Pinus radiata D. Don. BMC Proceedings, 2011, 5 (Suppl 7): P62
CrossRef Google scholar
[16]
Busov V B, Johannes E, Whetten R W, Sederoff R R, Spiker S L, Lanz-Garcia C, Goldfarb B. An auxin-inducible gene from loblolly pine (Pinus taeda L.) is differentially expressed in mature and juvenile-phase shoots and encodes a putative transmembrane protein. Planta, 2004, 218(6): 916–927
CrossRef Pubmed Google scholar
[17]
Carlsbecker A, Tandre K, Johanson U, Englund M, Engström P. The MADS-box gene DAL1 is a potential mediator of the juvenile-to-adult transition in Norway spruce (Picea abies). Plant Journal, 2004, 40(4): 546–557
CrossRef Pubmed Google scholar
[18]
Diego L B, Berdasco M, Fraga M F, Cañal M J, Rodríguez R, Castresana C. A Pinus radiata AAA-ATPase, the expression of which increases with tree ageing. Journal of Experimental Botany, 2004, 55(402): 1597–1599
CrossRef Pubmed Google scholar
[19]
Fernández-Ocaña A, Carmen García-López M, Jiménez-Ruiz J, Saniger L, Macías D, Navarro F, Oya R, Belaj A, de la Rosa R, Corpas F J, Bautista Barroso J, Luque F. Identification of a gene involved in the juvenile-to-adult transition (JAT) in cultivated olive trees. Tree Genetics & Genomes, 2010, 6(6): 891–903
CrossRef Google scholar
[20]
Hutchison K W, Sherman C D, Weber J, Smith S S, Singer P B, Greenwood M S. Maturation in larch: II. effects of age on photosynthesis and gene expression in developing foliage. Plant Physiology, 1990, 94(3): 1308–1315
CrossRef Pubmed Google scholar
[21]
Li X, Wu H X, Southerton S G. Seasonal reorganization of the xylem transcriptome at different tree ages reveals novel insights into wood formation in Pinus radiata. New Phytologist, 2010, 187(3): 764–776
CrossRef Pubmed Google scholar
[22]
Li X, Wu H X, Southerton S G. Transcriptome profiling of wood maturation in Pinus radiata identifies differentially expressed genes with implications in juvenile and mature wood variation. Gene, 2011, 487(1): 62–71
CrossRef Pubmed Google scholar
[23]
Wang J W, Park M Y, Wang L J, Koo Y, Chen X Y, Weigel D, Poethig R S. miRNA control of vegetative phase change in trees. PLOS Genetics, 2011, 7(2): e1002012
CrossRef Pubmed Google scholar
[24]
Hsu C Y, Liu Y, Luthe D S, Yuceer C. Poplar FT2 shortens the juvenile phase and promotes seasonal flowering. Plant Cell, 2006, 18(8): 1846–1861
CrossRef Pubmed Google scholar
[25]
Hsu C Y, Adams J P, Kim H, No K, Ma C, Strauss S H, Drnevich J, Vandervelde L, Ellis J D, Rice B M, Wickett N, Gunter L E, Tuskan G A, Brunner A M, Page G P, Barakat A, Carlson J E, DePamphilis C W, Luthe D S, Yuceer C. FLOWERING LOCUS T duplication coordinates reproductive and vegetative growth in perennial poplar. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(26): 10756–10761
CrossRef Pubmed Google scholar
[26]
Böhlenius H, Huang T, Charbonnel-Campaa L, Brunner A M, Jansson S, Strauss S H, Nilsson O. CO/FT regulatory module controls timing of flowering and seasonal growth cessation in trees. Science, 2006, 312(5776): 1040–1043
CrossRef Pubmed Google scholar
[27]
Li S G, Li W F, Han S Y, Yang W H, Qi L W. Stage-specific regulation of four HD-ZIP III transcription factors during polar pattern formation in Larix leptolepis somatic embryos. Gene, 2013, 522(2): 177–183
CrossRef Pubmed Google scholar
[28]
Li W F, Zhang S G, Han S Y, Wu T, Zhang J H, Qi L W. Regulation of LaMYB33 by miR159 during maintenance of embryogenic potential and somatic embryo maturation in Larix kaempferi (Lamb.) Carr. Plant Cell, Tissue and Organ Culture, 2013, 113(1): 131–136
CrossRef Google scholar
[29]
Zhang J, Zhang S, Han S, Li X, Tong Z, Qi L. Deciphering small noncoding RNAs during the transition from dormant embryo to germinated embryo in Larches (Larix leptolepis). PLoS ONE, 2013, 8(12): e81452
CrossRef Pubmed Google scholar
[30]
Zhang J, Zhang S, Han S, Wu T, Li X, Li W, Qi L. Genome-wide identification of microRNAs in larch and stage-specific modulation of 11 conserved microRNAs and their targets during somatic embryogenesis. Planta, 2012, 236(2): 647–657
CrossRef Pubmed Google scholar
[31]
Zhang L F, Li W F, Han S Y, Yang W H, Qi L W. cDNA cloning, genomic organization and expression analysis during somatic embryogenesis of the translationally controlled tumor protein (TCTP) gene from Japanese larch (Larix leptolepis). Gene, 2013, 529(1): 150–158
CrossRef Pubmed Google scholar
[32]
Zhang S, Zhou J, Han S, Yang W, Li W, Wei H, Li X, Qi L. Four abiotic stress-induced miRNA families differentially regulated in the embryogenic and non-embryogenic callus tissues of Larix leptolepis. Biochemical and Biophysical Research Communications, 2010, 398(3): 355–360
CrossRef Pubmed Google scholar
[33]
Zhang S G, Han S Y, Yang W H, Wei H L, Zhang M, Qi L W. Changes in H2O2 content and antioxidant enzyme gene expression during the somatic embryogenesis of Larix leptolepis. Plant Cell, Tissue and Organ Culture, 2010, 100(1): 21–29
CrossRef Google scholar
[34]
Li W F, Zhang S G, Han S Y, Wu T, Zhang J H, Qi L W. The post-transcriptional regulation of LaSCL6 by miR171 during maintenance of embryogenic potential in Larix kaempferi (Lamb.). Carr. Tree Genetics & Genomes, 2014, 10(1): 223–229
CrossRef Google scholar
[35]
Zhang J H, Zhang S G, Li S G, Han S Y, Li W F, Li X M, Qi L W. Regulation of synchronism by abscisic-acid-responsive small noncoding RNAs during somatic embryogenesis in larch (Larix leptolepis). Plant Cell, Tissue and Organ Culture, 2014, 116(3): 361–370
CrossRef Google scholar
[36]
Zhang Y, Zhang S, Han S, Li X, Qi L. Transcriptome profiling and in silico analysis of somatic embryos in Japanese larch (Larix leptolepis). Plant Cell Reports, 2012, 31(9): 1637–1657
CrossRef Pubmed Google scholar
[37]
Men L, Yan S, Liu G. De novo characterization of Larix gmelinii (Rupr.) Rupr. transcriptome and analysis of its gene expression induced by jasmonates. BMC Genomics, 2013, 14(1): 548
CrossRef Pubmed Google scholar
[38]
Mackay J, Dean J F, Plomion C, Peterson D G, Cánovas F M, Pavy N, Ingvarsson P K, Savolainen O, Guevara M Á, Fluch S, Vinceti B, Abarca D, Díaz-Sala C, Cervera M T. Towards decoding the conifer giga-genome. Plant Molecular Biology, 2012, 80(6): 555–569
CrossRef Pubmed Google scholar
[39]
Grabherr M G, Haas B J, Yassour M, Levin J Z, Thompson D A, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng Q, Chen Z, Mauceli E, Hacohen N, Gnirke A, Rhind N, di Palma F, Birren B W, Nusbaum C, Lindblad-Toh K, Friedman N, Regev A. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nature Biotechnology, 2011, 29(7): 644–652
CrossRef Pubmed Google scholar
[40]
Zhang L, Qi L W, Han S Y. [Differentially expressed genes during Larix somatic embryomaturation and the expression profile of partial genes. Hereditas, 2009, 31(5): 540–545 (in Chinese)
CrossRef Pubmed Google scholar
[41]
Zhang L, Qi L, Han S. Construction and analysis of differentially expressed cDNA library of larch somatic embryo at the stage of proembryogenic mass. Molecular Plant Breeding, 2008, 6(4): 675–682 (in Chinese)
CrossRef Google scholar
[42]
Huang X, Madan A. CAP3: A DNA sequence assembly program. Genome Research, 1999, 9(9): 868–877
CrossRef Pubmed Google scholar
[43]
Altschul S F, Gish W, Miller W, Myers E W, Lipman D J. Basic local alignment search tool. Journal of Molecular Biology, 1990, 215(3): 403–410
CrossRef Pubmed Google scholar
[44]
Guindon S, Dufayard J F, Lefort V, Anisimova M, Hordijk W, Gascuel O. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Systematic Biology, 2010, 59(3): 307–321
CrossRef Pubmed Google scholar
[45]
Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics, 2009, 25(14): 1754–1760
CrossRef Pubmed Google scholar
[46]
Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R. The Sequence Alignment/Map format and SAMtools. Bioinformatics, 2009, 25(16): 2078–2079
CrossRef Pubmed Google scholar
[47]
Untergasser A, Cutcutache I, Koressaar T, Ye J, Faircloth B C, Remm M, Rozen S G. Primer3-new capabilities and interfaces. Nucleic Acids Research, 2012, 40(15): e115
CrossRef Pubmed Google scholar
[48]
Carrer M, Urbinati C. Age-dependent tree-ring growth responses to climate in Larix decidua and Pinus cembra. Ecology, 2004, 85(3): 730–740
CrossRef Google scholar
[49]
Tian Z H, Dong J, Wang X W, Huang G R. Silviculture of Larix kaempferi. 1995, Beijing: Beijing Agriculture University Press94–105. (in Chinese)
[50]
Sorce C, Giovannelli A, Sebastiani L, Anfodillo T. Hormonal signals involved in the regulation of cambial activity, xylogenesis and vessel patterning in trees. Plant Cell Reports, 2013, 32(6): 885–898
CrossRef Pubmed Google scholar
[51]
Sehr E M, Agusti J, Lehner R, Farmer E E, Schwarz M, Greb T. Analysis of secondary growth in the Arabidopsis shoot reveals a positive role of jasmonate signalling in cambium formation. Plant Journal, 2010, 63(5): 811–822
CrossRef Pubmed Google scholar
[52]
Cairney J, Pullman G S. The cellular and molecular biology of conifer embryogenesis. New Phytologist, 2007, 176(3): 511–536
CrossRef Pubmed Google scholar
[53]
Quiroz-Figueroa F R, Rojas-Herrera R, Galaz-Avalos R M, Loyola-Vargas V M. Embryo production through somatic embryogenesis can be used to study cell differentiation in plants. Plant Cell, Tissue and Organ Culture, 2006, 86(3): 285–301
CrossRef Google scholar
[54]
Zimmerman J L. Somatic embryogenesis: a model for early development in higher plants. Plant Cell, 1993, 5(10): 1411–1423
CrossRef Pubmed Google scholar
[55]
Gutmann M, vonAderkas P, Label P, Lelu M A. Effects of abscisic acid on somatic embryo maturation of hybrid larch. Journal of Experimental Botany, 1996, 47(12): 1905–1917
CrossRef Google scholar
[56]
Rai M K, Shekhawat N S, Harish, Gupta A K, Phulwaria M, Ram K, Jaiswal U. Harish, Gupta A K, Phulwaria M, Ram K, Jaiswal U. The role of abscisic acid in plant tissue culture: a review of recent progress. Plant Cell, Tissue and Organ Culture, 2011, 106(2): 179–190
CrossRef Google scholar
[57]
Khasa D P, Jaramillo-Correa J P, Jaquish B, Bousquet J. Contrasting microsatellite variation between subalpine and western larch, two closely related species with different distribution patterns. Molecular Ecology, 2006, 15(13): 3907–3918
CrossRef Pubmed Google scholar
[58]
Pluess A R. Pursuing glacier retreat: genetic structure of a rapidly expanding Larix decidua population. Molecular Ecology, 2011, 20(3): 473–485
CrossRef Pubmed Google scholar
[59]
Oreshkova N V, Belokon M M, Jamiyansuren S. Genetic diversity, population structure, and differentiation of Siberian larch, Gmelin larch and Cajander larch on SSR-markers data. Russian Journal of Genetics, 2013, 49(2): 178–186
CrossRef Pubmed Google scholar
[60]
Kozyrenko M M, Artyukova E V, Reunova G D, Levina E A, Zhuravlev Y N. Genetic diversity and relationships among Siberian and Far Eastern larches inferred from RAPD analysis. Russian Journal of Genetics, 2004, 40(4): 401–409
CrossRef Google scholar
[61]
Yu X M, Zhou Q, Qian Z Q, Li S, Zhao G F. Analysis of genetic diversity and population differentiation of Larix potaninii var.chinensis using microsatellite DNA. Biochemical Genetics, 2006, 44(11–12): 483–493
CrossRef Pubmed Google scholar
[62]
Funda T, Chen C, Liewlaksaneeyanawin C, Kenawy A M A, El-Kassaby Y A.C.. Liewlaksaneeyanawin C, Kenawy A M A, El-Kassaby Y A.. Pedigree and mating system analyses in a western larch (Larix occidentalis Nutt.) experimental population. Annals of Forest Science, 2008, 65(7): 705
CrossRef Google scholar
[63]
Acheré V, Faivre Rampant P, Pâques L E, Prat D. Chloroplast and mitochondrial molecular tests identify European × Japanese larch hybrids. Theoretical and Applied Genetics, 2004, 108(8): 1643–1649
CrossRef Pubmed Google scholar
[64]
Yang X, Sun X, Zhang S, Xie Y, Han H. Development of EST-SSR markers and genetic diversity analysis of the second cycle elite population in Larix kaempferi. Scientia Silvae Sinicae, 2011, 47(11): 52–58 (in Chinese)
CrossRef Google scholar
[65]
Liu C, Zhang L P, Wang C G, Song W Q, Chen C B. Development and Characterization of EST-SSR Molecular Markers in Larix kaempferi.Forest reseach, 2013, 26(S1): 60–68. (in Chinese)
[66]
Wagner S, Gerber S, Petit R J. Two highly informative dinucleotide SSR multiplexes for the conifer Larix decidua (European larch). Molecular ecology resources, 2012, 12(4): 717–25
CrossRef Google scholar

Acknowledgments

This work was supported by the National Natural Science Foundation of China (31200464 and 31330017), and the National High Technology Research and Development Program of China (2011AA100203 and 2013AA102704). The authors thank Dr. IC Bruce (Zhejiang University) and Dr. Yong Guo (Institute of Crop Science, Chinese Academy of Agricultural Sciences) for critical reading of the manuscript, and Dr. Tao Wu for sample collection.
Compliance with ethics guidelinesƒWanfeng Li, Suying Han, Liwang Qi, and Shougong Zhang declare that they have no conflict of interest or financial conflicts to disclose.‚‚This article does not contain any studies with human or animal subjects performed by the any of the authors.

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(621 KB)

Accesses

Citations

Detail

Sections
Recommended

/