Transcriptome resources and genome-wide marker development for Japanese larch (Larix kaempferi)
Wanfeng LI, Suying HAN, Liwang QI, Shougong ZHANG
Transcriptome resources and genome-wide marker development for Japanese larch (Larix kaempferi)
While the differential responses of trees to changes in climatic and environmental conditions have been demonstrated as they age, the underlying mechanisms and age control of tree growth and development are complex and poorly understood particularly at a molecular level. In this paper, we present a transcriptome analysis of Larix kaempferi, a deciduous conifer that is widely-grown in the northern hemisphere and of significant ecological and economic value. Using high-throughput RNA sequencing, we obtained about 26 million reads from the stems of 1-, 2-, 5-, 10-, 25- and 50-year-old L. kaempferi trees. Combining these with the published Roche 454 sequencing reads and the expressed sequence tags (both mainly from Larix embryogenic cell cultures), we assembled 26670549 reads into 146786 transcripts, of which we annotated 79182 to support investigations of the molecular basis of tree aging and adaption, somatic embryogenesis and wood formation. Using these sequences we also identified many single-nucleotide polymorphisms, simple sequence repeats, and insertion and deletion markers to assist breeding and genetic diversity studies of Larix.
Larix / transcriptome / age / wood formation / somatic embryogenesis / molecular marker
[1] |
Rossi S, Deslauriers A, Anfodillo T, Carrer M. Age-dependent xylogenesis in timberline conifers. New Phytologist, 2008, 177(1): 199–208
CrossRef
Google scholar
|
[2] |
Rossi S, Deslauriers A, Grićar J, Seo J W, Rathgeber C B K, Anfodillo T, Morin H, Levanic T, Oven P, Jalkanen R. Critical temperatures for xylogenesis in conifers of cold climates. Global Ecology and Biogeography, 2008, 17(6): 696–707
CrossRef
Google scholar
|
[3] |
Begum S, Nakaba S, Oribe Y, Kubo T, Funada R. Cambial sensitivity to rising temperatures by natural condition and artificial heating from late winter to early spring in the evergreen conifer Cryptomeria japonica. Trees-Structure and Function, 2010, 24(1): 43–52
CrossRef
Google scholar
|
[4] |
Li X, Liang E, Gričar J, Prislan P, Rossi S, Čufar K. Age dependence of xylogenesis and its climatic sensitivity in Smith fir on the south-eastern Tibetan Plateau. Tree Physiology, 2013, 33(1): 48–56
CrossRef
Pubmed
Google scholar
|
[5] |
Li W F, Ding Q, Chen J J, Cui K M, He X Q. Induction of PtoCDKB and PtoCYCB transcription by temperature during cambium reactivation in Populus tomentosa Carr. Journal of Experimental Botany, 2009, 60(9): 2621–2630
CrossRef
Pubmed
Google scholar
|
[6] |
Little C H A, Bonga J M. Rest in cambium of Abies balsamea. Canadian Journal of Botany, 1974, 52(7): 1723–1730
CrossRef
Google scholar
|
[7] |
Mwange K N, Wang X W, Cui K M. Mechanism of dormancy in the buds and cambium of Eucommia ulmoides. Acta Botanica Sinica, 2003, 45(6): 698–704
|
[8] |
Mwange K N, Hou H W, Wang Y Q, He X Q, Cui K M. Opposite patterns in the annual distribution and time-course of endogenous abscisic acid and indole-3-acetic acid in relation to the periodicity of cambial activity in Eucommia ulmoides Oliv. Journal of Experimental Botany, 2005, 56(413): 1017–1028
CrossRef
Pubmed
Google scholar
|
[9] |
Sundberg B, Little C H A. Tracheid production in response to changes in the internal level of indole-3-acetic Acid in 1-year-old shoots of scots pine. Plant Physiology, 1990, 94(4): 1721–1727
CrossRef
Pubmed
Google scholar
|
[10] |
Baba K, Karlberg A, Schmidt J, Schrader J, Hvidsten T R, Bako L, Bhalerao R P. Activity-dormancy transition in the cambial meristem involves stage-specific modulation of auxin response in hybrid aspen. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(8): 3418–3423
CrossRef
Pubmed
Google scholar
|
[11] |
Nilsson J, Karlberg A, Antti H, Lopez-Vernaza M, Mellerowicz E, Perrot-Rechenmann C, Sandberg G, Bhalerao R P. Dissecting the molecular basis of the regulation of wood formation by auxin in hybrid aspen. Plant Cell, 2008, 20(4): 843–855
CrossRef
Pubmed
Google scholar
|
[12] |
Savidge R A, Wareing P F. A tracheid-differentiation factor from pine needles. Planta, 1981, 153(5): 395–404
CrossRef
Pubmed
Google scholar
|
[13] |
Little C H A, Sundberg B. Tracheid production in response to indole-3-acetic-acid varies with internode age in Pinus sylvestris stems. Trees-Structure and Function, 1991, 5(2): 101–106
CrossRef
Google scholar
|
[14] |
Savidge R A. The role of plant hormones in higher plant cellular differentiation. II. Experiments with the vascular cambium, and sclereid and tracheid differentiation in the pine, Pinus contorta. Histochemical Journal, 1983, 15(5): 447–466
CrossRef
Pubmed
Google scholar
|
[15] |
Alvarez C, Valledor L. R. H, Sanchez-Olate M, Ríos D. Variation in gene expression profile with aging of Pinus radiata D. Don. BMC Proceedings, 2011, 5 (Suppl 7): P62
CrossRef
Google scholar
|
[16] |
Busov V B, Johannes E, Whetten R W, Sederoff R R, Spiker S L, Lanz-Garcia C, Goldfarb B. An auxin-inducible gene from loblolly pine (Pinus taeda L.) is differentially expressed in mature and juvenile-phase shoots and encodes a putative transmembrane protein. Planta, 2004, 218(6): 916–927
CrossRef
Pubmed
Google scholar
|
[17] |
Carlsbecker A, Tandre K, Johanson U, Englund M, Engström P. The MADS-box gene DAL1 is a potential mediator of the juvenile-to-adult transition in Norway spruce (Picea abies). Plant Journal, 2004, 40(4): 546–557
CrossRef
Pubmed
Google scholar
|
[18] |
Diego L B, Berdasco M, Fraga M F, Cañal M J, Rodríguez R, Castresana C. A Pinus radiata AAA-ATPase, the expression of which increases with tree ageing. Journal of Experimental Botany, 2004, 55(402): 1597–1599
CrossRef
Pubmed
Google scholar
|
[19] |
Fernández-Ocaña A, Carmen García-López M, Jiménez-Ruiz J, Saniger L, Macías D, Navarro F, Oya R, Belaj A, de la Rosa R, Corpas F J, Bautista Barroso J, Luque F. Identification of a gene involved in the juvenile-to-adult transition (JAT) in cultivated olive trees. Tree Genetics & Genomes, 2010, 6(6): 891–903
CrossRef
Google scholar
|
[20] |
Hutchison K W, Sherman C D, Weber J, Smith S S, Singer P B, Greenwood M S. Maturation in larch: II. effects of age on photosynthesis and gene expression in developing foliage. Plant Physiology, 1990, 94(3): 1308–1315
CrossRef
Pubmed
Google scholar
|
[21] |
Li X, Wu H X, Southerton S G. Seasonal reorganization of the xylem transcriptome at different tree ages reveals novel insights into wood formation in Pinus radiata. New Phytologist, 2010, 187(3): 764–776
CrossRef
Pubmed
Google scholar
|
[22] |
Li X, Wu H X, Southerton S G. Transcriptome profiling of wood maturation in Pinus radiata identifies differentially expressed genes with implications in juvenile and mature wood variation. Gene, 2011, 487(1): 62–71
CrossRef
Pubmed
Google scholar
|
[23] |
Wang J W, Park M Y, Wang L J, Koo Y, Chen X Y, Weigel D, Poethig R S. miRNA control of vegetative phase change in trees. PLOS Genetics, 2011, 7(2): e1002012
CrossRef
Pubmed
Google scholar
|
[24] |
Hsu C Y, Liu Y, Luthe D S, Yuceer C. Poplar FT2 shortens the juvenile phase and promotes seasonal flowering. Plant Cell, 2006, 18(8): 1846–1861
CrossRef
Pubmed
Google scholar
|
[25] |
Hsu C Y, Adams J P, Kim H, No K, Ma C, Strauss S H, Drnevich J, Vandervelde L, Ellis J D, Rice B M, Wickett N, Gunter L E, Tuskan G A, Brunner A M, Page G P, Barakat A, Carlson J E, DePamphilis C W, Luthe D S, Yuceer C. FLOWERING LOCUS T duplication coordinates reproductive and vegetative growth in perennial poplar. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(26): 10756–10761
CrossRef
Pubmed
Google scholar
|
[26] |
Böhlenius H, Huang T, Charbonnel-Campaa L, Brunner A M, Jansson S, Strauss S H, Nilsson O. CO/FT regulatory module controls timing of flowering and seasonal growth cessation in trees. Science, 2006, 312(5776): 1040–1043
CrossRef
Pubmed
Google scholar
|
[27] |
Li S G, Li W F, Han S Y, Yang W H, Qi L W. Stage-specific regulation of four HD-ZIP III transcription factors during polar pattern formation in Larix leptolepis somatic embryos. Gene, 2013, 522(2): 177–183
CrossRef
Pubmed
Google scholar
|
[28] |
Li W F, Zhang S G, Han S Y, Wu T, Zhang J H, Qi L W. Regulation of LaMYB33 by miR159 during maintenance of embryogenic potential and somatic embryo maturation in Larix kaempferi (Lamb.) Carr. Plant Cell, Tissue and Organ Culture, 2013, 113(1): 131–136
CrossRef
Google scholar
|
[29] |
Zhang J, Zhang S, Han S, Li X, Tong Z, Qi L. Deciphering small noncoding RNAs during the transition from dormant embryo to germinated embryo in Larches (Larix leptolepis). PLoS ONE, 2013, 8(12): e81452
CrossRef
Pubmed
Google scholar
|
[30] |
Zhang J, Zhang S, Han S, Wu T, Li X, Li W, Qi L. Genome-wide identification of microRNAs in larch and stage-specific modulation of 11 conserved microRNAs and their targets during somatic embryogenesis. Planta, 2012, 236(2): 647–657
CrossRef
Pubmed
Google scholar
|
[31] |
Zhang L F, Li W F, Han S Y, Yang W H, Qi L W. cDNA cloning, genomic organization and expression analysis during somatic embryogenesis of the translationally controlled tumor protein (TCTP) gene from Japanese larch (Larix leptolepis). Gene, 2013, 529(1): 150–158
CrossRef
Pubmed
Google scholar
|
[32] |
Zhang S, Zhou J, Han S, Yang W, Li W, Wei H, Li X, Qi L. Four abiotic stress-induced miRNA families differentially regulated in the embryogenic and non-embryogenic callus tissues of Larix leptolepis. Biochemical and Biophysical Research Communications, 2010, 398(3): 355–360
CrossRef
Pubmed
Google scholar
|
[33] |
Zhang S G, Han S Y, Yang W H, Wei H L, Zhang M, Qi L W. Changes in H2O2 content and antioxidant enzyme gene expression during the somatic embryogenesis of Larix leptolepis. Plant Cell, Tissue and Organ Culture, 2010, 100(1): 21–29
CrossRef
Google scholar
|
[34] |
Li W F, Zhang S G, Han S Y, Wu T, Zhang J H, Qi L W. The post-transcriptional regulation of LaSCL6 by miR171 during maintenance of embryogenic potential in Larix kaempferi (Lamb.). Carr. Tree Genetics & Genomes, 2014, 10(1): 223–229
CrossRef
Google scholar
|
[35] |
Zhang J H, Zhang S G, Li S G, Han S Y, Li W F, Li X M, Qi L W. Regulation of synchronism by abscisic-acid-responsive small noncoding RNAs during somatic embryogenesis in larch (Larix leptolepis). Plant Cell, Tissue and Organ Culture, 2014, 116(3): 361–370
CrossRef
Google scholar
|
[36] |
Zhang Y, Zhang S, Han S, Li X, Qi L. Transcriptome profiling and in silico analysis of somatic embryos in Japanese larch (Larix leptolepis). Plant Cell Reports, 2012, 31(9): 1637–1657
CrossRef
Pubmed
Google scholar
|
[37] |
Men L, Yan S, Liu G. De novo characterization of Larix gmelinii (Rupr.) Rupr. transcriptome and analysis of its gene expression induced by jasmonates. BMC Genomics, 2013, 14(1): 548
CrossRef
Pubmed
Google scholar
|
[38] |
Mackay J, Dean J F, Plomion C, Peterson D G, Cánovas F M, Pavy N, Ingvarsson P K, Savolainen O, Guevara M Á, Fluch S, Vinceti B, Abarca D, Díaz-Sala C, Cervera M T. Towards decoding the conifer giga-genome. Plant Molecular Biology, 2012, 80(6): 555–569
CrossRef
Pubmed
Google scholar
|
[39] |
Grabherr M G, Haas B J, Yassour M, Levin J Z, Thompson D A, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng Q, Chen Z, Mauceli E, Hacohen N, Gnirke A, Rhind N, di Palma F, Birren B W, Nusbaum C, Lindblad-Toh K, Friedman N, Regev A. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nature Biotechnology, 2011, 29(7): 644–652
CrossRef
Pubmed
Google scholar
|
[40] |
Zhang L, Qi L W, Han S Y. [Differentially expressed genes during Larix somatic embryomaturation and the expression profile of partial genes. Hereditas, 2009, 31(5): 540–545 (in Chinese)
CrossRef
Pubmed
Google scholar
|
[41] |
Zhang L, Qi L, Han S. Construction and analysis of differentially expressed cDNA library of larch somatic embryo at the stage of proembryogenic mass. Molecular Plant Breeding, 2008, 6(4): 675–682 (in Chinese)
CrossRef
Google scholar
|
[42] |
Huang X, Madan A. CAP3: A DNA sequence assembly program. Genome Research, 1999, 9(9): 868–877
CrossRef
Pubmed
Google scholar
|
[43] |
Altschul S F, Gish W, Miller W, Myers E W, Lipman D J. Basic local alignment search tool. Journal of Molecular Biology, 1990, 215(3): 403–410
CrossRef
Pubmed
Google scholar
|
[44] |
Guindon S, Dufayard J F, Lefort V, Anisimova M, Hordijk W, Gascuel O. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Systematic Biology, 2010, 59(3): 307–321
CrossRef
Pubmed
Google scholar
|
[45] |
Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics, 2009, 25(14): 1754–1760
CrossRef
Pubmed
Google scholar
|
[46] |
Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R. The Sequence Alignment/Map format and SAMtools. Bioinformatics, 2009, 25(16): 2078–2079
CrossRef
Pubmed
Google scholar
|
[47] |
Untergasser A, Cutcutache I, Koressaar T, Ye J, Faircloth B C, Remm M, Rozen S G. Primer3-new capabilities and interfaces. Nucleic Acids Research, 2012, 40(15): e115
CrossRef
Pubmed
Google scholar
|
[48] |
Carrer M, Urbinati C. Age-dependent tree-ring growth responses to climate in Larix decidua and Pinus cembra. Ecology, 2004, 85(3): 730–740
CrossRef
Google scholar
|
[49] |
Tian Z H, Dong J, Wang X W, Huang G R. Silviculture of Larix kaempferi. 1995, Beijing: Beijing Agriculture University Press94–105. (in Chinese)
|
[50] |
Sorce C, Giovannelli A, Sebastiani L, Anfodillo T. Hormonal signals involved in the regulation of cambial activity, xylogenesis and vessel patterning in trees. Plant Cell Reports, 2013, 32(6): 885–898
CrossRef
Pubmed
Google scholar
|
[51] |
Sehr E M, Agusti J, Lehner R, Farmer E E, Schwarz M, Greb T. Analysis of secondary growth in the Arabidopsis shoot reveals a positive role of jasmonate signalling in cambium formation. Plant Journal, 2010, 63(5): 811–822
CrossRef
Pubmed
Google scholar
|
[52] |
Cairney J, Pullman G S. The cellular and molecular biology of conifer embryogenesis. New Phytologist, 2007, 176(3): 511–536
CrossRef
Pubmed
Google scholar
|
[53] |
Quiroz-Figueroa F R, Rojas-Herrera R, Galaz-Avalos R M, Loyola-Vargas V M. Embryo production through somatic embryogenesis can be used to study cell differentiation in plants. Plant Cell, Tissue and Organ Culture, 2006, 86(3): 285–301
CrossRef
Google scholar
|
[54] |
Zimmerman J L. Somatic embryogenesis: a model for early development in higher plants. Plant Cell, 1993, 5(10): 1411–1423
CrossRef
Pubmed
Google scholar
|
[55] |
Gutmann M, vonAderkas P, Label P, Lelu M A. Effects of abscisic acid on somatic embryo maturation of hybrid larch. Journal of Experimental Botany, 1996, 47(12): 1905–1917
CrossRef
Google scholar
|
[56] |
Rai M K, Shekhawat N S, Harish, Gupta A K, Phulwaria M, Ram K, Jaiswal U. Harish, Gupta A K, Phulwaria M, Ram K, Jaiswal U. The role of abscisic acid in plant tissue culture: a review of recent progress. Plant Cell, Tissue and Organ Culture, 2011, 106(2): 179–190
CrossRef
Google scholar
|
[57] |
Khasa D P, Jaramillo-Correa J P, Jaquish B, Bousquet J. Contrasting microsatellite variation between subalpine and western larch, two closely related species with different distribution patterns. Molecular Ecology, 2006, 15(13): 3907–3918
CrossRef
Pubmed
Google scholar
|
[58] |
Pluess A R. Pursuing glacier retreat: genetic structure of a rapidly expanding Larix decidua population. Molecular Ecology, 2011, 20(3): 473–485
CrossRef
Pubmed
Google scholar
|
[59] |
Oreshkova N V, Belokon M M, Jamiyansuren S. Genetic diversity, population structure, and differentiation of Siberian larch, Gmelin larch and Cajander larch on SSR-markers data. Russian Journal of Genetics, 2013, 49(2): 178–186
CrossRef
Pubmed
Google scholar
|
[60] |
Kozyrenko M M, Artyukova E V, Reunova G D, Levina E A, Zhuravlev Y N. Genetic diversity and relationships among Siberian and Far Eastern larches inferred from RAPD analysis. Russian Journal of Genetics, 2004, 40(4): 401–409
CrossRef
Google scholar
|
[61] |
Yu X M, Zhou Q, Qian Z Q, Li S, Zhao G F. Analysis of genetic diversity and population differentiation of Larix potaninii var.chinensis using microsatellite DNA. Biochemical Genetics, 2006, 44(11–12): 483–493
CrossRef
Pubmed
Google scholar
|
[62] |
Funda T, Chen C, Liewlaksaneeyanawin C, Kenawy A M A, El-Kassaby Y A.C.. Liewlaksaneeyanawin C, Kenawy A M A, El-Kassaby Y A.. Pedigree and mating system analyses in a western larch (Larix occidentalis Nutt.) experimental population. Annals of Forest Science, 2008, 65(7): 705
CrossRef
Google scholar
|
[63] |
Acheré V, Faivre Rampant P, Pâques L E, Prat D. Chloroplast and mitochondrial molecular tests identify European × Japanese larch hybrids. Theoretical and Applied Genetics, 2004, 108(8): 1643–1649
CrossRef
Pubmed
Google scholar
|
[64] |
Yang X, Sun X, Zhang S, Xie Y, Han H. Development of EST-SSR markers and genetic diversity analysis of the second cycle elite population in Larix kaempferi. Scientia Silvae Sinicae, 2011, 47(11): 52–58 (in Chinese)
CrossRef
Google scholar
|
[65] |
Liu C, Zhang L P, Wang C G, Song W Q, Chen C B. Development and Characterization of EST-SSR Molecular Markers in Larix kaempferi.Forest reseach, 2013, 26(S1): 60–68. (in Chinese)
|
[66] |
Wagner S, Gerber S, Petit R J. Two highly informative dinucleotide SSR multiplexes for the conifer Larix decidua (European larch). Molecular ecology resources, 2012, 12(4): 717–25
CrossRef
Google scholar
|
/
〈 | 〉 |