Progress, problems and prospects of porcine pluripotent stem cells
Hanning WANG, Yangli PEI, Ning LI, Jianyong HAN
Progress, problems and prospects of porcine pluripotent stem cells
Pluripotent stem cells (PSCs), including embryonic stem cells (ESCs) and induced PSCs (iPSCs), can differentiate into cells of the three germ layers, suggesting that PSCs have great potential for basic developmental biology research and wide applications for clinical medicine. Genuine ESCs and iPSCs have been derived from mice and rats, but not from livestock such as the pig—an ideal animal model for studying human disease and regenerative medicine due to similarities with human physiologic processes. Efforts to derive porcine ESCs and iPSCs have not yielded high-quality PSCs that can produce chimeras with germline transmission. Thus, exploration of the unique porcine gene regulation network of preimplantation embryonic development may permit optimization of in vitro culture systems for raising porcine PSCs. Here we summarize the recent progress in porcine PSC generation as well as the problems encountered during this progress and we depict prospects for generating porcine naive PSCs.
induced pluripotent stem cells / embryonic stem cells / pig / reprogramming
[1] |
Evans M J, Kaufman M H. Establishment in culture of pluripotential cells from mouse embryos. Nature, 1981, 292(5819): 154-156
CrossRef
Google scholar
|
[2] |
Martin G R. Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proceedings of the National Academy of Sciences of the United States of America, 1981, 78(12): 7634-7638
CrossRef
Google scholar
|
[3] |
Wang Z Q, Kiefer F, Urbánek P, Wagner E F. Generation of completely embryonic stem cell-derived mutant mice using tetraploid blastocyst injection. Mechanisms of Development, 1997, 62(2): 137-145
CrossRef
Google scholar
|
[4] |
Eakin G S, Behringer R R. Tetraploid development in the mouse. Developmental Dynamics, 2003, 228(4): 751-766
CrossRef
Google scholar
|
[5] |
Nagy A, Gócza E, Diaz E M, Prideaux V R, Iványi E, Markkula M, Rossant J. Embryonic stem cells alone are able to support fetal development in the mouse. Development, 1990, 110(3): 815-821
|
[6] |
Thomson J A. Embryonic Stem Cell Lines Derived from Human Blastocysts. Science, 1998, 282(5391): 1145-1147
CrossRef
Google scholar
|
[7] |
Evans M J, Notarianni E, Laurie S, Moor R M. Derivation and preliminary characterization of pluripotent cell lines from porcine and bovine blastocysts. Theriogenology, 1990, 33(1): 125-128
CrossRef
Google scholar
|
[8] |
Notarianni E, Laurie S, Moor R M, Evans M J. Maintenance and differentiation in culture of pluripotential embryonic cell lines from pig blastocysts. Journal of Reproduction and Fertility. Supplement, 1990, 41: 51-56
|
[9] |
Strojek R M, Reed M A, Hoover J L, Wagner T E. A method for cultivating morphologically undifferentiated embryonic stem cells from porcine blastocysts. Theriogenology, 1990, 33(4): 901-913
CrossRef
Google scholar
|
[10] |
Saito S, Strelchenko N, Niemann H. Bovine embryonic stem cell-like cell lines cultured over several passages. Roux's Archives of Developmental Biology, 1992, 201(3): 134-141
CrossRef
Google scholar
|
[11] |
Talbot N C, Powell A M, Rexroad C E Jr. In vitro pluripotency of epiblasts derived from bovine blastocysts. Molecular Reproduction and Development, 1995, 42(1): 35-52
CrossRef
Google scholar
|
[12] |
Van Stekelenburg-Hamers A E, Van Achterberg T A, Rebel H G, Fléchon J E, Campbell K H, Weima S M, Mummery C L. Isolation and characterization of permanent cell lines from inner cell mass cells of bovine blastocysts. Molecular Reproduction and Development, 1995, 40(4): 444-454
CrossRef
Google scholar
|
[13] |
Cibelli J B, Stice S L, Golueke P J, Kane J J, Jerry J, Blackwell C, de León F A P, Robl J M. Transgenic bovine chimeric offspring produced from somatic cell-derived stem-like cells. Nature Biotechnology, 1998, 16(7): 642-646
CrossRef
Google scholar
|
[14] |
Notarianni E, Galli C, Laurie S, Moor R M, Evans M J. Derivation of pluripotent, embryonic cell lines from the pig and sheep. Journal of Reproduction and Fertility. Supplement, 1991, 43: 255-260
|
[15] |
Meinecke-Tillmann S, Meinecke B. Isolation of ES-like cell lines from ovine and caprine pre-implantation embryos. Journal of Animal Breeding and Genetics, 1996, 113(1-6):413-426
|
[16] |
Wang S, Tang X, Niu Y, Chen H, Li B, Li T, Zhang X, Hu Z, Zhou Q, Ji W. Generation and characterization of rabbit embryonic stem cells. Stem Cells, 2007, 25(2): 481-489
CrossRef
Google scholar
|
[17] |
Saito S, Sawai K, Minamihashi A, Ugai H, Murata T, Yokoyama K K. Derivation, maintenance, and induction of the differentiation in vitro of equine embryonic stem cells. Methods in Molecular Biology, 2006, 329: 59-79
|
[18] |
Hatoya S, Torii R, Kondo Y, Okuno T, Kobayashi K, Wijewardana V, Kawate N, Tamada H, Sawada T, Kumagai D, Sugiura K, Inaba T. Isolation and characterization of embryonic stem-like cells from canine blastocysts. Molecular Reproduction and Development, 2006, 73(3): 298-305
CrossRef
Google scholar
|
[19] |
Yu X, Jin G, Yin X, Cho S, Jeon J, Lee S, Kong I. Isolation and characterization of embryonic stem-like cells derived from in vivo-produced cat blastocysts. Molecular Reproduction and Development, 2008, 75(9): 1426-1432
CrossRef
Google scholar
|
[20] |
Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 2006, 126(4): 663-676
CrossRef
Google scholar
|
[21] |
Park J K, Kim H S, Uh K J, Choi K H, Kim H M, Lee T, Yang B C, Kim H J, Ka H H, Kim H, Lee C K. Primed pluripotent cell lines derived from various embryonic origins and somatic cells in pig. PLoS ONE, 2013, 8(1): e52481
CrossRef
Google scholar
|
[22] |
Tan G, Ren L, Huang Y, Tang X, Zhou Y, Zhou Y, Li D, Song H, Ouyang H, Pang D. Isolation and culture of embryonic stem-like cells from pig nuclear transfer blastocysts of different days. Zygote, 2012, 20(4): 347-352
CrossRef
Google scholar
|
[23] |
Vackova I, Ungrova A, Lopes F. Putative embryonic stem cell lines from pig embryos. Journal of Reproduction and Development, 2007, 53(6): 1137-1149
CrossRef
Google scholar
|
[24] |
Kim H S, Son H Y, Kim S, Lee G S, Park C H, Kang S K, Lee B C, Hwang W S, Lee C K. Isolation and initial culture of porcine inner cell masses derived from in vitro-produced blastocysts. Zygote, 2007, 15(01): 55
CrossRef
Google scholar
|
[25] |
Li M, Ma W, Hou Y, Sun X F, Sun Q Y, Wang W H. Improved isolation and culture of embryonic stem cells from Chinese miniature pig. Journal of Reproduction and Development, 2004, 50(2): 237-244
CrossRef
Google scholar
|
[26] |
Li M, Li Y H, Hou Y, Sun X F, Sun Q, Wang W H. Isolation and culture of pluripotent cells from in vitro produced porcine embryos. Zygote, 2004, 12(1): 43-48
CrossRef
Google scholar
|
[27] |
Brevini T A L, Cillo F, Gandolfi F. 168 Establishment and molecular characterization of pig parthenogenetic embryonic stem cells. Reproduction, Fertility, and Development, 2004, 17(2): 235
CrossRef
Google scholar
|
[28] |
Li M, Zhang D, Hou Y, Jiao L, Zheng X, Wang W H. Isolation and culture of embryonic stem cells from porcine blastocysts. Molecular Reproduction and Development, 2003, 65(4): 429-434
CrossRef
Google scholar
|
[29] |
Miyoshi K, Taguchi Y, Sendai Y, Hoshi H, Sato E. Establishment of a porcine cell line from in vitro-produced blastocysts and transfer of the cells into enucleated oocytes. Biology of Reproduction, 2000, 62(6): 1640-1646
CrossRef
Google scholar
|
[30] |
Anderson G B, Choi S J, Bondurant R H. Survival of porcine inner cell masses in culture and after injection into blastocysts. Theriogenology, 1994, 42(1): 204-212
CrossRef
Google scholar
|
[31] |
Hochereau-de Reviers M T, Perreau C. P.C., In vitro culture of embryonic disc cells from porcine blastocysts. Reproduction, Nutrition, Development, 1993, 33(5): 475-483
CrossRef
Google scholar
|
[32] |
Piedrahita J A, Anderson G B, Bondurant R H. On the isolation of embryonic stem cells: Comparative behavior of murine, porcine and ovine embryos. Theriogenology, 1990, 34(5): 879-901
CrossRef
Google scholar
|
[33] |
Chen L R, Shiue Y L, Bertolini L, Medrano J F, BonDurant R H, Anderson G B. Establishment of pluripotent cell lines from porcine preimplantation embryos. Theriogenology, 1999, 52(2): 195-212
CrossRef
Google scholar
|
[34] |
Iwasaki S, Campbell K H, Galli C, Akiyama K. Production of live calves derived from embryonic stem-like cells aggregated with tetraploid embryos. Biology of Reproduction, 2000, 62(2): 470-475
CrossRef
Google scholar
|
[35] |
Alberio R, Croxall N, Allegrucci C. Pig epiblast stem cells depend on activin/nodal signaling for pluripotency and self-renewal. Stem Cells and Development, 2010, 19(10): 1627-1636
CrossRef
Google scholar
|
[36] |
Kim S, Kim J H, Lee E, Jeong Y W, Hossein M S, Park S M, Park S W, Lee J Y, Jeong Y I, Kim H S, Kim Y W, Hyun S H, Hwang W S. Establishment and characterization of embryonic stem-like cells from porcine somatic cell nuclear transfer blastocysts. Zygote, 2010, 18(2): 93-101
CrossRef
Google scholar
|
[37] |
Vassiliev I, Vassilieva S, Beebe L F S, Harrison S J, McIlfatrick S M, Nottle M B. In vitro and in vivo characterization of putative porcine embryonic stem cells. Cell Reprogram, 2010, 12(2): 223-230
CrossRef
Google scholar
|
[38] |
Vassiliev I, Vassilieva S, Truong K P, Beebe L F S, McIlfatrick S M, Harrison S J, Nottle M B. Isolation and in vitro characterization of putative porcine embryonic stem cells from cloned embryos treated with trichostatin A. Cell Reprogram, 2011, 13(3): 205-213
CrossRef
Google scholar
|
[39] |
Telugu B P, Ezashi T, Roberts R M. The promise of stem cell research in pigs and other ungulate species. Stem Cell Reviews, 2010, 6(1): 31-41
CrossRef
Google scholar
|
[40] |
Moore K, Piedrahita J A. The effects of human leukemia inhibitory factor (hLIF) and culture medium on in vitro differentiation of cultured porcine inner cell mass (pICM). In Vitro Cellular & Developmental Biology-Animal, 1997, 33(1): 62-71
CrossRef
Google scholar
|
[41] |
Ma T, Xie M, Laurent T, Ding S. Progress in the reprogramming of somatic cells. Circulation Research, 2013, 112(3): 562-574
CrossRef
Google scholar
|
[42] |
Hou P, Li Y, Zhang X, Liu C, Guan J, Li H, Zhao T, Ye J, Yang W, Liu K, Ge J, Xu J, Zhang Q, Zhao Y, Deng H. Pluripotent stem cells induced from mouse somatic cells by small-molecule compounds. Science, 2013, 341(6146): 651-654
CrossRef
Google scholar
|
[43] |
Lin S L, Chang D C, Chang-Lin S, Lin C H, Wu D T S, Chen D T, Ying S Y. Mir-302 reprograms human skin cancer cells into a pluripotent ES-cell-like state. RNA, 2008, 14(10): 2115-2124
CrossRef
Google scholar
|
[44] |
Judson R L, Babiarz J E, Venere M, Blelloch R. Embryonic stem cell-specific microRNAs promote induced pluripotency. Nature Biotechnology, 2009, 27(5): 459-461
CrossRef
Google scholar
|
[45] |
Melton C, Judson R L, Blelloch R. Opposing microRNA families regulate self-renewal in mouse embryonic stem cells. Nature, 2010, 463(7281): 621-626
CrossRef
Google scholar
|
[46] |
Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell, 2007, 131(5): 861-872
CrossRef
Google scholar
|
[47] |
Blelloch R, Venere M, Yen J, Ramalho-Santos M. Generation of induced pluripotent stem cells in the absence of drug selection. Cell Stem Cell, 2007, 1(3): 245-247
CrossRef
Google scholar
|
[48] |
Yu J, Vodyanik M A, Smuga-Otto K, Antosiewicz-Bourget J, Frane J L, Tian S, Nie J, Jonsdottir G A, Ruotti V, Stewart R, Slukvin I I, Thomson J A. Induced pluripotent stem cell lines derived from human somatic cells. Science, 2007, 318(5858): 1917-1920
CrossRef
Google scholar
|
[49] |
Stadtfeld M, Maherali N, Breault D T, Hochedlinger K. Defining molecular cornerstones during fibroblast to iPS cell reprogramming in mouse. Cell Stem Cell, 2008, 2(3): 230-240
CrossRef
Google scholar
|
[50] |
Esteban M A, Xu J, Yang J, Peng M, Qin D, Li W, Jiang Z, Chen J, Deng K, Zhong M, Cai J, Lai L, Pei D. Generation of induced pluripotent stem cell lines from Tibetan miniature pig. Journal of Biological Chemistry, 2009, 284(26): 17634-17640
CrossRef
Google scholar
|
[51] |
Ezashi T, Telugu B P V L, Alexenko A P, Sachdev S, Sinha S, Roberts R M. Derivation of induced pluripotent stem cells from pig somatic cells. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(27): 10993-10998
CrossRef
Google scholar
|
[52] |
Nayernia K, Lee J H, Lako M, Armstrong L, Herbert M, Li M, Engel W, Elliott D, Stojkovic M, Parrington J, Murdoch A, Strachan T, Zhang X. In Vitro Derivation of Human Sperm from Embryonic Stem Cells. Stem Cells and Development, 2009,Epub ahead of print)
CrossRef
Google scholar
|
[53] |
Telugu B P, Ezashi T, Sinha S, Alexenko A P, Spate L, Prather R S, Roberts R M. Leukemia inhibitory factor (LIF)-dependent, pluripotent stem cells established from inner cell mass of porcine embryos. Journal of Biological Chemistry, 2011, 286(33): 28948-28953
CrossRef
Google scholar
|
[54] |
Brevini T, Pennarossa G, Maffei S, Gandolfi F. Pluripotency network in porcine embryos and derived cell lines. Reproduction in Domestic Animals, 2012, 47(Suppl 4): 86-91
CrossRef
Google scholar
|
[55] |
Liu K, Ji G, Mao J, Liu M, Wang L, Chen C, Liu L. Generation of porcine-induced pluripotent stem cells by using OCT4 and KLF4 porcine factors. Cell Reprogram, 2012, 14(6): 505-513
|
[56] |
Montserrat N, de Oñate L, Garreta E, González F, Adamo A, Eguizábal C, Häfner S, Vassena R, Belmonte J C I. Generation of feeder-free pig induced pluripotent stem cells without Pou5f1. Cell Transplantation, 2012, 21(5): 815-825
CrossRef
Google scholar
|
[57] |
Gao Y, Guo Y, Duan A, Cheng D, Zhang S, Wang H. Optimization of culture conditions for maintaining porcine induced pluripotent stem cells. DNA and Cell Biology, 2014, 33(1): 1-11
CrossRef
Google scholar
|
[58] |
West F D, Terlouw S L, Kwon D J, Mumaw J L, Dhara S K, Hasneen K, Dobrinsky J R, Stice S L. Porcine induced pluripotent stem cells produce chimeric offspring. Stem Cells and Development, 2010, 19(8): 1211-1220
CrossRef
Google scholar
|
[59] |
Wu Z, Chen J, Ren J, Bao L, Liao J, Cui C, Rao L, Li H, Gu Y, Dai H, Zhu H, Teng X, Cheng L, Xiao L. Generation of pig induced pluripotent stem cells with a drug-inducible system. Journal of Molecular Cell Biology, 2009, 1(1): 46-54
CrossRef
Google scholar
|
[60] |
West F D, Uhl E W, Liu Y, Stowe H, Lu Y, Yu P, Gallegos-Cardenas A, Pratt S L, Stice S L. Brief Report: Chimeric Pigs Produced from Induced Pluripotent Stem Cells Demonstrate Germline Transmission and No Evidence of Tumor Formation in Young Pigs. Stem Cells, 2011, 29(10): 1640-1643
CrossRef
Google scholar
|
[61] |
Montserrat N, Bahima E G, Batlle L, Häfner S, Rodrigues A M C, González F, Belmonte J C I. Generation of pig iPS cells: a model for cell therapy. Journal of Cardiovascular Translational Research, 2011, 4(2): 121-130
CrossRef
Google scholar
|
[62] |
Hall V J, Kristensen M, Rasmussen M A, Ujhelly O, Dinnyés A, Hyttel P. Temporal repression of endogenous pluripotency genes during reprogramming of porcine induced pluripotent stem cells. Cell Reprogram, 2012, 14(3): 204-216
|
[63] |
Fujishiro S H, Nakano K, Mizukami Y, Azami T, Arai Y, Matsunari H, Ishino R, Nishimura T, Watanabe M, Abe T, Furukawa Y, Umeyama K, Yamanaka S, Ema M, Nagashima H, Hanazono Y. Generation of naive-like porcine-induced pluripotent stem cells capable of contributing to embryonic and fetal development. Stem Cells and Development, 2013, 22(3): 473-482
CrossRef
Google scholar
|
[64] |
Ji G, Ruan W, Liu K, Wang F, Sakellariou D, Chen J, Yang Y, Okuka M, Han J, Liu Z, Lai L, Gagos S, Xiao L, Deng H, Li N, Liu L. Telomere reprogramming and maintenance in porcine iPS cells. PLoS ONE, 2013, 8(9): e74202
CrossRef
Google scholar
|
[65] |
Kwon D J, Jeon H, Oh K B, Ock S A, Im G S, Lee S S, Im S K, Lee J W, Oh S J, Park J K, Hwang S. Generation of leukemia inhibitory factor-dependent induced pluripotent stem cells from the Massachusetts General Hospital miniature pig. BioMed Research International, 2013, 2013: 1-11
CrossRef
Google scholar
|
[66] |
Ma K, Song G, An X, Fan A, Tan W, Tang B, Zhang X, Li Z. miRNAs promote generation of porcine-induced pluripotent stem cells. Molecular and Cellular Biochemistry, 2014, 389(1-2): 209-218
CrossRef
Google scholar
|
[67] |
Zhang Y, Wei C, Zhang P, Li X, Liu T, Pu Y, Li Y, Cao Z, Cao H, Liu Y, Zhang X, Zhang Y. Efficient reprogramming of naive-like induced pluripotent stem cells from porcine adipose-derived stem cells with a feeder-independent and serum-free system. PLoS ONE, 2014, 9(1): e85089
CrossRef
Google scholar
|
[68] |
Huang B, Li T, Alonso-Gonzalez L, Gorre R, Keatley S, Green A, Turner P, Kallingappa P K, Verma V, Oback B. A virus-free poly-promoter vector induces pluripotency in quiescent bovine cells under chemically defined conditions of dual kinase inhibition. PLoS ONE, 2011, 6(9): e24501
CrossRef
Google scholar
|
[69] |
Han X, Han J, Ding F, Cao S, Lim S S, Dai Y, Zhang R, Zhang Y, Lim B, Li N. Generation of induced pluripotent stem cells from bovine embryonic fibroblast cells. Cell Research, 2011, 21(10): 1509-1512
CrossRef
Google scholar
|
[70] |
Sumer H, Liu J, Malaver-Ortega L F, Lim M L, Khodadadi K, Verma P J. NANOG is a key factor for induction of pluripotency in bovine adult fibroblasts. Journal of Animal Science, 2011, 89(9): 2708-2716
CrossRef
Google scholar
|
[71] |
Cao H, Yang P, Pu Y, Sun X, Yin H, Zhang Y, Zhang Y, Li Y, Liu Y, Fang F, Zhang Z, Tao Y, Zhang X. Characterization of bovine induced pluripotent stem cells by lentiviral transduction of reprogramming factor fusion proteins. International Journal of Biological Sciences, 2012, 8(4): 498-511
CrossRef
Google scholar
|
[72] |
Bao L, He L, Chen J, Wu Z, Liao J, Rao L, Ren J, Li H, Zhu H, Qian L, Gu Y, Dai H, Xu X, Zhou J, Wang W, Cui C, Xiao L. Reprogramming of ovine adult fibroblasts to pluripotency via drug-inducible expression of defined factors. Cell Research, 2011, 21(4): 600-608
CrossRef
Google scholar
|
[73] |
Yang Li M C. Andrew Stephen Lee, Kehua Zhang, Dongjun Liu, Reprogramming of Sheep Fibroblasts into Pluripotency under a Drug-Inducible Expression of Mouse-Derived Defined Factors. PLoS ONE, 2011, 6(1): e15947
|
[74] |
Liu, J., Balehosur D, Murray B, Kelly JM, Sumer H, Verma PJ. Generation and characterization of reprogrammed sheep induced pluripotent stem cells. Theriogenology, 2012. 77(2): p. 338-346.
|
[75] |
Sartori C, DiDomenico A I, Thomson A J, Milne E, Lillico S G, Burdon T G, Whitelaw C B. Ovine-induced pluripotent stem cells can contribute to chimeric lambs. Cell Reprogram, 2012, 14(1): 8-19
|
[76] |
Ren J, Pak Y, He L, Qian L, Gu Y, Li H, Rao L, Liao J, Cui C, Xu X, Zhou J, Ri H, Xiao L. Generation of hircine-induced pluripotent stem cells by somatic cell reprogramming. Cell Research, 2011, 21(5): 849-853
CrossRef
Google scholar
|
[77] |
Song H, Li H, Huang M, Xu D, Gu C, Wang Z, Dong F, Wang F. Induced pluripotent stem cells from goat fibroblasts. Molecular Reproduction and Development, 2013, 80(12): 1009-1017
CrossRef
Google scholar
|
[78] |
Nichols J, Smith A. Naive and primed pluripotent states. Cell Stem Cell, 2009, 4(6): 487-492
CrossRef
Google scholar
|
[79] |
Ying Q L, Wray J, Nichols J, Batlle-Morera L, Doble B, Woodgett J, Cohen P, Smith A. The ground state of embryonic stem cell self-renewal. Nature, 2008, 453(7194): 519-523
CrossRef
Google scholar
|
[80] |
Horiuchi H, Tategaki A, Yamashita Y, Hisamatsu H, Ogawa M, Noguchi T, Aosasa M, Kawashima T, Akita S, Nishimichi N, Mitsui N, Furusawa S, Matsuda H. Chicken leukemia inhibitory factor maintains chicken embryonic stem cells in the undifferentiated state. Journal of Biological Chemistry, 2004, 279(23): 24514-24520
CrossRef
Google scholar
|
[81] |
Brevini T A L, Cillo F, Gandolfi F. Establishment and molecular characterizition of pig parthenogenetic embryonic stem cells. Reproduction,Fertility and Development, 2005, 17(2): 235
|
[82] |
Hochereau-de Reviers M T, Perreau C. In vitro culture of embryonic disc cells from porcine blastocysts. Reproduction, Nutrition, Development, 1993, 33(5): 475-483
CrossRef
Google scholar
|
[83] |
Prigione A, Rohwer N, Hoffmann S, Mlody B, Drews K, Bukowiecki R, Blümlein K, Wanker E E, Ralser M, Cramer T, Adjaye J. HIF1alpha modulates cell fate reprogramming through early glycolytic shift and upregulation of PDK1-3 and PKM2. Stem Cells, 2014, 32(2): 364-376
CrossRef
Google scholar
|
[84] |
Sanna D, Sanna A, Mara L, Pilichi S, Mastinu A, Chessa F, Pani L, Dattena M. Oct4 expression in in-vitro-produced sheep blastocysts and embryonic-stem-like cells. Cell Biology International, 2010, 34(1): 53-60
|
[85] |
Yadav P S, Kues W A, Herrmann D, Carnwath J W, Niemann H. Bovine ICM derived cells express the Oct4 ortholog. Molecular Reproduction and Development, 2005, 72(2): 182-190
CrossRef
Google scholar
|
[86] |
Saito S, Sawai K, Ugai H, Moriyasu S, Minamihashi A, Yamamoto Y, Hirayama H, Kageyama S, Pan J, Murata T, Kobayashi Y, Obata Y, Yokoyama K K. Generation of cloned calves and transgenic chimeric embryos from bovine embryonic stem-like cells. Biochemical and Biophysical Research Communications, 2003, 309(1): 104-113
CrossRef
Google scholar
|
[87] |
Brevini T A, Antonini S, Pennarossa G, Gandolfi F. Recent progress in embryonic stem cell research and its application in domestic species. Reproduction in Domestic Animals, 2008, 43(Suppl 2): 193-199
CrossRef
Google scholar
|
[88] |
Hanna J, Cheng A W, Saha K, Kim J, Lengner C J, Soldner F, Cassady J P, Muffat J, Carey B W, Jaenisch R. Human embryonic stem cells with biological and epigenetic characteristics similar to those of mouse ESCs. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(20): 9222-9227
CrossRef
Google scholar
|
[89] |
Blomberg L A, Telugu B P. Twenty years of embryonic stem cell research in farm animals. Reproduction in Domestic Animals, 2012, 47(Suppl 4): 80-85
CrossRef
Google scholar
|
[90] |
Huangfu D, Maehr R, Guo W, Eijkelenboom A, Snitow M, Chen A E, Melton D A. Induction of pluripotent stem cells by defined factors is greatly improved by small-molecule compounds. Nature Biotechnology, 2008, 26(7): 795-797
CrossRef
Google scholar
|
[91] |
Shi Y, Desponts C, Do J T, Hahm H S, Schöler H R, Ding S. Induction of pluripotent stem cells from mouse embryonic fibroblasts by Oct4 and Klf4 with small-molecule compounds. Cell Stem Cell, 2008, 3(5): 568-574
CrossRef
Google scholar
|
[92] |
Shi Y, Tae Do J, Desponts C, Hahm H S, Schöler H R, Ding S. A combined chemical and genetic approach for the generation of induced pluripotent stem cells. Cell Stem Cell, 2008, 2(6): 525-528
CrossRef
Google scholar
|
[93] |
Ezashi T, Telugu B P, Roberts R M. Induced pluripotent stem cells from pigs and other ungulate species: an alternative to embryonic stem cells? Reproduction in Domestic Animals, 2012, 47(Suppl 4): 92-97
CrossRef
Google scholar
|
[94] |
Liu Y, Ma Y, Yang JY, Cheng D, Liu X, Ma X, West F D, Wang H. Comparative Gene Expression Signature of Pig, Human and Mouse Induced Pluripotent Stem Cell Lines Reveals Insight into Pig Pluripotency Gene Networks. Stem Cell Reviews, 2014, 10(2): 162-176
|
[95] |
Hall V J, Christensen J, Gao Y, Schmidt M H, Hyttel P. Porcine pluripotency cell signaling develops from the inner cell mass to the epiblast during early development. Developmental Dynamics, 2009, 238(8): 2014-2024
CrossRef
Google scholar
|
[96] |
Hall V J. Early development of the porcine embryo: the importance of cell signalling in development of pluripotent cell lines. Reproduction, Fertility, and Development, 2012, 25(1): 94-102
CrossRef
Google scholar
|
[97] |
Cao S, Han J, Wu J, Li Q, Liu S, Zhang W, Pei Y, Ruan X, Liu Z, Wang X, Lim B, Li N. Specific gene-regulation networks during the pre-implantation development of the pig embryo as revealed by deep sequencing. BMC Genomics, 2014, 15(1): 4
CrossRef
Google scholar
|
[98] |
Vander Heiden M G, Cantley L C, Thompson C B. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science, 2009, 324(5930): 1029-1033
CrossRef
Google scholar
|
[99] |
Zhang J, Nuebel E, Daley G Q, Koehler C M, Teitell M A. Metabolic regulation in pluripotent stem cells during reprogramming and self-renewal. Cell Stem Cell, 2012, 11(5): 589-595
CrossRef
Google scholar
|
[100] |
Chen X, Xu H, Yuan P, Fang F, Huss M, Vega V B, Wong E, Orlov Y L, Zhang W, Jiang J, Loh Y H, Yeo H C, Yeo Z X, Narang V, Govindarajan K R, Leong B, Shahab A, Ruan Y, Bourque G, Sung W K, Clarke N D, Wei C L, Ng H H. Integration of external signaling pathways with the core transcriptional network in embryonic stem cells. Cell, 2008, 133(6): 1106-1117
CrossRef
Google scholar
|
[101] |
Demaria M, Giorgi C, Lebiedzinska M, Esposito G, D'Angeli L, Bartoli A, Gough D J, Turkson J, Levy D, Watson C J, Wieckowski M R, Provero P, Pinton P, Poli V. A STAT3-mediated metabolic switch is involved in tumour transformation and STAT3 addiction. Aging, 2010, 2(11): 823-842
|
[102] |
Wang J, Alexander P, Wu L, Hammer R, Cleaver O, McKnight S L. Dependence of mouse embryonic stem cells on threonine catabolism. Science, 2009, 325(5939): 435-439
CrossRef
Google scholar
|
[103] |
Yanes O, Clark J, Wong D M, Patti G J, Sánchez-Ruiz A, Benton H P, Trauger S A, Desponts C, Ding S, Siuzdak G. Metabolic oxidation regulates embryonic stem cell differentiation. Nature Chemical Biology, 2010, 6(6): 411-417
CrossRef
Google scholar
|
[104] |
Panopoulos A D, Yanes O, Ruiz S, Kida Y S, Diep D, Tautenhahn R, Herrerías A, Batchelder E M, Plongthongkum N, Lutz M, Berggren W T, Zhang K, Evans R M, Siuzdak G, Belmonte J C I. The metabolome of induced pluripotent stem cells reveals metabolic changes occurring in somatic cell reprogramming. Cell Research, 2012, 22(1): 168-177
CrossRef
Google scholar
|
[105] |
Ware C B, Wang L, Mecham B H, Shen L, Nelson A M, Bar M, Lamba D A, Dauphin D S, Buckingham B, Askari B, Lim R, Tewari M, Gartler S M, Issa J P, Pavlidis P, Duan Z, Blau C A. Histone deacetylase inhibition elicits an evolutionarily conserved self-renewal program in embryonic stem cells. Cell Stem Cell, 2009, 4(4): 359-369
CrossRef
Google scholar
|
[106] |
Liang G, Taranova O, Xia K, Zhang Y. Butyrate promotes induced pluripotent stem cell generation. Journal of Biological Chemistry, 2010, 285(33): 25516-25521
CrossRef
Google scholar
|
[107] |
Mali P, Chou B K, Yen J, Ye Z, Zou J, Dowey S, Brodsky R A, Ohm J E, Yu W, Baylin S B, Yusa K, Bradley A, Meyers D J, Mukherjee C, Cole P A, Cheng L. Butyrate greatly enhances derivation of human induced pluripotent stem cells by promoting epigenetic remodeling and the expression of pluripotency-associated genes. Stem Cells, 2010, 28(4): 713-720
CrossRef
Google scholar
|
[108] |
Ware C B, Nelsona A M, Mechamc B, Hesson J, Zhou W Y, Jonlin E C, Jimenez-Caliani A J, Deng X X, Cavanaugh C, Cook S, Tesarh P, Okada J, Margaretha L, Sperber H, Choi M, Blau C A, Treuting P M, Hawkins R D, Cirulli V, Ruohola-Bakera H. Derivation of naïve human embryonic stem cells. Proceedings of the National Academy of Sciences of the United States of America, 2014first published online)
CrossRef
Google scholar
|
[109] |
Gandolfi F, Pennarossa G, Maffei S, Brevini T A L. Why is it so difficult to derive pluripotent stem cells in domestic ungulates? Reproduction in Domestic Animals, 2012, 47(Suppl 5): 11-17
CrossRef
Google scholar
|
[110] |
Loh Y H, Wu Q, Chew J L, Vega V B, Zhang W, Chen X, Bourque G, George J, Leong B, Liu J, Wong K Y, Sung K W, Lee C W H, Zhao X D, Chiu K P, Lipovich L, Kuznetsov V A, Robson P, Stanton L W, Wei C L, Ruan Y, Lim B, Ng H H. The Oct4 and Nanog transcription network regulates pluripotency in mouse embryonic stem cells. Nature Genetics, 2006, 38(4): 431-440
CrossRef
Google scholar
|
[111] |
Bonnet A, Dalbies-Tran R, Sirard M A. Opportunities and challenges in applying genomics to the study of oogenesis and folliculogenesis in farm animals. Reproduction, 2008, 135(2): 119-128
CrossRef
Google scholar
|
[112] |
Teo A K, Wagers A J, Kulkarni R N. New opportunities: harnessing induced pluripotency for discovery in diabetes and metabolism. Cell Metabolism, 2013, 18(6): 775-791
CrossRef
Google scholar
|
/
〈 | 〉 |