One-step generation of myostatin gene knockout sheep via the CRISPR/Cas9 system
Hongbing HAN, Yonghe MA, Tao WANG, Ling LIAN, Xiuzhi TIAN, Rui HU, Shoulong DENG, Kongpan LI, Feng WANG, Ning LI, Guoshi LIU, Yaofeng ZHAO, Zhengxing LIAN
One-step generation of myostatin gene knockout sheep via the CRISPR/Cas9 system
[1] |
Bhaya D, Davison M, Barrangou R. CRISPR-Cas systems in bacteria and archaea: versatile small RNAs for adaptive defense and regulation. Annual Review of Genetics, 2011, 45(1): 273-297
CrossRef
Pubmed
Google scholar
|
[2] |
Terns M P, Terns R M. CRISPR-based adaptive immune systems. Current Opinion in Microbiology, 2011, 14(3): 321-327
CrossRef
Pubmed
Google scholar
|
[3] |
Gasiunas G, Barrangou R, Horvath P, Siksnys V. Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(39): E2579-E2586
CrossRef
Pubmed
Google scholar
|
[4] |
Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna J A, Charpentier E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science, 2012, 337(6096): 816-821
CrossRef
Pubmed
Google scholar
|
[5] |
Jinek M, Jiang F G, Taylor D W, Sternberg S H, Kaya E, Ma E B, Anders C, Hauer M, Zhou KH, Lin S, Kaplan M, Iavarone A T, Charpentier E, Nogales E, Doudna J A. Structures of Cas9 endonucleases reveal RNA-mediated conformational activation. Science, 2014, 343(6176).first published online)
CrossRef
Google scholar
|
[6] |
Deltcheva E, Chylinski K, Sharma C M, Gonzales K, Chao Y, Pirzada Z A, Eckert M R, Vogel J, Charpentier E. CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature, 2011, 471(7340): 602-607
CrossRef
Pubmed
Google scholar
|
[7] |
Deveau H, Garneau J E, Moineau S. CRISPR/Cas system and its role in phage-bacteria interactions. Annual Review of Microbiology, 2010, 64(1): 475-493
CrossRef
Pubmed
Google scholar
|
[8] |
Mali P, Yang L, Esvelt K M, Aach J, Guell M, DiCarlo J E, Norville J E, Church G M. RNA-guided human genome engineering via Cas9. Science, 2013, 339(6121): 823-826
CrossRef
Pubmed
Google scholar
|
[9] |
Cong L, Ran F A, Cox D, Lin S, Barretto R, Habib N, Hsu P D, Wu X, Jiang W, Marraffini L A, Zhang F. Multiplex genome engineering using CRISPR/Cas systems. Science, 2013, 339(6121): 819-823
CrossRef
Pubmed
Google scholar
|
[10] |
Hwang W Y, Fu Y, Reyon D, Maeder M L, Tsai S Q, Sander J D, Peterson R T, Yeh J R, Joung J K. Efficient genome editing in zebrafish using a CRISPR-Cas system. Nature Biotechnology, 2013, 31(3): 227-229
CrossRef
Pubmed
Google scholar
|
[11] |
Wang H, Yang H, Shivalila C S, Dawlaty M M, Cheng A W, Zhang F, Jaenisch R. One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell, 2013, 153(4): 910-918
CrossRef
Pubmed
Google scholar
|
[12] |
Li W, Teng F, Li T, Zhou Q. Simultaneous generation and germline transmission of multiple gene mutations in rat using CRISPR-Cas systems. Nature Biotechnology, 2013, 31(8): 684-686
CrossRef
Pubmed
Google scholar
|
[13] |
Niu Y, Shen B, Cui Y, Chen Y, Wang J, Wang L, Kang Y, Zhao X, Si W, Li W, Xiang A P, Zhou J, Guo X, Bi Y, Si C, Hu B, Dong G, Wang H, Zhou Z, Li T, Tan T, Pu X, Wang F, Ji S, Zhou Q, Huang X, Ji W, Sha J. Generation of gene-modified cynomolgus monkey via Cas9/RNA-mediated gene targeting in one-cell embryos. Cell, 2014, 156(4): 836-843
CrossRef
Pubmed
Google scholar
|
[14] |
Hauschild J, Petersen B, Santiago Y, Queisser A L, Carnwath J W, Lucas-Hahn A, Zhang L, Meng X, Gregory P D, Schwinzer R, Cost G J, Niemann H. Efficient generation of a biallelic knockout in pigs using zinc-finger nucleases. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(29): 12013-12017
CrossRef
Pubmed
Google scholar
|
[15] |
Carlson D F, Tan W, Lillico S G, Stverakova D, Proudfoot C, Christian M, Voytas D F, Long C R, Whitelaw C B, Fahrenkrug S C. Efficient TALEN-mediated gene knockout in livestock. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(43): 17382-17387
CrossRef
Pubmed
Google scholar
|
[16] |
Hai T, Teng F, Guo R, Li W, Zhou Q. One-step generation of knockout pigs by zygote injection of CRISPR/Cas system. Cell Research, 2014, 24(3): 372-375
CrossRef
Pubmed
Google scholar
|
[17] |
Grobet L, Royo Martin L J, Poncelet D, Pirottin D, Brouwers B, Riquet J, Schoeberlein A, Dunner S, Ménissier F, Massabanda J, Fries R, Hanset R, Georges M. A deletion in the bovine myostatin gene causes the double-muscled phenotype in cattle. Nature Genetics, 1997, 17(1): 71-74
CrossRef
Pubmed
Google scholar
|
[18] |
Mosher D S, Quignon P, Bustamante C D, Sutter N B, Mellersh C S, Parker H G, Ostrander E A. A mutation in the myostatin gene increases muscle mass and enhances racing performance in heterozygote dogs. PLoS Genetics, 2007, 3(5): e79
CrossRef
Pubmed
Google scholar
|
[19] |
McPherron A C, Lawler A M, Lee S J. Regulation of skeletal muscle mass in mice by a new TGF-beta superfamily member. Nature, 1997, 387(6628): 83-90
CrossRef
Pubmed
Google scholar
|
[20] |
Fu Y, Foden J A, Khayter C, Maeder M L, Reyon D, Joung J K, Sander J D. High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nature Biotechnology, 2013, 31(9): 822-826
CrossRef
Pubmed
Google scholar
|
[21] |
Hsu P D, Scott D A, Weinstein J A, Ran F A, Konermann S, Agarwala V, Li Y, Fine E J, Wu X, Shalem O, Cradick T J, Marraffini L A, Bao G, Zhang F. DNA targeting specificity of RNA-guided Cas9 nucleases. Nature Biotechnology, 2013, 31(9): 827-832
CrossRef
Pubmed
Google scholar
|
/
〈 | 〉 |