Recent advances in fruit crop genomics

Qiang XU, Chaoyang LIU, Manosh Kumar BISWAS, Zhiyong PAN, Xiuxin DENG

PDF(303 KB)
PDF(303 KB)
Front. Agr. Sci. Eng. ›› 2014, Vol. 1 ›› Issue (1) : 21-27. DOI: 10.15302/J-FASE-2014002
REVIEW
REVIEW

Recent advances in fruit crop genomics

Author information +
History +

Abstract

In recent years, dramatic progress has been made in the genomics of fruit crops. The publication of a dozen fruit crop genomes represents a milestone for both functional genomics and breeding programs in fruit crops. Rapid advances in high-throughput sequencing technology have revolutionized the manner and scale of genomics in fruit crops. Research on fruit crops is encompassing a wide range of biological questions which are unique and cannot be addressed in a model plant such as Arabidopsis. This review summarizes recent achievements of research on the genome, transcriptome, proteome, miRNAs and epigenome of fruit crops.

Graphical abstract

Keywords

fruit crops / fruit biology / gene function / genomics

Cite this article

Download citation ▾
Qiang XU, Chaoyang LIU, Manosh Kumar BISWAS, Zhiyong PAN, Xiuxin DENG. Recent advances in fruit crop genomics. Front. Agr. Sci. Eng., 2014, 1(1): 21‒27 https://doi.org/10.15302/J-FASE-2014002

References

[1]
Varshney R K, Nayak S N, May G D, Jackson S A. Next-generation sequencing technologies and their implications for crop genetics and breeding. Trends in Biotechnology, 2009, 27(9): 522–530
CrossRef Google scholar
[2]
Ming R, Hou S B, Feng Y, Yu Q Y, Dionne-Laporte A, Saw J H, Senin P, Wang W, Ly B V, Lewis K L T, Salzberg S L, Feng L, Jones M R, Skelton R L, Murray J E, Chen C X, Qian W B, Shen J G, Du P, Eustice M, Tong E, Tang H B, Lyons E, Paull R E, Michael T P, Wall K, Rice D W, Albert H, Wang M L, Zhu Y J, Schatz M, Nagarajan N, Acob R A, Guan P Z, Blas A, Wai C M, Ackerman C M, Ren Y, Liu C, Wang J M, Wang J P, Na J K, Shakirov E V, Haas B, Thimmapuram J, Nelson D, Wang X Y, Bowers J E, Gschwend A R, Delcher A L, Singh R, Suzuki J Y, Tripathi S, Neupane K, Wei H R, Irikura B, Paidi M, Jiang N, Zhang W L, Presting G, Windsor A, Navajas-Perez R, Torres M J, Feltus F A, Porter B, Li Y J, Burroughs A M, Luo M C, Liu L, Christopher D A, Mount S M, Moore P H, Sugimura T, Jiang J M, Schuler M A, Friedman V, Mitchell-Olds T, Shippen D E, dePamphilis C W, Palmer J D, Freeling M, Paterson A H, Gonsalves D, Wang L, Alam M. The draft genome of the transgenic tropical fruit tree papaya (Carica papaya Linnaeus). Nature, 2008, 452(7190): 991–996
CrossRef Google scholar
[3]
Xu Q, Chen L L, Ruan X, Chen D, Zhu A, Chen C, Bertrand D, Jiao W B, Hao B H, Lyon M P, Chen J, Gao S, Xing F, Lan H, Chang J W, Ge X, Lei Y, Hu Q, Miao Y, Wang L, Xiao S, Biswas M K, Zeng W, Guo F, Cao H, Yang X, Xu X W, Cheng Y J, Xu J, Liu J H, Luo O J, Tang Z, Guo W W, Kuang H, Zhang H Y, Roose M L, Nagarajan N, Deng X X, Ruan Y. The draft genome of sweet orange (Citrus sinensis). Nature Genetics, 2013, 45(1): 59–66
CrossRef Google scholar
[4]
Shulaev V, Sargent D J, Crowhurst R N, Mockler T C, Folkerts O, Delcher A L, Jaiswal P, Mockaitis K, Liston A, Mane S P, Burns P, Davis T M, Slovin J P, Bassil N, Hellens R P, Evans C, Harkins T, Kodira C, Desany B, Crasta O R, Jensen R V, Allan A C, Michael T P, Setubal J C, Celton J M, Rees D J G, Williams K P, Holt S H, Rojas J J R, Chatterjee M, Liu B, Silva H, Meisel L, Adato A, Filichkin S A, Troggio M, Viola R, Ashman T L, Wang H, Dharmawardhana P, Elser J, Raja R, Priest H D, Bryant D W, Fox S E, Givan S A, Wilhelm L J, Naithani S, Christoffels A, Salama D Y, Carter J, Girona E L, Zdepski A, Wang W Q, Kerstetter R A, Schwab W, Korban S S, Davik J, Monfort A, Denoyes-Rothan B, Arus P, Mittler R, Flinn B, Aharoni A, Bennetzen J L, Salzberg S L, Dickerman A W, Velasco R, Borodovsky M, Veilleux R E, Folta K M. The genome of woodland strawberry (Fragaria vesca). Nature Genetics, 2011, 43(2): 109–116
CrossRef Google scholar
[5]
Velasco R, Zharkikh A, Affourtit J, Dhingra A, Cestaro A, Kalyanaraman A, Fontana P, Bhatnagar S K, Troggio M, Pruss D, Salvi S, Pindo M, Baldi P, Castelletti S, Cavaiuolo M, Coppola G, Costa F, Cova V, Dal Ri A, Goremykin V, Komjanc M, Longhi S, Magnago P, Malacarne G, Malnoy M, Micheletti D, Moretto M, Perazzolli M, Si-Ammour A, Vezzulli S, Zini E, Eldredge G, Fitzgerald L M, Gutin N, Lanchbury J, Macalma T, Mitchell J T, Reid J, Wardell B, Kodira C, Chen Z, Desany B, Niazi F, Palmer M, Koepke T, Jiwan D, Schaeffer S, Krishnan V, Wu C, Chu V T, King S T, Vick J, Tao Q, Mraz A, Stormo A, Stormo K, Bogden R, Ederle D, Stella A, Vecchietti A, Kater M M, Masiero S, Lasserre P, Lespinasse Y, Allan A C, Bus V, Chagne D, Crowhurst R N, Gleave A P, Lavezzo E, Fawcett J A, Proost S, Rouze P, Sterck L, Toppo S, Lazzari B, Hellens R P, Durel C E, Gutin A, Bumgarner R E, Gardiner S E, Skolnick M, Egholm M, Van de Peer Y, Salamini F, Viola R. The genome of the domesticated apple (Malus × domestica Borkh.). Nature Genetics, 2010, 42(10): 833–839
CrossRef Google scholar
[6]
D'Hont A, Denoeud F, Aury J M, Baurens F C, Carreel F, Garsmeur O, Noel B, Bocs S, Droc G, Rouard M, Da Silva C, Jabbari K, Cardi C, Poulain J, Souquet M, Labadie K, Jourda C, Lengelle J, Rodier-Goud M, Alberti A, Bernard M, Correa M, Ayyampalayam S, McKain M R, Leebens-Mack J, Burgess D, Freeling M, Mbeguie A M D, Chabannes M, Wicker T, Panaud O, Barbosa J, Hribova E, Heslop-Harrison P, Habas R, Rivallan R, Francois P, Poiron C, Kilian A, Burthia D, Jenny C, Bakry F, Brown S, Guignon V, Kema G, Dita M, Waalwijk C, Joseph S, Dievart A, Jaillon O, Leclercq J, Argout X, Lyons E, Almeida A, Jeridi M, Dolezel J, Roux N, Risterucci A M, Weissenbach J, Ruiz M, Glaszmann J C, Quetier F, Yahiaoui N, Wincker P. The banana (Musa acuminata) genome and the evolution of monocotyledonous plants. Nature, 2012, 488(7410): 213–217
CrossRef Google scholar
[7]
Al-Dous E K, George B, Al-Mahmoud M E, Al-Jaber M Y, Wang H, Salameh Y M, Al-Azwani E K, Chaluvadi S, Pontaroli A C, Debarry J, Arondel V, Ohlrogge J, Saie I J, Suliman-Elmeer K M, Bennetzen J L, Kruegger R R, Malek J A. De novo genome sequencing and comparative genomics of date palm (Phoenix dactylifera). Nature Biotechnology, 2011, 29(6): 521–527
CrossRef Google scholar
[8]
Verde I, Abbott A G, Scalabrin S, Jung S, Shu S, Marroni F, Zhebentyayeva T, Dettori M T, Grimwood J, Cattonaro F, Zuccolo A, Rossini L, Jenkins J, Vendramin E, Meisel L A, Decroocq V, Sosinski B, Prochnik S, Mitros T, Policriti A, Cipriani G, Dondini L, Ficklin S, Goodstein D M, Xuan P, Fabbro C D, Aramini V, Copetti D, Gonzalez S, Horner D S, Falchi R, Lucas S, Mica E, Maldonado J, Lazzari B, Bielenberg D, Pirona R, Miculan M, Barakat A, Testolin R, Stella A, Tartarini S, Tonutti P, Arus P, Orellana A, Wells C, Main D, Vizzotto G, Silva H, Salamini F, Schmutz J, Morgante M, Rokhsar D S. The high-quality draft genome of peach (Prunus persica) identifies unique patterns of genetic diversity, domestication and genome evolution. Nature Genetics, 2013, 45(5): 487–494
CrossRef Google scholar
[9]
Wu J, Wang Z, Shi Z, Zhang S, Ming R, Zhu S, Khan M A, Tao S, Korban S S, Wang H, Chen N J, Nishio T, Xu X, Cong L, Qi K, Huang X, Wang Y, Zhao X, Deng C, Gou C, Zhou W, Yin H, Qin G, Sha Y, Tao Y, Chen H, Yang Y, Song Y, Zhan D, Wang J, Li L, Dai M, Gu C, Shi D, Wang X, Zhang H, Zeng L, Zheng D, Wang C, Chen M, Wang G, Xie L, Sovero V, Sha S, Huang W, Zhang M, Sun J, Xu L, Li Y, Liu X, Li Q, Shen J, Paull R E, Bennetzen J L, Wang J, Zhang S L. The genome of the pear (Pyrus bretschneideri Rehd.). Genome Research, 2013, 23(2): 396–408
CrossRef Google scholar
[10]
Huang S, Ding J, Deng D, Tang W, Sun H, Liu D, Zhang L, Niu X, Zhang X, Meng M, Yu J, Liu J, Han Y, Shi W, Zhang D, Cao S, Wei Z, Cui Y, Xia Y, Zeng H, Bao K, Lin L, Min Y, Zhang H, Miao M, Tang X, Zhu Y, Sui Y, Li G, Sun H, Yue J, Sun J, Liu F, Zhou L, Lei L, Zheng X, Liu M, Huang L, Song J, Xu C, Li J, Ye K, Zhong S, Lu B R, He G, Xiao F, Wang H L, Zheng H, Fei Z, Liu Y. Draft genome of the kiwifruit Actinidia chinensis. Nature Communications, 2013, 4: 2640
CrossRef Google scholar
[11]
Jaillon O, Aury J M, Noel B, Policriti A, Clepet C, Casagrande A, Choisne N, Aubourg S, Vitulo N, Jubin C, Vezzi A, Legeai F, Hugueney P, Dasilva C, Horner D, Mica E, Jublot D, Poulain J, Bruyere C, Billault A, Segurens B, Gouyvenoux M, Ugarte E, Cattonaro F, Anthouard V, Vico V, Del Fabbro C, Alaux M, Di Gaspero G, Dumas V, Felice N, Paillard S, Juman I, Moroldo M, Scalabrin S, Canaguier A, Le Clainche I, Malacrida G, Durand E, Pesole G, Laucou V, Chatelet P, Merdinoglu D, Delledonne M, Pezzotti M, Lecharny A, Scarpelli C, Artiguenave F, Pe M E, Valle G, Morgante M, Caboche M, Adam-Blondon A F, Weissenbach J, Quetier F, Wincker P. The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature, 2007, 449(7161): 463–467
CrossRef Google scholar
[12]
Chen C, Bowman K D, Choi Y A, Dang P M, Rao M N, Huang S, Soneji J R, McCollum T G, Gmitter Jr F G. EST-SSR genetic maps for Citrus sinensis and Poncirus trifoliata. Tree Genetics & Genomes, 2008, 4(1): 1–10
CrossRef Google scholar
[13]
Ollitrault P, Terol J, Chen C, Federici C T, Lotfy S, Hippolyte I, Ollitrault F, B rard A, Chauveau A, Cuenca J, Costantino G, Kacar Y, Mu L, Garcia-Lor A, Froelicher Y, Aleza P, Bolan A, Billot C, Navarro L, Luro F, Roose M, Gmitter F, Talon M, Brunel D. A reference genetic map of C. clementina hort. ex Tan.; citrus evolution inferences from comparative mapping. BMC Genomics, 2012, 13(1): 593
CrossRef Google scholar
[14]
.da Maia L C, Palmieri D A, Souza V Q, Kopp M M, Carvalho F I F, Costa de Oliveira A. SSR Locator: Tool for simple sequence repeat discovery integrated with primer design and PCR simulation. International Journal of Plant Genomics, 2008: 412696
[15]
Christoph M. Phobos – A tandem repeat search tool for complete genomes. Available at RUHR-Univertsity Bochum website on March 26, 2014
[16]
Biswas M K, Chai L, Mayer C, Xu Q, Guo W, Deng X. Exploiting BAC-end sequences for the mining, characterization and utility of new short sequences repeat (SSR) markers in Citrus. Molecular Biology Reports, 2012, 39(5): 5373–5386
CrossRef Google scholar
[17]
Zorrilla-Fontanesi Y, Cabeza A, Torres A M, Botella M A, Valpuesta V, Monfort A, S nchez-Sevilla J F, Amaya I. Development and bin mapping of strawberry genic-SSRs in diploid Fragaria and their transferability across the Rosoideae subfamily. Molecular Breeding, 2011, 27(2): 137–156
CrossRef Google scholar
[18]
Myles S, Boyko A R, Owens C L, Brown P J, Grassi F, Aradhya M K, Prins B, Reynolds A, Chia J M, Ware D, Bustamante C D, Buckler E S. Genetic structure and domestication history of the grape. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(9): 3530–3535
CrossRef Google scholar
[19]
Ahmad R, Parfitt D E, Fass J, Ogundiwin E, Dhingra A, Gradziel T M, Lin D, Joshi N A, Martinez-Garcia P J, Crisosto C H. Whole genome sequencing of peach (Prunus persica L.) for SNP identification and selection. BMC Genomics, 2011, 12(1): 569
CrossRef Google scholar
[20]
Kumar S, Garrick D J, Bink M C, Whitworth C, Chagn D, Volz R K. Novel genomic approaches unravel genetic architecture of complex traits in apple. BMC Genomics, 2013, 14(1): 393
CrossRef Google scholar
[21]
Dardick C, Callahan A, Horn R, Ruiz K B, Zhebentyayeva T, Hollender C, Whitaker M, Abbott A, Scorza R. PpeTAC1 promotes the horizontal growth of branches in peach trees and is a member of a functionally conserved gene family found in diverse plants species. Plant Journal, 2013, 75(4): 618–630
CrossRef Google scholar
[22]
Xu Q, Yu K, Zhu A, Ye J, Liu Q, Zhang J, Deng X. Comparative transcripts profiling reveals new insight into molecular processes regulating lycopene accumulation in a sweet orange (Citrus sinensis) red-flesh mutant. BMC Genomics, 2009, 10(1): 540
CrossRef Google scholar
[23]
Zenoni S, Ferrarini A, Giacomelli E, Xumerle L, Fasoli M, Malerba G, Bellin D, Pezzotti M, Delledonne M. Characterization of transcriptional complexity during berry development in Vitis vinifera using RNA-Seq. Plant Physiology, 2010, 152(4): 1787–1795
CrossRef Google scholar
[24]
Martinelli F, Uratsu S L, Albrecht U, Reagan R L, Phu M L, Britton M, Buffalo V, Fass J, Leicht E, Zhao W, Lin D, D’Souza R, Davis C E, Bowman K D, Dandekar A M. Transcriptome profiling of citrus fruit response to huanglongbing disease. PLoS ONE, 2012, 7(5): e38039
CrossRef Google scholar
[25]
Yu K, Xu Q, Da X, Guo F, Ding Y, Deng X. Transcriptome changes during fruit development and ripening of sweet orange (Citrus sinensis). BMC Genomics, 2012, 13(1): 10
CrossRef Google scholar
[26]
Krost C, Petersen R, Lokan S, Brauksiepe B, Braun P, Schmidt E R. Evaluation of the hormonal state of columnar apple trees (Malus × domestica) based on high throughput gene expression studies. Plant Molecular Biology, 2013, 81(3): 211–220
CrossRef Google scholar
[27]
Katz E, Fon M, Lee Y, Phinney B, Sadka A, Blumwald E. The citrus fruit proteome: insights into citrus fruit metabolism. Planta, 2007, 226(4): 989–1005
CrossRef Google scholar
[28]
Pan Z, Zeng Y, An J, Ye J, Xu Q, Deng X. An integrative analysis of transcriptome and proteome provides new insights into carotenoid biosynthesis and regulation in sweet orange fruits. Journal of Proteomics, 2012, 75(9): 2670–2684
CrossRef Google scholar
[29]
Muccilli V, Licciardello C, Fontanini D, Russo M P, Cunsolo V, Saletti R, Reforgiato Recupero G, Foti S. Proteome analysis of Citrus sinensis L.(Osbeck) flesh at ripening time. Journal of Proteomics, 2009, 73(1): 134–152
CrossRef Google scholar
[30]
Mart nez-Esteso M J, Sell s-Marchart S, Lijavetzky D, Pedre o M A, Bru-Mart nez R. A DIGE-based quantitative proteomic analysis of grape berry flesh development and ripening reveals key events in sugar and organic acid metabolism. Journal of Experimental Botany, 2011, 62(8): 2521–2569
CrossRef Google scholar
[31]
Yun Z, Jin S, Ding Y, Wang Z, Gao H, Pan Z, Xu J, Cheng Y, Deng X. Comparative transcriptomics and proteomics analysis of citrus fruit, to improve understanding of the effect of low temperature on maintaining fruit quality during lengthy post-harvest storage. Journal of Experimental Botany, 2012, 63(8): 2873–2893
CrossRef Google scholar
[32]
Garavaglia B S, Thomas L, Zimaro T, Gottig N, Daurelio L D, Ndimba B, Orellano E G, Ottado J, Gehring C. A plant natriuretic peptide-like molecule of the pathogen Xanthomonas axonopodis pv. citri causes rapid changes in the proteome of its citrus host. BMC Plant Biology, 2010, 10(1): 51
CrossRef Google scholar
[33]
Rodrigues S P, Ventura J A, Aguilar C, Nakayasu E S, Choi H, Sobreira T J, Nohara L L, Wermelinger L S, Almeida I C, Zingali R B, Fernandes P M. Label-free quantitative proteomics reveals differentially regulated proteins in the latex of sticky diseased Carica papaya L. plants. Journal of Proteomics, 2012, 75(11): 3191–3198
CrossRef Google scholar
[34]
Tanou G, Filippou P, Belghazi M, Job D, Diamantidis G, Fotopoulos V, Molassiotis A. Oxidative and nitrosative-based signaling and associated post-translational modifications orchestrate the acclimation of citrus plants to salinity stress. Plant Journal, 2012, 72(4): 585–599
CrossRef Google scholar
[35]
Chuck G, O’Connor D. Small RNAs going the distance during plant development. Current Opinion in Plant Biology, 2010, 13(1): 40–45
CrossRef Google scholar
[36]
Carra A, Mica E, Gambino G, Pindo M, Moser C, Pè M E, Schubert A. Cloning and characterization of small non-coding RNAs from grape. Plant Journal, 2009, 59(5): 750–763
CrossRef Google scholar
[37]
Song C, Fang J, Li X, Liu H, Chao C T. Identification and characterization of 27 conserved microRNAs in citrus. Planta, 2009, 230(4): 671–685
CrossRef Google scholar
[38]
Xu Q, Liu Y, Zhu A, Wu X, Ye J, Yu K, Guo W, Deng X. Discovery and comparative profiling of microRNAs in a sweet orange red-flesh mutant and its wild type. BMC Genomics, 2010, 11(1): 246
CrossRef Google scholar
[39]
Pantaleo V, Szittya G, Moxon S, Miozzi L, Moulton V, Dalmay T, Burgyan J. Identification of grapevine microRNAs and their targets using high-throughput sequencing and degradome analysis. Plant Journal, 2010, 62(6): 960–976
[40]
Xia R, Zhu H, An Y, Beers E P, Liu Z. Apple miRNAs and tasiRNAs with novel regulatory networks. Genome Biology, 2012, 13(6): R47
CrossRef Google scholar
[41]
Schwab R, Ossowski S, Riester M, Warthmann N, Weigel D. Highly specific gene silencing by artificial microRNAs in Arabidopsis. Plant Cell, 2006, 18(5): 1121–1133
CrossRef Google scholar
[42]
WMD3-Web app for the automated design of artificial microRNAs. Available at WeigelWorld website on March 26, 2014
[43]
Jelly N S, Schellenbaum P, Walter B, Maillot P. Transient expression of artificial microRNAs targeting Grapevine fanleaf virus and evidence for RNA silencing in grapevine somatic embryos. Transgenic Research, 2012, 21(6): 1319–1327
CrossRef Google scholar
[44]
MiRBase: the microRNA database. Available at Mirbase website on March 26, 2014
[45]
Henderson I R, Jacobsen S E. Epigenetic inheritance in plants. Nature, 2007, 447(7143): 418–424
CrossRef Google scholar
[46]
Kaity A, Ashmore S, Drew R A, Dulloo M. Assessment of genetic and epigenetic changes following cryopreservation in papaya. Plant Cell Reports, 2008, 27(9): 1529–1539
CrossRef Google scholar
[47]
Hasb n R, Valledor L, Berdasco M, Santamar a E, Ca al M, Rodr guez R, Rios D, S nchez M. In vitro proliferation and genome DNA methylation in adult chestnuts. Acta Horticulturae, 2005, 693: 333
[48]
Hafiz I A, Abbasi N A, Ahmad T, Hussain A. DNA methylation profiles differ between juvenile and adult phase leaves of crab apple (Malus micromalus) seedling tree. Pakistan Journal of Botany, 2008, 40(3): 1025–1032
[49]
Telias A, Lin-Wang K, Stevenson D E, Cooney J M, Hellens R P, Allan A C, Hoover E E, Bradeen J M. Apple skin patterning is associated with differential expression of MYB10. BMC Plant Biology, 2011, 11(1): 93
CrossRef Google scholar
[50]
Kiselev K V, Tyunin A P, Zhuravlev Y N. Involvement of DNA methylation in the regulation of STS10 gene expression in Vitis amurensis. Planta, 2013, 237(4): 933–941
CrossRef Google scholar
[51]
Wang Z, Meng D, Wang A, Li T, Jiang S, Cong P, Li T. The methylation of the PcMYB10 promoter is associated with green-skinned sport in Max Red Bartlett pear. Plant Physiology, 2013, 162(2): 885–896
CrossRef Google scholar
[52]
Vogelstein B, Papadopoulos N, Velculescu V E, Zhou S, Diaz L A, Kinzler K W. Cancer genome landscapes. Science, 2013, 339(6127): 1546–1558
CrossRef Google scholar
[53]
Löwer M, Renard B Y, de Graaf J, Wagner M, Paret C, Kneip C, Türeci ö, Diken M, Britten C, Kreiter S, Koslowski M, Castle J C, Sahin U. Confidence-based somatic mutation evaluation and prioritization. PLoS Computational Biology, 2012, 8(9): e1002714
CrossRef Google scholar

Acknowledgements

The National Natural Science Foundation of China (Grant No. 31330066, 31221062 and 31222047) provided financial support for this study. Jidi Xu, Yuanlong Liu and Keqin Yu are thanked for helpful discussion on the epigenetics, miRNA and transcriptome sections, respectively.ƒ

Compliance with ethics guidelines

Qiang Xu, Chaoyang Liu, Manosh Kumar Biswas, Zhiyong Pan and Xiuxin Deng declare that they have no conflict of interest or financial conflicts to disclose.ƒThis article is a review and does not contain any studies with human or animal subjects performed by the any of the authors.

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(303 KB)

Accesses

Citations

Detail

Sections
Recommended

/