Radiopharmaceuticals operate by combining radionuclides with carriers. The radiation energy emitted by radionuclides is utilized to selectively irradiate diseased tissues while minimizing damage to healthy tissues. In comparison to external beam radiation therapy, radionuclide drugs demonstrate research potential due to their biological targeting capabilities and reduced normal tissue toxicity. This article reviews the applications and research progress of radiopharmaceuticals in cancer treatment. Several key radionuclides are examined, including 223Ra, 90Y, Lutetium-177 (177Lu), 212Pb, and Actinium-225 (225Ac). It also explores the current development trends of radiopharmaceuticals, encompassing the introduction of novel radionuclides, advancements in imaging technologies, integrated diagnosis and treatment approaches, and equipment-medication combinations. We review the progress in the development of new treatments, such as neutron capture therapy, proton therapy, and heavy ion therapy. Furthermore, we examine the challenges and breakthroughs associated with the clinical translation of radiopharmaceuticals and provide recommendations for the research and development of novel radionuclide drugs.
Myocardial infarction is a cardiovascular disease (CVD) with high morbidity and mortality, which can trigger a cascade of cardiac pathophysiological changes, including fibrosis, inflammation, ischemia-reperfusion injury (IRI), and ventricular remodeling, ultimately leading to heart failure (HF). While conventional pharmacological treatments and clinical reperfusion therapy may enhance short-term prognoses and emergency survival rates, both approaches have limitations and adverse effects. Natural products (NPs) are extensively utilized as therapeutics globally, with some demonstrating potentially favorable therapeutic effects in preclinical and clinical pharmacological studies, positioning them as potential alternatives to modern drugs. This review comprehensively elucidates the pathophysiological mechanisms during myocardial infarction and summarizes the mechanisms by which NPs exert cardiac beneficial effects. These include classical mechanisms such as inhibition of inflammation and oxidative stress, alleviation of cardiomyocyte death, attenuation of cardiac fibrosis, improvement of angiogenesis, and emerging mechanisms such as cardiac metabolic regulation and histone modification. Furthermore, the review emphasizes the modulation by NPs of novel targets or signaling pathways in classical mechanisms, including other forms of regulated cell death (RCD), endothelial-mesenchymal transition, non-coding ribonucleic acids (ncRNAs) cascade, and endothelial progenitor cell (EPC) function. Additionally, NPs influencing a particular mechanism are categorized based on their chemical structure, and their relevance is discussed. Finally, the current limitations and prospects of NPs therapy are considered, highlighting their potential for use in myocardial infarction management and identifying issues that require urgent attention.
Fibrosis is characterized as an aberrant reparative process involving the direct replacement of damaged or deceased cells with connective tissue, leading to progressive architectural remodeling across various tissues and organs. This condition imposes a substantial burden, resulting in considerable morbidity and mortality. Ginseng (Panax ginseng C. A. Meyer), renowned for its medicinal properties, has been incorporated as a key component in Chinese patent medicines to mitigate fibrotic diseases. Ginsenosides, the primary bioactive compounds in ginseng, have garnered significant attention. Over the past five years, extensive research has explored the pharmaceutical potential of ginsenosides in diverse organ fibrosis conditions, including liver, myocardial, renal, and pulmonary fibrosis. Studies have elucidated that ginsenosides demonstrate potential effects on inflammatory responses stemming from parenchymal cell damage, myofibroblast activation leading to extracellular matrix (ECM) production, and myofibroblast apoptosis or inactivation. Additionally, potential downstream targets and pathways associated with these pathological processes have been identified as being influenced by ginsenosides. This review presents a comprehensive overview of the efficacious treatments utilizing ginsenosides for various tissue fibrosis types and their potential anti-fibrotic mechanisms. Furthermore, it offers a reference for the development of novel candidate drugs for future organ fibrosis therapies.
Dysfunction of drug transporters significantly affects therapeutic outcomes and drug efficacy in patients with liver injury. Clinical and experimental evidence demonstrates that liver injury involves complex inter-organ interactions among the brain, eye, liver, intestine, and kidney. Recent advances in basic and clinical research have illuminated the physiologic and molecular mechanisms underlying transporter alterations in liver injury, particularly those associated with bilirubin, reactive oxygen species, ammonia, bile acid, and inflammatory factors. Notably, the influence of these transporter modifications on drug pharmacokinetics in liver injury patients remains inadequately understood. Additional research is necessary to fully comprehend these effects and their therapeutic implications. The documented alterations of transporters in distant organs across various liver diseases indicate that dosage modifications may be required when administering transporter-substrate drugs, including both traditional Chinese and Western medicines, to patients with liver dysfunction. This strategy helps maintain drug concentrations within therapeutic ranges while reducing adverse reactions. Furthermore, when utilizing transporter inducers or inhibitors clinically, consideration of their long-term effects on transporters and subsequent therapeutic impact is essential. Careful attention must be paid to avoid compromising the elimination of toxic metabolites and proteins when inhibiting these transporters. Similarly, prudent use of inducers or inducer-type therapeutic drugs is necessary to prevent enhanced drug resistance. This review examines recent clinical and experimental findings regarding the inter-organ interaction of drug transporters in liver injury conditions and their clinical relevance.
Natural herbs demonstrate significant therapeutic potential in managing chronic and complex diseases; however, their clinical application faces limitations due to low bioavailability, instability, toxicity, and herb-drug interactions. Furthermore, insufficient standardized evidence and global acceptance impede their widespread adoption. Liposomes, nanocarriers consisting of a phospholipid bilayer enclosing an aqueous core, present a promising approach for enhancing the pharmacokinetics and therapeutic efficacy of herbal compounds. These adaptable systems can encapsulate both hydrophilic and hydrophobic agents, enabling targeted drug delivery and enhanced stability. Moreover, liposomes can be modified to carry diagnostic and imaging agents, enabling precise disease detection and monitoring. While liposomes offer potential as an innovative delivery technology for herbal remedies, their application in Traditional Chinese Medicine (TCM) remains relatively unexplored. TCM, with its holistic, energy-based approach to health and organ function, presents distinct challenges regarding formulation and delivery. This review examines the therapeutic potential of herbal medicines, emphasizing how liposomes address delivery challenges within the TCM framework. It also investigates the integration of TCM with Western medical practices, demonstrating how liposomal systems may bridge these approaches. The review analyzes key formulation techniques for TCM-loaded liposomes, particularly the microfluidic method, which demonstrates superior control over particle size and encapsulation efficiency compared to conventional methods. The analysis addresses barriers to integrating liposomal delivery systems with TCM, including physicochemical properties, scalability issues, and regulatory challenges. Finally, this review provides strategic recommendations for overcoming these obstacles and identifies future research directions to maximize the potential of liposomal technology in enhancing TCM therapies.
Salmonellosis represents a global epidemic, and the emergence of extensively drug-resistant (XDR) Salmonella and its sustained transmission worldwide constitutes a significant public health concern. Flagellum-mediated motility serves as a crucial virulence trait of Salmonella that guides the pathogen toward the epithelial surface, enhancing gut colonization. Artemisia argyit essential oil, a traditional herb extract, demonstrates efficacy in treating inflammation-related symptoms and diseases; however, its effects on flagellum assembly and expression mechanisms in anti-Salmonella activity remain inadequately explored. This study aimed to elucidate the mechanism by which Artemisia argyit essential oil addresses Salmonella infections. Network pharmacological analysis revealed that Traditional Chinese Medicine (TCM) Artemisia argyit exhibited anti-Salmonella infection potential and inhibited flagellum-dependent motility. The application of Artemisia argyit essential oil induced notable motility defects through the downregulation of flagellar and fimbriae expression. Moreover, it significantly reduced Salmonella-infected cell damage by interfering with flagellum-mediated Salmonella colonization. In vivo studies demonstrated that Artemisia argyit essential oil administration effectively alleviated Salmonella infection symptoms by reducing bacterial loads, inhibiting interleukin-1 beta (IL-1β), IL-6, and tumor necrosis factor-alpha (TNF-α) production, and diminishing pathological injury. Gas chromatography-mass spectrometry (GC-MS) analysis identified forty-three compounds in Artemisia argyit essential oil, with their corresponding targets and active ingredients predicted. Investigation of an in vivo model of Salmonella infection using the active ingredient demonstrated that alpha-cedrene ameliorated Salmonella infection. These findings suggest the potential application of Artemisia argyit essential oil in controlling Salmonella, the predominant food-borne pathogen.
A chemical investigation of secondary metabolites (SMs) from Aspergillus nidulans resulted in the identification of five novel dioxopiperazine (DKP)-diphenyl ether hybrids, designated as diphenylemestrins A−E (1−5). These compounds 1−5 represent the first known dimers combining DKP and diphenyl ether structures, with compound 4 featuring an uncommon dibenzofuran as the diphenyl ether component. The structural elucidation and determination of absolute stereochemistry were accomplished through spectroscopic analysis and electronic circular dichroism (ECD) calculations. Notably, diphenylemestrin C (3) exhibited moderate cytostatic activity against NB4 cells, with a half maximal inhibitory concentration (IC50) value of 21.99 μmol·L−1, and induced apoptosis at higher concentrations.
Sjögren’s syndrome (SS) is an autoimmune disease characterized primarily by oral and periocular dryness. Astragalus-Salvia (AS) and Ophiopogon-Dendrobium (OD) represent two frequently utilized herb pairs in SS treatment. While the combination of AS-OD herb pairs demonstrates clinical efficacy in alleviating SS symptoms, its underlying mechanism remains unclear. This investigation sought to assess the therapeutic effects and elucidate the potential mechanisms of AS-OD in non-obese diabetic (NOD)/Ltj mice with SS. The study utilized NOD/Ltj mice as SS models, administering AS-OD treatment for 10 weeks at doses of 113.1, 226.2, and 339.3 mg·d−1·20 g−1. Results demonstrated that AS-OD improved SS symptoms, evidenced by enhanced salivary flow rate, decreased anti-SSA/Ro and anti-SSB/La antibody levels, increased swimming duration, and reduced lactate (LA) and blood urea nitrogen (BUN) levels in NOD/Ltj mice. AS-OD reduced lymphocyte infiltration, enhanced Aquaporin-5 (AQP5) expression in the submandibular gland, decreased inflammatory cytokine levels in the submandibular gland, and reduced the T helper type 17/regulatory T lymphocyte (Th17/Treg) cell ratio in the spleen. Transcriptomic and proteomic analyses indicated AS-OD’s involvement in regulating phosphatidylinositol-3-kinase/protein kinase B (PI3K/AKT) and Janus kinase 3/signal transducer and activator of transcription 3 (JAK1/STAT3) pathways, with inhibitory effects validated in both NOD/Ltj mice submandibular gland and A-253 cells. Furthermore, AS-OD enhanced cell viability and reduced A-253 cell apoptosis through the PI3K/AKT pathway. In A-253 cells, AS-OD reduced inflammatory cytokine levels, CXC chemokine ligand 9/10 (CXCL9/10), and T-cell chemotaxis by inhibiting the JAK1/STAT3 pathway. AS-OD mitigates SS by suppressing inflammation and immune responses through the PI3K/AKT and JAK1/STAT3 pathways.
Oroxylin A (OA), a natural compound extracted from Scutellaria baicalensis, demonstrates preventive potential against ultraviolet B (UVB)-induced non-melanoma skin cancer (NMSC), the most prevalent cancer worldwide with increasing incidence. Utilizing SKH-1 hairless mice exposed to UVB, this study showed that OA delayed NMSC onset and alleviated acute skin damage. Mechanistic investigations revealed its dual action: inhibiting inflammation and enhancing nucleotide excision repair (NER) by stabilizing XPA, a crucial deoxyribonucleic acid (DNA) repair protein. This stabilization occurred through OA’s interaction with glucose-regulated protein 94 (GRP94), which disrupted murine double minute 2 (MDM2)-mediated XPA ubiquitination and proteasomal degradation. By maintaining XPA levels, OA expedited photoproduct clearance and diminished genomic instability, ultimately impeding NMSC development. These findings suggest OA as a promising chemopreventive agent targeting the GRP94/MDM2-XPA axis to counteract UVB-induced carcinogenesis.
The bioactivity-guided isolation of potentially active natural products has been widely utilized in pharmaceutical discovery. In this study, by screening fungal extracts against coxsackievirus B3 (CVB3), three new aspochalasins, templichalasins A‒C (1‒3), along with six known aspochalasins (4‒9) were isolated from an active extract derived from the endophytic fungus Aspergillus templicola LHWf045. Compound 1 features a unique 5/6/5/7/5 pentacyclic ring system, while compounds 2 and 3 possess unusual 5/6/6/7 tetracyclic skeletons. Their structures were characterized through extensive spectroscopic analyses, electronic circular dichroism (ECD) calculations, and single-crystal X-ray diffraction analysis. Additionally, we demonstrated that compound 4 can be readily converted into compounds 1‒3 under mild acidic conditions and proposed a plausible mechanism for this conversion. Bioactivity evaluation of compounds 1‒9 against CVB3 revealed the inhibitory effects of all compounds against the virus. Notably, compound 9 exhibited superior antiviral activity, surpassing the commercial drug ribavirin in selectivity index (SI) value.
A comprehensive phytochemical investigation of the leaves and twigs of Physalis angulata. var. villosa resulted in the isolation of 23 withanolide derivatives, including one novel 13,20-γ-lactone withanolide derivative (1) and three new withanolide derivatives (2−4). Architecturally, physalinin A (1) represents the first identified type B withanolide featuring a 13,20-γ-lactone moiety. The molecular structures of all isolates were elucidated using an integrated approach combining nuclear magnetic resonance (NMR) spectroscopy, mass spectrometry (MS), infrared (IR) spectroscopy, and quantum chemical calculations to confirm structural assignments. The antiproliferative activities of all isolated withanolides were evaluated against four human cancer cell lines (HEL, HCT-116, Colo320DM, and MDA-MB-231). Among them, eight derivatives (2, 5-8, 14, 15, and 23) exhibited significant inhibitory effects, with half-maximal inhibitory concentration (IC50) values of 0.18 ± 0.03 to 17.02 ± 0.21 μmol·L−1. Structure-activity relationship (SAR) analysis suggested that the presence of an epoxide ring enhances anticancer activity, potentially through increased reactivity or specific interactions with molecular targets involved in cancer progression. These findings underscore the pharmacological potential of withanolides as promising lead compounds for the development of novel anticancer therapeutics.