Intervention of natural products targeting novel mechanisms after myocardial infarction

Guangjie Tai , Renhua Liu , Tian Lin , Jiancheng Yang , Xiaoxue Li , Ming Xu

Chinese Journal of Natural Medicines ›› 2025, Vol. 23 ›› Issue (6) : 658 -672.

PDF (13081KB)
Chinese Journal of Natural Medicines ›› 2025, Vol. 23 ›› Issue (6) :658 -672. DOI: 10.1016/S1875-5364(25)60816-8
Review
research-article

Intervention of natural products targeting novel mechanisms after myocardial infarction

Author information +
History +
PDF (13081KB)

Abstract

Myocardial infarction is a cardiovascular disease (CVD) with high morbidity and mortality, which can trigger a cascade of cardiac pathophysiological changes, including fibrosis, inflammation, ischemia-reperfusion injury (IRI), and ventricular remodeling, ultimately leading to heart failure (HF). While conventional pharmacological treatments and clinical reperfusion therapy may enhance short-term prognoses and emergency survival rates, both approaches have limitations and adverse effects. Natural products (NPs) are extensively utilized as therapeutics globally, with some demonstrating potentially favorable therapeutic effects in preclinical and clinical pharmacological studies, positioning them as potential alternatives to modern drugs. This review comprehensively elucidates the pathophysiological mechanisms during myocardial infarction and summarizes the mechanisms by which NPs exert cardiac beneficial effects. These include classical mechanisms such as inhibition of inflammation and oxidative stress, alleviation of cardiomyocyte death, attenuation of cardiac fibrosis, improvement of angiogenesis, and emerging mechanisms such as cardiac metabolic regulation and histone modification. Furthermore, the review emphasizes the modulation by NPs of novel targets or signaling pathways in classical mechanisms, including other forms of regulated cell death (RCD), endothelial-mesenchymal transition, non-coding ribonucleic acids (ncRNAs) cascade, and endothelial progenitor cell (EPC) function. Additionally, NPs influencing a particular mechanism are categorized based on their chemical structure, and their relevance is discussed. Finally, the current limitations and prospects of NPs therapy are considered, highlighting their potential for use in myocardial infarction management and identifying issues that require urgent attention.

Keywords

Myocardial infarction / Natural products / Novel mechanisms

Cite this article

Download citation ▾
Guangjie Tai, Renhua Liu, Tian Lin, Jiancheng Yang, Xiaoxue Li, Ming Xu. Intervention of natural products targeting novel mechanisms after myocardial infarction. Chinese Journal of Natural Medicines, 2025, 23(6): 658-672 DOI:10.1016/S1875-5364(25)60816-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Joseph P, Leong D, McKee M, et al. Reducing the global burden of cardiovascular disease, part 1: The epidemiology and risk factors. Circ Res. 2017; 121(6):677-694. https://doi.org/10.1161/circresaha.117.308903.

[2]

Roth GA, Mensah GA, Fuster V. The global burden of cardiovascular diseases and risks: a compass for global action. J Am Coll Cardiol. 2020; 76(25):2980-2981. https://doi.org/10.1016/j.jacc.2020.11.021.

[3]

Roth GA, Mensah GA, Johnson CO, et al.Global burden of cardiovascular diseases and risk factors, 1990-2019: update from the gbd 2019 study. J Am Coll Cardiol. 2020; 76(25):2982-3021. https://doi.org/10.1016/j.jacc.2020.11.010.

[4]

Peters SAE, Colantonio LD, Dai YL, et al.Trends in recurrent coronary heart disease after myocardial infarction among us women and men between 2008 and 2017. Circulation. 2021; 143(7):650-660. https://doi.org/10.1161/Circulationaha.120.047065.

[5]

O'Fee K, Deych E, Ciani O, et al. Assessment of nonfatal myocardial infarction as a surrogate for all-cause and cardiovascular mortality in treatment or prevention of coronary artery disease: a meta-analysis of randomized clinical trials. JAMA Intern Med. 2021; 181(12):1575-1587. https://doi.org/10.1001/jamainternmed.2021.5726.

[6]

Quyyumi AA, Vasquez A, Kereiakes DJ, et al. PreSERVE-AMI: a randomized, double-blind, placebo-controlled clinical trial of intracoronary administration of autologous CD34+ cells in patients with left ventricular dysfunction post STEMI. Circ Res. 2017; 120(2):324-331. https://doi.org/10.1161/Circresaha.115.308165.

[7]

Zhang Y, Yu W, Zhang L, et al. Nanozyme‐based visual diagnosis and therapeutics for myocardial infarction: the application and strategy. J Adv Res. 2024; 70:187-201. https://doi.org/10.1016/j.jare.2024.04.019.

[8]

Ueki Y, Kuwahara K. Periprocedural myocardial infarction in patients undergoing percutaneous coronary intervention. J Cardiol. 2023; 81(4):364-372. https://doi.org/10.1016/j.jjcc.2022.11.005.

[9]

Maron DJ, Hochman JS. Invasive or conservative strategy for stable coronary disease. Reply. N Engl J Med. 2020; 383(10):e66. https://doi.org/10.1056/NEJMc2024008.

[10]

Saito Y, Oyama K, Tsujita K, et al. Treatment strategies of acute myocardial infarction: updates on revascularization, pharmacological therapy, and beyond. J Cardiol. 2023; 81(2):168-178. https://doi.org/10.1016/j.jjcc.2022.07.003.

[11]

Szummer K, Jernberg T, Wallentin L. From early pharmacology to recent pharmacology interventions in acute coronary syndromes: state-of-the-art review. J Am Coll Cardiol. 2019; 74(12):1618-1636. https://doi.org/10.1016/j.jacc.2019.03.531.

[12]

Wang HX, Han JJ, Dmitrii G, et al. Potential targets of natural products for improving cardiac ischemic injury: the role of Nrf2 signaling transduction. Molecules. 2024; 29(9):2005. https://doi.org/10.3390/molecules29092005.

[13]

Zhao CH, Li S, Zhang JH, et al. Current state and future perspective of cardiovascular medicines derived from natural products. Pharmacol Ther. 2020;216:107698. https://doi.org/10.1016/j.pharmthera.2020.107698.

[14]

Gouda NA, Alshammari SO, Abourehab MAS, et al. Therapeutic potential of natural products in inflammation: underlying molecular mechanisms, clinical outcomes, technological advances, and future perspectives. Inflammopharmacology. 2023; 31(6):2857-2883. https://doi.org/10.1007/s10787-023-01366-y.

[15]

Zhang S, Yan F, Luan F, et al. The pathological mechanisms and potential therapeutic drugs for myocardial ischemia reperfusion injury. Phytomedicine. 2024;129:155649. https://doi.org/10.1016/j.phymed.2024.155649.

[16]

Wu X, Wei J, Yi Y, et al. Activation of Nrf 2 signaling: a key molecular mechanism of protection against cardiovascular diseases by natural products. Front Pharmacol. 2022;13:1057918. https://doi.org/10.3389/fphar.2022.1057918.

[17]

Zhu M, Zhao T, Zha B, et al. Piceatannol protects against myocardial ischemia/reperfusion injury by inhibiting ferroptosis via Nrf-2 signaling-mediated iron metabolism. Biochem Biophys Res Commun. 2024;700:149598. https://doi.org/10.1016/j.bbrc.2024.149598.

[18]

Feng LF, Ren JL, Li YF, et al. Resveratrol protects against isoproterenol induced myocardial infarction in rats through VEGF-B/AMPK/eNOS/NO signalling pathway. Free Radical Res. 2019; 53(1):82-93. https://doi.org/10.1080/10715762.2018.1554901.

[19]

Han BJ, Cao GY, Jia LY, et al. Cardioprotective effects of tetrahydropalmatine on acute myocardial infarction in rats. Am J Chin Med. 2022; 50(7):1887-1904. https://doi.org/10.1142/s0192415x2250080x.

[20]

Borrelli MA, Turnquist HR, Little SR. Biologics and their delivery systems: trends in myocardial infarction. Adv Drug Delivery Rev. 2021; 173:181-215. https://doi.org/10.1016/j.addr.2021.03.014.

[21]

Du XJ. Post-infarct cardiac injury, protection and repair: roles of non-cardiomyocyte multicellular and acellular components. Sci China Life Sci. 2018; 61(3):266-276. https://doi.org/10.1007/s11427-017-9223-x.

[22]

Venugopal H, Hanna A, Humeres C, et al. Properties and functions of fibroblasts and myofibroblasts in myocardial infarction. Cells. 2022; 11(9):1386. https://doi.org/10.3390/cells11091386.

[23]

Liu XW, Lu MK, Zhong HT, et al. Panax notoginseng saponins attenuate myocardial ischemia-reperfusion injury through the HIF-1α/BNIP3 pathway of autophagy. J Cardiovasc Pharmacol. 2019; 73(2):92-99. https://doi.org/10.1097/Fjc.0000000000000640.

[24]

Ibáñez B, Heusch G, Ovize M, et al. Evolving therapies for myocardial ischemia/reperfusion injury. J Am Coll Cardiol. 2015; 65(14):1455-1471. https://doi.org/10.1016/j.jacc.2015.02.032.

[25]

Watanabe H, Morimoto T, Natsuaki M, et al. Comparison of clopidogrel monotherapy after 1 to 2 months of dual antiplatelet therapy with 12 months of dual antiplatelet therapy in patients with acute coronary syndrome: The STOPDAPT-2 ACS randomized clinical trial. JAMA Cardiol. 2022; 7(4):407-417. https://doi.org/10.1001/jamacardio.2021.5244.

[26]

Tong DC, Quinn S, Nasis A, et al. Colchicine in patients with acute coronary syndrome: the australian COPS randomized clinical trial. Circulation. 2020; 142(20):1890-1900. https://doi.org/10.1161/Circulationaha.120.050771.

[27]

Kain V, Prabhu SD, Halade GV. Inflammation revisited: inflammation versus resolution of inflammation following myocardial infarction. Basic Res Cardiol. 2014; 109(6):444. https://doi.org/10.1007/s00395-014-0444-7.

[28]

Li YL, Chen BY, Yang XY, et al. S100a8/a9 signaling causes mitochondrial dysfunction and cardiomyocyte death in response to ischemic/reperfusion injury. Circulation. 2019; 140(9):751-764. https://doi.org/10.1161/Circulationaha.118.039262.

[29]

Su Q, Lv X, Sun Y, et al. Role of TLR4/MyD88/NF-κB signaling pathway in coronary microembolization-induced myocardial injury prevented and treated with nicorandil. Biomed Pharmacother. 2018; 106:776-784. https://doi.org/10.1016/j.biopha.2018.07.014.

[30]

Xu GR, Zhang C, Yang HX, et al. Modified citrus pectin ameliorates myocardial fibrosis and inflammation via suppressing galectin-3 and TLR4/MyD88/NF-κB signaling pathway. Biomed Pharmacother. 2020;126:110071. https://doi.org/10.1016/j.biopha.2020.110071.

[31]

Shi H, Zhou P, Gao G, et al. Astragaloside IV prevents acute myocardial infarction by inhibiting the TLR4/MyD88/NF-κB signaling pathway. J Food Biochem. 2021; 45(7):e13757. https://doi.org/10.1111/jfbc.13757.

[32]

Mi X, Zhang Z, Cheng J, et al. Cardioprotective effects of Schisantherin A against isoproterenol-induced acute myocardial infarction through amelioration of oxidative stress and inflammation via modulation of PI3K-AKT/Nrf2/ARE and TLR4/MAPK/NF-κB pathways in rats. BMC Complement Med Ther. 2023; 23(1):277. https://doi.org/10.1186/s12906-023-04081-x.

[33]

Younis NS, Mohamed ME. Anethole’s effects against myocardial infarction: the role of TLR4/NFκB and Nrf2/HO1 pathways. Chem Biol Interact. 2022;360:109947. https://doi.org/10.1016/j.cbi.2022.109947.

[34]

Lai XX, Zhang N, Chen LY, et al. Latifolin protects against myocardial infarction by alleviating myocardial inflammatory via the HIF-1α/NF-κB/IL-6 pathway. Pharm Biol. 2020; 58(1):1156-1166. https://doi.org/10.1080/13880209.2020.1840597.

[35]

Tu C, Wan B, Zeng Y. Ginsenoside Rg 3 alleviates inflammation in a rat model of myocardial infarction via the SIRT1/NF-κB pathway. Exp Ther Med. 2020; 20(6):238. https://doi.org/10.3892/etm.2020.9368.

[36]

Fan D, Yang Z, Yuan Y, et al. Sesamin prevents apoptosis and inflammation after experimental myocardial infarction by JNK and NF-κB pathways. Food Funct. 2017; 8(8):2875-2885. https://doi.org/10.1039/c7fo00204a.

[37]

He Q, Zhou W, Xiong C, et al. Lycopene attenuates inflammation and apoptosis in post-myocardial infarction remodeling by inhibiting the nuclear factor-κB signaling pathway. Mol Med Rep. 2015; 11(1):374-378. https://doi.org/10.3892/mmr.2014.2676.

[38]

Shao M, Wang M, Ma L, et al. β-elemene blocks lipid-induced inflammatory pathways via PPARβ activation in heart failure. Eur J Pharmacol. 2021;910:174450. https://doi.org/10.1016/j.ejphar.2021.174450.

[39]

Zhang Q, Wang L, Wang S, et al. Signaling pathways and targeted therapy for myocardial infarction. Signal Transduct Target Ther. 2022; 7(1):78. https://doi.org/10.1038/s41392-022-00925-z.

[40]

Wang X, Li W, Zhang Y, et al. Calycosin as a novel PI3K activator reduces inflammation and fibrosis in heart failure through AKT-IKK/STAT3 axis. Front Pharmacol. 2022;13:828061. https://doi.org/10.3389/fphar.2022.828061.

[41]

Ghigo A, Laffargue M, Li M, et al. PI3K and calcium signaling in cardiovascular disease. Circ Res. 2017; 121(3):282-292. https://doi.org/10.1161/circresaha.117.310183.

[42]

Wu HJ, Zhang K, Ma JJ, et al. Mechanism of curcumin against myocardial ischaemia-reperfusion injury based on the P13K/Akt/mTOR signalling pathway. Eur Rev Med Pharmacol Sci. 2021; 25(17):5490-5499. https://doi.org/10.26355/eurrev_202109_26658.

[43]

Yan S, Zhou M, Zheng X, et al. Anti-inflammatory effect of curcumin on the mouse model of myocardial infarction through regulating macrophage polarization. Mediators Inflamm. 2021;2021:9976912. https://doi.org/10.1155/2021/9976912.

[44]

Xu T, Qin G, Jiang W, et al. 6-Gingerol protects heart by suppressing myocardial ischemia/reperfusion induced inflammation via the pi3k/akt-dependent mechanism in rats. Evid Based Complement Alternat Med. 2018;2018:6209679. https://doi.org/10.1155/2018/6209679.

[45]

Liu Z, Shu S, Li S, et al. Anthocyanin of black highland barley alleviates H(2)O(2)-induced cardiomyocyte injury and myocardial infarction via activating the phosphatase and tensin homolog/phosphatidylinositol 3-kinase/protein kinase B pathway. Foods. 2024; 13(9):1417. https://doi.org/10.3390/foods13091417.

[46]

Hu D, Gu Y, Wu D, et al. Icariside II protects cardiomyocytes from hypoxia-induced injury by upregulating the miR-7-5p/BTG2 axis and activating the PI3K/Akt signaling pathway. Int J Mol Med. 2020; 46(4):1453-1465. https://doi.org/10.3892/ijmm.2020.4677.

[47]

Zhao T, Wang X, Liu Q, et al. Ginsenoside Rd promotes cardiac repair after myocardial infarction by modulating monocytes/macrophages subsets conversion. Drug Des Devel Ther. 2022; 16:2767-2782. https://doi.org/10.2147/dddt.S377624.

[48]

Dodson M, de la Vega MR, Cholanians AB, et al. Modulating NRF 2 in disease: timing is everything. Annu Rev Pharmacol Toxicol. 2019; 59:555-575. https://doi.org/10.1146/annurev-pharmtox-010818-021856.

[49]

Yao D, Shi B, Wang S, et al. Isoliquiritigenin ameliorates ischemia-induced myocardial injury via modulating the Nrf2/HO-1 pathway in mice. Drug Des Devel Ther. 2022; 16:1273-1287. https://doi.org/10.2147/dddt.S362754.

[50]

Yao D, Bao L, Wang S, et al. Isoliquiritigenin alleviates myocardial ischemia-reperfusion injury by regulating the Nrf2/HO-1/SLC7a11/GPX4 axis in mice. Free Radic Biol Med. 2024; 221:1-12. https://doi.org/10.1016/j.freeradbiomed.2024.05.012.

[51]

Lian Y, Zhu M, Yang B, et al. Characterization of a novel polysaccharide from red ginseng and its ameliorative effect on oxidative stress injury in myocardial ischemia. Chin Med. 2022; 17(1):111. https://doi.org/10.1186/s13020-022-00669-6.

[52]

Wang R, Dong S, Xia R, et al. Kinsenoside mitigates myocardial ischemia/reperfusion-induced ferroptosis via activation of the Akt/Nrf2/HO-1 pathway. Eur J Pharmacol. 2023;956:175985. https://doi.org/10.1016/j.ejphar.2023.175985.

[53]

Xie S, Deng W, Chen J, et al. Andrographolide protects against adverse cardiac remodeling after myocardial infarction through enhancing Nrf2 signaling pathway. Int J Biol Sci. 2020; 16(1):12-26. https://doi.org/10.7150/ijbs.37269.

[54]

Yu H, Shi L, Zhao S, et al. Triptolide attenuates myocardial ischemia/reperfusion injuries in rats by inducing the activation of Nrf2/HO-1 defense pathway. Cardiovasc Toxicol. 2016; 16(4):325-335. https://doi.org/10.1007/s12012-015-9342-y.

[55]

Zhang Y, Murugesan P, Huang K, et al. NADPH oxidases and oxidase crosstalk in cardiovascular diseases: novel therapeutic targets. Nat Rev Cardiol. 2020; 17(3):170-194. https://doi.org/10.1038/s41569-019-0260-8.

[56]

Zhang Z, Zhao X, Gao M, et al. Dioscin alleviates myocardial infarction injury via regulating BMP4/NOX1-mediated oxidative stress and inflammation. Phytomedicine. 2022;103:154222. https://doi.org/10.1016/j.phymed.2022.154222.

[57]

Chen R, Chen W, Huang X, et al. Tanshinone IIA attenuates heart failure via inhibiting oxidative stress in myocardial infarction rats. Mol Med Rep. 2021; 23(6):404. https://doi.org/10.3892/mmr.2021.12043.

[58]

Jiang L, Yin X, Chen YH, et al. Proteomic analysis reveals ginsenoside Rb1 attenuates myocardial ischemia/reperfusion injury through inhibiting ROS production from mitochondrial complex I. Theranostics. 2021; 11(4):1703-1720. https://doi.org/10.7150/thno.43895.

[59]

Zhang YL, Geng C, Yang J, et al. Chronic inhibition of chemokine receptor CXCR2 attenuates cardiac remodeling and dysfunction in spontaneously hypertensive rats. Biochim Biophys Acta Mol Basis Dis. 2019; 1865(12): 165551. https://doi.org/10.1016/j.bbadis.2019.165551.

[60]

Gao M, Cai Q, Bian Y, et al.Protective effect of esculentoside A against myocardial infarction via targeting C-X-C motif chemokine receptor 2. Biomed Pharmacother. 2024;174:116529. https://doi.org/10.1016/j.biopha.2024.116529.

[61]

Ji W, Wei S, Hao P, et al. Aldehyde dehydrogenase 2 has cardioprotective effects on myocardial ischaemia/reperfusion injury via suppressing mitophagy. Front Pharmacol. 2016;7:101. https://doi.org/10.3389/fphar.2016.00101.

[62]

Ding WJ, Chen GH, Deng SH, et al.Calycosin protects against oxidative stress-induced cardiomyocyte apoptosis by activating aldehyde dehydrogenase 2. Phytother Res. 2023; 37(1):35-49. https://doi.org/10.1002/ptr.7591.

[63]

Ursini F, Maiorino M.Lipid peroxidation and ferroptosis: the role of GSH and GPx4. Free Radic Biol Med. 2020; 152:175-185. https://doi.org/10.1016/j.freeradbiomed.2020.02.027.

[64]

Shen Y, Wang X, Shen X, et al. Geniposide possesses the protective effect on myocardial injury by inhibiting oxidative stress and ferroptosis via activation of the Grsf1/GPx4 axis. Front Pharmacol. 2022;13:879870. https://doi.org/10.3389/fphar.2022.879870.

[65]

Jiang L, Zeng H, Ni L, et al. HIF-1α preconditioning potentiates antioxidant activity in ischemic injury: the role of sequential administration of dihydrotanshinone I and protocatechuic aldehyde in cardioprotection. Antioxid Redox Signal. 2019; 31(3):227-242. https://doi.org/10.1089/ars.2018.7624.

[66]

Nagoor Meeran MF, Jagadeesh GS, Selvaraj P. Thymol attenuates inflammation in isoproterenol induced myocardial infarcted rats by inhibiting the release of lysosomal enzymes and downregulating the expressions of proinflammatory cytokines. Eur J Pharmacol. 2015; 754:153-161. https://doi.org/10.1016/j.ejphar.2015.02.028.

[67]

Shen N, Wang TF, Gan Q, et al. Plant flavonoids: classification, distribution, biosynthesis, and antioxidant activity. Food Chem. 2022;383:132531. https://doi.org/10.1016/j.foodchem.2022.132531.

[68]

Del Re DP, Amgalan D, Linkermann A, et al. Fundamental mechanisms of regulated cell death and implications for heart disease. Physiol Rev. 2019; 99(4):1765-1817. https://doi.org/10.1152/physrev.00022.2018.

[69]

Sun L, Xiao Y, San W, et al. Dihydromyricetin regulates RIPK3-CaMKII to prevent necroptosis in high glucose-stimulated cardiomyocytes. Heliyon. 2024; 10(7):e28921. https://doi.org/10.1016/j.heliyon.2024.e28921.

[70]

Zhuo YQ, Yuan RYK, Chen XX, et al. Tanshinone I exerts cardiovascular protective effects in vivo and in vitro through inhibiting necroptosis via Akt/Nrf2 signaling pathway. Chin Med. 2021; 16(1):48. https://doi.org/10.1186/s13020-021-00458-7.

[71]

Bai JN, Wang QC, Qi JX, et al. Promoting effect of baicalin on nitric oxide production in CMECs via activating the PI3K-AKT-eNOS pathway attenuates myocardial ischemia-reperfusion injury. Phytomedicine. 2019;63:153035. https://doi.org/10.1016/j.phymed.2019.153035.

[72]

Raish M. Momordica charantia polysaccharides ameliorate oxidative stress, hyperlipidemia, inflammation, and apoptosis during myocardial infarction by inhibiting the NF-κB signaling pathway. Int J Biol Macromol. 2017; 97:544-551. https://doi.org/10.1016/j.ijbiomac.2017.01.074.

[73]

Bian D, Liu M, Li Y, et al. Madecassoside, a triterpenoid saponin isolated from Centella asiatica herbs, protects endothelial cells against oxidative stress. J Biochem Mol Toxicol. 2012; 26(10):399-406. https://doi.org/10.1002/jbt.21434.

[74]

Shi P, Geng Q, Chen L, et al. Schisandra chinensis bee pollen’s chemical profiles and protective effect against H(2)O(2)-induced apoptosis in H9c2 cardiomyocytes. BMC Complement Med Ther. 2020; 20(1):274. https://doi.org/10.1186/s12906-020-03069-1.

[75]

Yao H, Xie Q, He Q, et al. Pretreatment with panaxatriol saponin attenuates mitochondrial apoptosis and oxidative stress to facilitate treatment of myocardial ischemia-reperfusion injury via the regulation of Keap1/Nrf2 activity. Oxid Med Cell Longev. 2022;2022:9626703. https://doi.org/10.1155/2022/9626703.

[76]

Bernardi P, Gerle C, Halestrap AP, et al. Identity, structure, and function of the mitochondrial permeability transition pore: controversies, consensus, recent advances, and future directions. Cell Death Differ. 2023; 30(8):1869-1885. https://doi.org/10.1038/s41418-023-01187-0.

[77]

Yin Y, Guan Y, Duan J, et al. Cardioprotective effect of Danshensu against myocardial ischemia/reperfusion injury and inhibits apoptosis of H9c2 cardiomyocytes via Akt and ERK1/2 phosphorylation. Eur J Pharmacol. 2013; 699(1-3):219-226. https://doi.org/10.1016/j.ejphar.2012.11.005.

[78]

Zhang CH, Yan YJ, Luo Q. The molecular mechanisms and potential drug targets of ferroptosis in myocardial ischemia-reperfusion injury. Life Sci. 2024;340:122439. https://doi.org/10.1016/j.lfs.2024.122439.

[79]

Wang Z, Yao M, Jiang L, et al. Dexmedetomidine attenuates myocardial ischemia/reperfusion-induced ferroptosis via AMPK/GSK-3β/Nrf2 axis. Biomed Pharmacother. 2022;154:113572. https://doi.org/10.1016/j.biopha.2022.113572.

[80]

Xu S, Wu B, Zhong B, et al. Naringenin alleviates myocardial ischemia/reperfusion injury by regulating the nuclear factor-erythroid factor 2-related factor 2 (Nrf2) /System xc-/ glutathione peroxidase 4 (GPX4) axis to inhibit ferroptosis. Bioengineered. 2021; 12(2):10924-10934. https://doi.org/10.1080/21655979.2021.1995994.

[81]

Wang H, Xie B, Shi S, et al. Curdione inhibits ferroptosis in isoprenaline-induced myocardial infarction via regulating Keap1/Trx1/GPX4 signaling pathway. Phytother Res. 2023; 37(11):5328-5340. https://doi.org/10.1002/ptr.7964.

[82]

Liu J, Zhang M, Qin C, et al. Resveratrol attenuate myocardial injury by inhibiting ferroptosis via inducing KAT5/GPX4 in myocardial infarction. Front Pharmacol. 2022;13:906073. https://doi.org/10.3389/fphar.2022.906073.

[83]

He P, Zhang M, Zhao M, et al. A novel polysaccharide from chuanminshen violaceum and its protective effect against myocardial injury. Front Nutr. 2022;9:961182. https://doi.org/10.3389/fnut.2022.961182.

[84]

Zhong G, Chen J, Li Y, et al. Ginsenoside Rg 3 attenuates myocardial ischemia/reperfusion-induced ferroptosis via the keap1/Nrf2/GPX4 signaling pathway. BMC Complement Med Ther. 2024; 24(1):247. https://doi.org/10.1186/s12906-024-04492-4.

[85]

Lin JH, Yang KT, Ting PC, et al. Gossypol acetic acid attenuates cardiac ischemia/reperfusion injury in rats via an antiferroptotic mechanism. Biomolecules. 2021; 11(11):1667. https://doi.org/10.3390/biom11111667.

[86]

Lu H, Xiao H, Dai M, et al. Britanin relieves ferroptosis-mediated myocardial ischaemia/reperfusion damage by upregulating GPX4 through activation of AMPK/GSK3β/Nrf2 signalling. Pharm Biol. 2022; 60(1):38-45. https://doi.org/10.1080/13880209.2021.2007269.

[87]

Lin JH, Yang KT, Lee WS, et al. Xanthohumol protects the rat myocardium against ischemia/reperfusion injury-induced ferroptosis. Oxid Med Cell Longev. 2022;2022:9523491. https://doi.org/10.1155/2022/9523491.

[88]

Liu XJ, Lv YF, Cui WZ, et al. Icariin inhibits hypoxia/reoxygenation-induced ferroptosis of cardiomyocytes via regulation of the Nrf2/HO-1 signaling pathway. FEBS Open Bio. 2021; 11(11):2966-2976. https://doi.org/10.1002/2211-5463.13276.

[89]

Xu Y, Lin H, Wang H, et al. Fraxetin attenuates ferroptosis in myocardial infarction via AKT/Nrf2/HO-1 signaling. Am J Transl Res. 2021; 13(9):10315-10327.

[90]

Yan J, Li Z, Liang Y, et al. Fucoxanthin alleviated myocardial ischemia and reperfusion injury through inhibition of ferroptosis via the NRF2 signaling pathway. Food Funct. 2023; 14(22):10052-10068. https://doi.org/10.1039/d3fo02633g.

[91]

Wu YT, Zhang GY, Li L, et al. Salvia miltiorrhiza suppresses cardiomyocyte ferroptosis after myocardial infarction by activating Nrf2 signaling. J Ethnopharmacol. 2024;330:118214. https://doi.org/10.1016/j.jep.2024.118214.

[92]

Shen Y, Shen X, Wang S, et al. Protective effects of Salvianolic acid B on rat ferroptosis in myocardial infarction through upregulating the Nrf2 signaling pathway. Int Immunopharmacol. 2022;112:109257. https://doi.org/10.1016/j.intimp.2022.109257.

[93]

Fan Z, Cai L, Wang S, et al. Baicalin prevents myocardial ischemia/reperfusion injury through inhibiting ACSL4 mediated ferroptosis. Front Pharmacol. 2021;12:628988. https://doi.org/10.3389/fphar.2021.628988.

[94]

Yang KT, Chao TH, Wang IC, et al. Berberine protects cardiac cells against ferroptosis. Tzu Chi Med J. 2022; 34(3):310-317. https://doi.org/10.4103/tcmj.tcmj_236_21.

[95]

Ding Y, Li W, Peng S, et al. Puerarin protects against myocardial ischemia/reperfusion injury by inhibiting ferroptosis. Biol Pharm Bull. 2023; 46(4):524-532. https://doi.org/10.1248/bpb.b22-00174.

[96]

Wang IC, Lin JH, Lee WS, et al. Baicalein and luteolin inhibit ischemia/reperfusion-induced ferroptosis in rat cardiomyocytes. Int J Cardiol. 2023; 375:74-86. https://doi.org/10.1016/j.ijcard.2022.12.018.

[97]

Tardif JC, Kouz S, Waters DD, et al. Efficacy and safety of low-dose colchicine after myocardial infarction. N Engl J Med. 2019; 381(26):2497-2505. https://doi.org/10.1056/NEJMoa1912388.

[98]

Chai X, Liang Z, Zhang J, et al. Chlorogenic acid protects against myocardial ischemia-reperfusion injury in mice by inhibiting Lnc Neat1/NLRP3 inflammasome-mediated pyroptosis. Sci Rep. 2023; 13(1):17803. https://doi.org/10.1038/s41598-023-45017-2.

[99]

Xu XN, Jiang Y, Yan LY, et al. Aesculin suppresses the NLRP3 inflammasome-mediated pyroptosis via the Akt/GSK3β/NF-κB pathway to mitigate myocardial ischemia/reperfusion injury. Phytomedicine. 2021;92:153687. https://doi.org/10.1016/j.phymed.2021.153687.

[100]

Li H, Yang DH, Zhang Y, et al. Geniposide suppresses NLRP3 inflammasome-mediated pyroptosis via the AMPK signaling pathway to mitigate myocardial ischemia/reperfusion injury. Chin Med. 2022; 17(1):73. https://doi.org/10.1186/s13020-022-00616-5.

[101]

Chai R, Ye Z, Xue W, et al. Tanshinone IIA inhibits cardiomyocyte pyroptosis through TLR4/NF-κB p65 pathway after acute myocardial infarction. Front Cell Dev Biol. 2023;11:1252942. https://doi.org/10.3389/fcell.2023.1252942.

[102]

Du L, Wang X, Chen S, et al. The AIM2 inflammasome: a novel biomarker and target in cardiovascular disease. Pharmacol Res. 2022;186:106533. https://doi.org/10.1016/j.phrs.2022.106533.

[103]

Qin C, Wang T, Qian N, et al. Epigallocatechin gallate prevents cardiomyocytes from pyroptosis through lncRNA MEG3/TAF15/AIM2 axis in myocardial infarction. Chin Med. 2023; 18(1):160. https://doi.org/10.1186/s13020-023-00856-z.

[104]

Nakai A, Yamaguchi O, Takeda T, et al. The role of autophagy in cardiomyocytes in the basal state and in response to hemodynamic stress. Nat Med. 2007; 13(5):619-624. https://doi.org/10.1038/nm1574.

[105]

Wu X, Zheng D, Qin Y, et al. Nobiletin attenuates adverse cardiac remodeling after acute myocardial infarction in rats via restoring autophagy flux. Biochem Biophys Res Commun. 2017; 492(2):262-268. https://doi.org/10.1016/j.bbrc.2017.08.064.

[106]

Zhang X, Wang Q, Wang X, et al. Tanshinone IIA protects against heart failure post-myocardial infarction via AMPKs/mTOR-dependent autophagy pathway. Biomed Pharmacother. 2019;112:108599. https://doi.org/10.1016/j.biopha.2019.108599.

[107]

Qin GW, Lu P, Peng L, et al. Ginsenoside rb 1 inhibits cardiomyocyte autophagy via PI3K/Akt/mTOR signaling pathway and reduces myocardial ischemia/reperfusion injury. Am J Chin Med. 2021; 49(8):1913-1927. https://doi.org/10.1142/s0192415x21500907.

[108]

Zhang P, Liu X, Yu X, et al. Protective effects of liriodendrin on myocardial infarction-induced fibrosis in rats via the PI3K/Akt autophagy pathway: a network pharmacology study. Comb Chem High Throughput Screen. 2024; 27(11):1566-1575. https://doi.org/10.2174/1386207326666230717155641.

[109]

Xuan F, Jian J. Epigallocatechin gallate exerts protective effects against myocardial ischemia/reperfusion injury through the PI3K/Akt pathway-mediated inhibition of apoptosis and the restoration of the autophagic flux. Int J Mol Med. 2016; 38(1):328-336. https://doi.org/10.3892/ijmm.2016.2615.

[110]

Chen Q, Xu Q, Zhu H, et al. Salvianolic acid B promotes angiogenesis and inhibits cardiomyocyte apoptosis by regulating autophagy in myocardial ischemia. Chin Med. 2023; 18(1):155. https://doi.org/10.1186/s13020-023-00859-w.

[111]

Tsai CF, Su HH, Chen KM, et al. Paeonol protects against myocardial ischemia/reperfusion-induced injury by mediating apoptosis and autophagy crosstalk. Front pharmacol. 2020;11:586498. https://doi.org/10.3389/fphar.2020.586498.

[112]

Song S, Jin R, Chen Y, et al. The functional evolution of architecturally different plant geranyl diphosphate synthases from geranylgeranyl diphosphate synthase. Plant Cell. 2023; 35(6):2293-2315. https://doi.org/10.1093/plcell/koad083.

[113]

Gibb AA, Lazaropoulos MP, Elrod JW. Myofibroblasts and fibrosis mitochondrial and metabolic control of cellular differentiation. Circ Res. 2020; 127(3):427-447. https://doi.org/10.1161/Circresaha.120.316958.

[114]

Liu TL, Hao Y, Zhang ZX, et al. Advanced cardiac patches for the treatment of myocardial infarction. Circulation. 2024; 149(25):2002-2020. https://doi.org/10.1161/Circulationaha.123.067097.

[115]

Tallquist MD.Cardiac fibroblast diversity. Annu Rev Physiol. 2020; 82:63-78. https://doi.org/10.1146/annurev-physiol-021119-034527.

[116]

Weng L, Ye JJ, Yang FH, et al.TGF-β1/SMAD 3 regulates programmed cell death 5 that suppresses cardiac fibrosis post-myocardial infarction by inhibiting HDAC3. Circ Res. 2023; 133(3):237-251. https://doi.org/10.1161/Circresaha.123.322596.

[117]

Xu H, Miao H, Chen G, et al. 20(S)-ginsenoside Rg3 exerts anti-fibrotic effect after myocardial infarction by alleviation of fibroblasts proliferation and collagen deposition through TGFBR1 signaling pathways. J Ginseng Res. 2023; 47(6):743-754. https://doi.org/10.1016/j.jgr.2023.06.007.

[118]

Lai Q, Liu FM, Rao WL, et al. Aminoacylase-1 plays a key role in myocardial fibrosis and the therapeutic effects of 20(S)-ginsenoside Rg3 in mouse heart failure. Acta Pharmacol Sin. 2022; 43(8):2003-2015. https://doi.org/10.1038/s41401-021-00830-1.

[119]

Yu Y, Sun J, Liu J, et al. Ginsenoside represerves cardiac function and ameliorates left ventricular remodeling in a rat model of myocardial infarction. J Cardiovasc Pharmacol. 2020; 75(1):91-97. https://doi.org/10.1097/fjc.0000000000000752.

[120]

Jia J, Zhao XA, Tao SM, et al. Icariin improves cardiac function and remodeling via the TGF-β1/Smad signaling pathway in rats following myocardial infarction. Eur J Med Res. 2023; 28(1):607. https://doi.org/10.1186/s40001-023-01588-4.

[121]

Yu J, Zhao X, Yan X, et al.Aloe-emodin ameliorated MI-induced cardiac remodeling in mice via inhibiting TGF-β/SMAD signaling via up-regulating SMAD7. Phytomedicine. 2023;114:154793. https://doi.org/10.1016/j.phymed.2023.154793.

[122]

Chen L, Zhu YY, Guo CW, et al. Artemisia argyi extract subfraction exerts an antifungal effect against dermatophytes by disrupting mitochondrial morphology and function. Chin J Nat Med. 2024; 22:47-61. https://doi.org/10.1016/S1875-5364(24)60561-3.

[123]

Li J, Ge F, Wuken S, et al. Zerumbone, a humulane sesquiterpene from Syringa pinnatifolia, attenuates cardiac fibrosis by inhibiting of the TGF-β1/Smad signaling pathway after myocardial infarction in mice. Phytomedicine. 2022;100:154078. https://doi.org/10.1016/j.phymed.2022.154078.

[124]

Sun J, Zhu J, Chen L, et al. Forsythiaside B inhibits myocardial fibrosis via down regulating TGF-β1/Smad signaling pathway. Eur J Pharmacol. 2021;908:174354. https://doi.org/10.1016/j.ejphar.2021.174354.

[125]

Wei Y, Wu Y, Feng K, et al. Astragaloside IV inhibits cardiac fibrosis via miR-135a-TRPM7-TGF-β/Smads pathway. J Ethnopharmacol. 2020;249:112404. https://doi.org/10.1016/j.jep.2019.112404.

[126]

Jiang J, Gu X, Wang H, et al. Resveratrol improves cardiac function and left ventricular fibrosis after myocardial infarction in rats by inhibiting NLRP3 inflammasome activity and the TGF-β1/SMAD2 signaling pathway. PeerJ. 2021;9:e11501. https://doi.org/10.7717/peerj.11501.

[127]

Albadrani GM, BinMowyna MN, Bin-Jumah MN, et al. Quercetin prevents myocardial infarction adverse remodeling in rats by attenuating TGF-β1/Smad3 signaling: different mechanisms of action. Saudi J Biol Sci. 2021; 28(5):2772-2782. https://doi.org/10.1016/j.sjbs.2021.02.007.

[128]

Wang NP, Wang ZF, Tootle S, et al. Curcumin promotes cardiac repair and ameliorates cardiac dysfunction following myocardial infarction. Br J Pharmacol. 2012; 167(7):1550-1562. https://doi.org/10.1111/j.1476-5381.2012.02109.x.

[129]

Jiang W, Deng B, Xie M, et al. Caffeic acid mitigates myocardial fibrosis and improves heart function in post-myocardial infarction by inhibiting transforming growth factor-β receptor 1 signaling pathways. Biomed Pharmacother. 2024;177:117012. https://doi.org/10.1016/j.biopha.2024.117012.

[130]

Zeng KF, Wang HJ, Deng B, et al.Ethyl ferulate suppresses post-myocardial infarction myocardial fibrosis by inhibiting transforming growth factor receptor 1. Phytomedicine. 2023;121:155118. https://doi.org/10.1016/j.phymed.2023.155118.

[131]

Chen G, Xu H, Xu T, et al. Calycosin reduces myocardial fibrosis and improves cardiac function in post-myocardial infarction mice by suppressing TGFBR1 signaling pathways. Phytomedicine. 2022;104:154277. https://doi.org/10.1016/j.phymed.2022.154277.

[132]

Pan Z, Zhao W, Zhang X, et al.Scutellarin alleviates interstitial fibrosis and cardiac dysfunction of infarct rats by inhibiting TGFβ1 expression and activation of p38-MAPK and ERK1/2. Br J Pharmacol. 2011; 162(3):688-700. https://doi.org/10.1111/j.1476-5381.2010.01070.x.

[133]

Wang X, Meng H, Chen P, et al. Beneficial effects of muscone on cardiac remodeling in a mouse model of myocardial infarction. Int J Mol Med. 2014; 34(1):103-111. https://doi.org/10.3892/ijmm.2014.1766.

[134]

Tao Z, Ge Y, Zhou N, et al. Puerarin inhibits cardiac fibrosis via monocyte chemoattractant protein (MCP)-1 and the transforming growth factor-β1 (TGF-β1) pathway in myocardial infarction mice. Am J Transl Res. 2016; 8(10):4425-4433.

[135]

Qiu F, Dong C, Liu Y, et al. Pharmacological inhibition of SUMO-1 with ginkgolic acid alleviates cardiac fibrosis induced by myocardial infarction in mice. Toxicol Appl Pharmacol. 2018; 345:1-9. https://doi.org/10.1016/j.taap.2018.03.006.

[136]

Sun J, Wang R, Chao T, et al. Ginsenoside Re inhibits myocardial fibrosis by regulating miR-489/myd88/NF-κB pathway. J Ginseng Res. 2023; 47(2):218-227. https://doi.org/10.1016/j.jgr.2021.11.009.

[137]

Li X, Xiang N, Wang Z. Ginsenoside Rg 2 attenuates myocardial fibrosis and improves cardiac function after myocardial infarction via AKT signaling pathway. Biosci Biotechnol Biochem. 2020; 84(11):2199-2206. https://doi.org/10.1080/09168451.2020.1793292.

[138]

Liao R, Qi Z, Tang R, et al. Methyl ferulic acid attenuates human cardiac fibroblasts differentiation and myocardial fibrosis by suppressing pRB-E2F1/CCNE2 and RhoA/ROCK2 pathway. Front Pharmacol. 2021;12:714390. https://doi.org/10.3389/fphar.2021.714390.

[139]

Liu Q, Tian J, Xu Y, et al. Protective effect of ra on myocardial infarction-induced cardiac fibrosis via AT1R/p38 MAPK mapk pathway signaling and modulation of the ACE2/ACE ratio. J Agric Food Chem. 2016; 64(35):6716-6722. https://doi.org/10.1021/acs.jafc.6b03001.

[140]

Ma Y, Li H, Yue Z, et al.Cryptotanshinone attenuates cardiac fibrosis via downregulation of COX-2, NOX-2, and NOX-4. J Cardiovasc Pharmacol. 2014; 64(1):28-37. https://doi.org/10.1097/fjc.0000000000000086.

[141]

Lu J, Wang QY, Zhou Y, et al. Astragaloside IV against cardiac fibrosis by inhibiting TRPM7 channel. Phytomedicine. 2017; 30:10-17. https://doi.org/10.1016/j.phymed.2017.04.002.

[142]

Kovacic JC, Dimmeler S, Harvey RP, et al. Endothelial to mesenchymal transition in cardiovascular disease: state-of-the-art review. J Am Coll Cardiol. 2019; 73(2):190-209. https://doi.org/10.1016/j.jacc.2018.09.089.

[143]

Takagaki Y, Lee SM, Zha DQ, et al. Endothelial autophagy deficiency induces IL6-dependent endothelial mesenchymal transition and organ fibrosis. Autophagy. 2020; 16(10):1905-1914. https://doi.org/10.1080/15548627.2020.1713641.

[144]

Song BW, Kim S, Kim R, et al. Regulation of inflammation-mediated endothelial to mesenchymal transition with echinochrome a for improving myocardial dysfunction. Mar Drugs. 2022; 20(12):756. https://doi.org/10.3390/md20120756.

[145]

Zhang L, Guo YN, Liu J, et al. Plantamajoside attenuates cardiac fibrosis via inhibiting AGEs activated-RAGE/autophagy/EndMT pathway. Phytother Res. 2023; 37(3):834-847. https://doi.org/10.1002/ptr.7663.

[146]

Wei YR, Hou YL, Yin YJ, et al. Tongxinluo activates PI3K/AKT signaling pathway to inhibit endothelial mesenchymal transition and attenuate myocardial fibrosis after ischemia-reperfusion in mice. Chin J Integr Med. 2024; 30(7):608-615. https://doi.org/10.1007/s11655-024-3652-5.

[147]

Liang P, Bi T, Zhou YA, et al. Insights into the mechanism of supramolecular self-assembly in the Astragalus membranaceus-Angelica sinensis codecoction. ACS Appl Mater Interfaces. 2023; 15(41):47939-47954. https://doi.org/10.1021/acsami.3c09494.

[148]

Wang JY, Zhuang HW, Jia LQ, et al. Nuclear receptor subfamily 4 group A member 1 promotes myocardial ischemia/reperfusion injury through inducing mitochondrial fission factor-mediated mitochondrial fragmentation and inhibiting FUN14 domain containing 1-depedent mitophagy. Int J Biol Sci. 2024; 20(11):4458-4475. https://doi.org/10.7150/ijbs.95853.

[149]

Johnson T, Zhao L, Manuel G, et al. Approaches to therapeutic angiogenesis for ischemic heart disease. J Mol Med (Berl). 2019; 97(2):141-151. https://doi.org/10.1007/s00109-018-1729-3.

[150]

Wu X, Reboll MR, Korf-Klingebiel M, et al.Angiogenesis after acute myocardial infarction. Cardiovasc Res. 2021; 117(5):1257-1273. https://doi.org/10.1093/cvr/cvaa287.

[151]

Dudley AC, Griffioen AW. Pathological angiogenesis: mechanisms and therapeutic strategies. Angiogenesis. 2023; 26(3):313-347. https://doi.org/10.1007/s10456-023-09876-7.

[152]

Shaw P, Dwivedi SKD, Bhattacharya R, et al. VEGF signaling: role in angiogenesis and beyond. Biochim Biophys Acta Rev Cancer. 2024; 1879(2): 189079. https://doi.org/10.1016/j.bbcan.2024.189079.

[153]

Morgan C, Nigam Y. Naturally derived factors and their role in the promotion of angiogenesis for the healing of chronic wounds. Angiogenesis. 2013; 16(3):493-502. https://doi.org/10.1007/s10456-013-9341-1.

[154]

Zhang J, Kasim V, Xie YD, et al. Inhibition of PHD 3 by salidroside promotes neovascularization through cell-cell communications mediated by muscle-secreted angiogenic factors. Sci Rep. 2017;7:43935. https://doi.org/10.1038/srep43935.

[155]

Cheng S, Zhang X, Feng Q, et al. Astragaloside IV exerts angiogenesis and cardioprotection after myocardial infarction via regulating PTEN/PI3K/Akt signaling pathway. Life Sci. 2019; 227:82-93. https://doi.org/10.1016/j.lfs.2019.04.040.

[156]

Sui YB, Wang Y, Liu L, et al. Astragaloside IV alleviates heart failure by promoting angiogenesis through the JAK-STAT3 pathway. Pharm Biol. 2019; 57(1):48-54. https://doi.org/10.1080/13880209.2019.1569697.

[157]

Lin CM, Chiu JH, Wu IH, et al. Ferulic acid augments angiogenesis via VEGF, PDGF and HIF-1 alpha. J Nutr Biochem. 2010; 21(7):627-633. https://doi.org/10.1016/j.jnutbio.2009.04.001.

[158]

Samuel SM, Thirunavukkarasu M, Penumathsa SV, et al. Thioredoxin-1 gene therapy enhances angiogenic signaling and reduces ventricular remodeling in infarcted myocardium of diabetic rats. Circulation. 2010; 121(10):1244-1255. https://doi.org/10.1161/circulationaha.109.872481.

[159]

Kaga S, Zhan L, Matsumoto M, et al. Resveratrol enhances neovascularization in the infarcted rat myocardium through the induction of thioredoxin-1, heme oxygenase-1 and vascular endothelial growth factor. J Mol Cell Cardiol. 2005; 39(5):813-822. https://doi.org/10.1016/j.yjmcc.2005.08.003.

[160]

Pan YL, Liu YH, Wei W, et al. Extracellular vesicles as delivery shippers for noncoding rna-based modulation of angiogenesis: insights from ischemic stroke and cancer. Small. 2023; 19(17):e2205739. https://doi.org/10.1002/smll.202205739.

[161]

Zhu ML, Yin YL, Ping S, et al. Berberine promotes ischemia-induced angiogenesis in mice heart via upregulation of microRNA-29b. Clin Exp Hypertens. 2017; 39(7):672-679. https://doi.org/10.1080/10641963.2017.1313853.

[162]

Wang X, Wu C. Tanshinone IIA improves cardiac function via regulating miR-499-5p dependent angiogenesis in myocardial ischemic mice. Microvasc Res. 2022;143:104399. https://doi.org/10.1016/j.mvr.2022.104399.

[163]

Kong C, Lyu D, He C, et al. Dioscin elevates lncRNA MANTIS in therapeutic angiogenesis for heart diseases. Aging Cell. 2021; 20(7):e13392. https://doi.org/10.1111/acel.13392.

[164]

Sha Z, Liu W, Jiang T, et al. Astragaloside IV induces the protective effect of bone marrow mesenchymal stem cells derived exosomes in acute myocardial infarction by inducing angiogenesis and inhibiting apoptosis. Biotechnol Genet Eng Rev. 2024; 40(3):1438-1455. https://doi.org/10.1080/02648725.2023.2194087.

[165]

Yang L, Liu N, Yang Y. Astragaloside IV-induced BMSC exosomes promote neovascularization and protect cardiac function in myocardial infarction mice via the miR-411/HIF-1α axis. J Liposome Res. 2024; 34(3):452-463. https://doi.org/10.1080/08982104.2023.2293844.

[166]

Kim J, Kim M, Jeong Y, et al. BMP 9 induces cord blood-derived endothelial progenitor cell differentiation and ischemic neovascularization via ALK1. Arterioscler Thromb Vasc Biol. 2015; 35(9):2020-2031. https://doi.org/10.1161/Atvbaha.115.306142.

[167]

Lakkisto P, Kytö V, Forsten H, et al. Heme oxygenase-1 and carbon monoxide promote neovascularization after myocardial infarction by modulating the expression of HIF-1alpha, SDF-1alpha and VEGF-B. Eur J Pharmacol. 2010; 635(1-3):156-164. https://doi.org/10.1016/j.ejphar.2010.02.050.

[168]

Petit I, Jin D, Rafii S. The SDF-1-CXCR4 signaling pathway: a molecular hub modulating neo-angiogenesis. Trends Immunol. 2007; 28(7):299-307. https://doi.org/10.1016/j.it.2007.05.007.

[169]

Yin Y, Duan J, Guo C, et al. Danshensu accelerates angiogenesis after myocardial infarction in rats and promotes the functions of endothelial progenitor cells through SDF-1α/CXCR4 axis. Eur J Pharmacol. 2017; 814:274-282. https://doi.org/10.1016/j.ejphar.2017.08.035.

[170]

Wei G, Yin Y, Duan J, et al. Hydroxysafflor yellow A promotes neovascularization and cardiac function recovery through HO-1/VEGF-A/SDF-1α cascade. Biomed Pharmacother. 2017; 88:409-420. https://doi.org/10.1016/j.biopha.2017.01.074.

[171]

You JZ, Sun JC, Ma T, et al. Curcumin induces therapeutic angiogenesis in a diabetic mouse hindlimb ischemia model via modulating the function of endothelial progenitor cells. Stem Cell Res Ther. 2017; 8(1):182. https://doi.org/10.1186/s13287-017-0636-9.

[172]

Zhang RF, Zhao TK, Zheng BB, et al. Curcumin derivative Cur20 attenuated cerebral ischemic injury by antioxidant effect and HIF-1α/VEGF/TFEB-activated angiogenesis. Front Pharmacol. 2021;12:648107. https://doi.org/10.3389/fphar.2021.648107.

[173]

Han J, Shen YX, Cao RY, et al. Active herbal ingredients and drug delivery design for tumor therapy: a review. Chin J Nat Med. 2024; 22:1134-1162. https://doi.org/10.1016/S1875-5364(24)60741-7.

[174]

Arif M, Klevstig M, Benfeitas R, et al. Integrative transcriptomic analysis of tissue-specific metabolic crosstalk after myocardial infarction. Elife. 2021;10:e66921. https://doi.org/10.7554/eLife.66921.

[175]

Yu W, Kong Q, Jiang S, et al. HSPA12A maintains aerobic glycolytic homeostasis and Histone3 lactylation in cardiomyocytes to attenuate myocardial ischemia/reperfusion injury. JCI Insight. 2024; 9(7):e169125. https://doi.org/10.1172/jci.insight.169125.

[176]

Lombardi AA, Gibb AA, Arif E, et al. Mitochondrial calcium exchange links metabolism with the epigenome to control cellular differentiation. Nat Commun. 2019; 10(1):4509. https://doi.org/10.1038/s41467-019-12103-x.

[177]

Hailiwu R, Zeng H, Zhan M, et al. Salvianolic acid A diminishes LDHA-driven aerobic glycolysis to restrain myofibroblasts activation and cardiac fibrosis via blocking Akt/GSK-3β/HIF-1α axis. Phytother Res. 2023; 37(10):4540-4556. https://doi.org/10.1002/ptr.7925.

[178]

Byles V, Covarrubias AJ, Ben-Sahra I, et al. The TSC-mTOR pathway regulates macrophage polarization. Nat Commun. 2013;4:2834. https://doi.org/10.1038/ncomms3834.

[179]

Düvel K, Yecies JL, Menon S, et al.Activation of a metabolic gene regulatory network downstream of mTOR complex 1. Mol Cell. 2010; 39(2):171-183. https://doi.org/10.1016/j.molcel.2010.06.022.

[180]

Zhao M, Li F, Jian Y, et al. Salvianolic acid B regulates macrophage polarization in ischemic/reperfused hearts by inhibiting mTORC1-induced glycolysis. Eur J Pharmacol. 2020;871:172916. https://doi.org/10.1016/j.ejphar.2020.172916.

[181]

Delbridge LM, Mellor KM, Taylor DJ, et al. Myocardial autophagic energy stress responses-macroautophagy, mitophagy, and glycophagy. Am J Physiol Heart Circ Physiol. 2015; 308(10):H1194-1204. https://doi.org/10.1152/ajpheart.00002.2015.

[182]

Wang YL, Lan XB, Liu N, et al. Traditional Chinese medicines derived natural inhibitors of ferroptosis on ischemic stroke. Chin J Nat Med. 2024; 22(8):746-755. https://doi.org/10.1016/S1875-5364(24)60603-5.

[183]

Dai Y, Wang Z, Quan M, et al. Asiatic acid protests against myocardial ischemia/reperfusion injury via modulation of glycometabolism in rat cardiomyocyte. Drug Des Devel Ther. 2018; 12:3573-3582. https://doi.org/10.2147/dddt.S175116.

[184]

Liu Q, Docherty JC, Rendell JC, et al. High levels of fatty acids delay the recovery of intracellular pH and cardiac efficiency in post-ischemic hearts by inhibiting glucose oxidation. J Am Coll Cardiol. 2002; 39(4):718-725. https://doi.org/10.1016/s0735-1097(01)01803-4.

[185]

Li J, Yang YL, Li LZ, et al. Succinate accumulation impairs cardiac pyruvate dehydrogenase activity through GRP91-dependent and independent signaling pathways: therapeutic effects of ginsenoside Rb1. Biochim Biophys Acta Mol Basis Dis. 2017; 1863(11):2835-2847. https://doi.org/10.1016/j.bbadis.2017.07.017.

[186]

Xie RF, Li CL, Zhong CH, et al. Integration of virtual screening and proteomics reveals potential targets and pathways for ginsenoside Rg1 against myocardial ischemia. J Ginseng Res. 2024; 48(4):395-404. https://doi.org/10.1016/j.jgr.2024.02.001.

[187]

Pouliopoulos J, Chik WW, Kanthan A, et al. Intramyocardial adiposity after myocardial infarction: new implications of a substrate for ventricular tachycardia. Circulation. 2013; 128(21):2296-2308. https://doi.org/10.1161/circulationaha.113.002238.

[188]

Bonezzi F, Piccoli M, Dei Cas M, et al. Sphingolipid synthesis inhibition by myriocin administration enhances lipid consumption and ameliorates lipid response to myocardial ischemia reperfusion injury. Front Physiol. 2019;10:986. https://doi.org/10.3389/fphys.2019.00986.

[189]

Zhang L, Wei TT, Li Y, et al. Functional metabolomics characterizes a key role for N-Acetylneuraminic acid in coronary artery diseases. Circulation. 2018; 137(13):1374-1390. https://doi.org/10.1161/circulationaha.117.031139.

[190]

Zhang J, Zhou Y, Sun Y, et al. Beneficial effects of Oridonin on myocardial ischemia/reperfusion injury: insight gained by metabolomic approaches. Eur J Pharmacol. 2019;861:172587. https://doi.org/10.1016/j.ejphar.2019.172587.

[191]

Lai Q, Yuan GY, Wang H, et al. Exploring the protective effects of schizandrol A in acute myocardial ischemia mice by comprehensive metabolomics profiling integrated with molecular mechanism studies. Acta Pharmacol Sin. 2020; 41(8):1058-1072. https://doi.org/10.1038/s41401-020-0377-7.

[192]

Liao W, Liu J, Wang S, et al. Metabolic profiling reveals that salidroside antagonizes hypoxic injury via modulating energy and lipid metabolism in cardiomyocytes. Biomed Pharmacother. 2020;122:109700. https://doi.org/10.1016/j.biopha.2019.109700.

[193]

Gao S, Yang Z, Li D, et al. Intervention of Tanshinone IIA on the PGK1-PDHK1 pathway to reprogram macrophage phenotype after myocardial infarction. Cardiovasc Drugs Ther. 2023; 38(6):1359-1373. https://doi.org/10.1007/s10557-023-07520-6.

[194]

Liu C, Huang J, Qiu J, et al. Quercitrin improves cardiac remodeling following myocardial infarction by regulating macrophage polarization and metabolic reprogramming. Phytomedicine. 2024;127:155467. https://doi.org/10.1016/j.phymed.2024.155467.

[195]

Wang KY, Li YP, Qiang TT, et al. Role of epigenetic regulation in myocardial ischemia/reperfusion injury. Pharmacol Res. 2021;170:105743. https://doi.org/10.1016/j.phrs.2021.105743.

[196]

Bontempo P, Capasso L, De Masi L, et al. Therapeutic potential of natural compounds acting through epigenetic mechanisms in cardiovascular diseases: current findings and future directions. Nutrients. 2024; 16(15):2399. https://doi.org/10.3390/nu16152399.

[197]

Bonkowski MS, Sinclair DA. Slowing ageing by design: the rise of NAD+ and sirtuin-activating compounds. Nat Rev Mol Cell Biol. 2016; 17(11):679-690. https://doi.org/10.1038/nrm.2016.93.

[198]

Hsu CP, Zhai PY, Yamamoto T, et al. Silent information regulator 1 protects the heart from ischemia/reperfusion. Circulation. 2010; 122(21):2170-U2193. https://doi.org/10.1161/Circulationaha.110.958033.

[199]

Ding MG, Lei JY, Han HC, et al. SIRT1 protects against myocardial ischemia-reperfusion injury via activating eNOS in diabetic rats. Cardiovasc Diabetol. 2015;14:143. https://doi.org/10.1186/s12933-015-0299-8.

[200]

Mihanfar A, Nejabati HR, Fattahi A, et al. SIRT3-mediated cardiac remodeling/repair following myocardial infarction. Biomed Pharmacother. 2018; 108:367-373. https://doi.org/10.1016/j.biopha.2018.09.079.

[201]

Parodi-Rullán RM, Chapa-Dubocq X, Rullán PJ, et al. High sensitivity of SIRT3 deficient hearts to ischemia-reperfusion is associated with mitochondrial abnormalities. Front Pharmacol. 2017;8:275. https://doi.org/10.3389/fphar.2017.00275.

[202]

Porter GA, Urciuoli WR, Brookes PS, et al. SIRT3 deficiency exacerbates ischemia-reperfusion injury: implication for aged hearts. Am J Physiol Heart Circ Physiol. 2014; 306(12):H1602-1609. https://doi.org/10.1152/ajpheart.00027.2014.

[203]

Huang QX, Su H, Qi B, et al. A SIRT1 activator, Ginsenoside Rc, promotes energy metabolism in cardiomyocytes and neurons. J Am Chem Soc. 2021; 143(3):1416-1427. https://doi.org/10.1021/jacs.0c10836.

[204]

Zhu X, Ma E, Ge YX, et al. Resveratrol protects against myocardial ischemic injury in obese mice via activating SIRT3/FOXO3a signaling pathway and restoring redox homeostasis. Biomed Pharmacother. 2024;174:116476. https://doi.org/10.1016/j.biopha.2024.116476.

[205]

Li Y, Feng L, Xie D, et al. Icariside II, a naturally occurring SIRT 3 agonist, protects against myocardial infarction through the AMPK/PGC-1α/apoptosis signaling pathway. Antioxidants (Basel). 2022; 11(8):1465. https://doi.org/10.3390/antiox11081465.

[206]

Chen X, Wang Q, Shao M, et al. Ginsenoside Rb 3 regulates energy metabolism and apoptosis in cardiomyocytes via activating PPARα pathway. Biomed Pharmacother. 2019;120:109487. https://doi.org/10.1016/j.biopha.2019.109487.

[207]

Lee SY, Ku HC, Kuo YH, et al. Caffeic acid ethanolamide prevents cardiac dysfunction through sirtuin dependent cardiac bioenergetics preservation. J Biomed Sci. 2015; 22(1):80. https://doi.org/10.1186/s12929-015-0188-1.

[208]

Zhang P, Fang ZY, Zhao M, et al. Ethanol extract of Pueraria lobata improve acute myocardial infarction in rats via regulating gut microbiota and bile acid metabolism. Phytother Res. 2023; 37(12):5932-5946. https://doi.org/10.1002/ptr.8005.

[209]

Zhu T, Chen J, Zhang MX, et al. Tanshinone IIA exerts cardioprotective effects through improving gut-brain axis post-myocardial infarction. Cardiovasc Toxicol. 2024; 24(12):1317-1334. https://doi.org/10.1007/s12012-024-09928-4.

PDF (13081KB)

86

Accesses

0

Citation

Detail

Sections
Recommended

/