Deciphering the therapeutic potential and mechanisms of Artemisia argyit essential oil on flagellum-mediated Salmonella infections

Linlin Ding , Lei Xu , Na Hu , Jianfeng Wang , Jiazhang Qiu , Qingjie Li , Xuming Deng

Chinese Journal of Natural Medicines ›› 2025, Vol. 23 ›› Issue (6) : 714 -726.

PDF (22398KB)
Chinese Journal of Natural Medicines ›› 2025, Vol. 23 ›› Issue (6) :714 -726. DOI: 10.1016/S1875-5364(25)60890-9
Original article
research-article

Deciphering the therapeutic potential and mechanisms of Artemisia argyit essential oil on flagellum-mediated Salmonella infections

Author information +
History +
PDF (22398KB)

Abstract

Salmonellosis represents a global epidemic, and the emergence of extensively drug-resistant (XDR) Salmonella and its sustained transmission worldwide constitutes a significant public health concern. Flagellum-mediated motility serves as a crucial virulence trait of Salmonella that guides the pathogen toward the epithelial surface, enhancing gut colonization. Artemisia argyit essential oil, a traditional herb extract, demonstrates efficacy in treating inflammation-related symptoms and diseases; however, its effects on flagellum assembly and expression mechanisms in anti-Salmonella activity remain inadequately explored. This study aimed to elucidate the mechanism by which Artemisia argyit essential oil addresses Salmonella infections. Network pharmacological analysis revealed that Traditional Chinese Medicine (TCM) Artemisia argyit exhibited anti-Salmonella infection potential and inhibited flagellum-dependent motility. The application of Artemisia argyit essential oil induced notable motility defects through the downregulation of flagellar and fimbriae expression. Moreover, it significantly reduced Salmonella-infected cell damage by interfering with flagellum-mediated Salmonella colonization. In vivo studies demonstrated that Artemisia argyit essential oil administration effectively alleviated Salmonella infection symptoms by reducing bacterial loads, inhibiting interleukin-1 beta (IL-1β), IL-6, and tumor necrosis factor-alpha (TNF-α) production, and diminishing pathological injury. Gas chromatography-mass spectrometry (GC-MS) analysis identified forty-three compounds in Artemisia argyit essential oil, with their corresponding targets and active ingredients predicted. Investigation of an in vivo model of Salmonella infection using the active ingredient demonstrated that alpha-cedrene ameliorated Salmonella infection. These findings suggest the potential application of Artemisia argyit essential oil in controlling Salmonella, the predominant food-borne pathogen.

Keywords

Artemisia argyit essential oil / Salmonella / Network Pharmacology / Motility / Flagella

Cite this article

Download citation ▾
Linlin Ding, Lei Xu, Na Hu, Jianfeng Wang, Jiazhang Qiu, Qingjie Li, Xuming Deng. Deciphering the therapeutic potential and mechanisms of Artemisia argyit essential oil on flagellum-mediated Salmonella infections. Chinese Journal of Natural Medicines, 2025, 23(6): 714-726 DOI:10.1016/S1875-5364(25)60890-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Majowicz SE, Musto J, Scallan E, et al. The global burden of nontyphoidal salmonella gastroenteritis. Clin Infect Dis. 2010; 50(6):882-889. https://doi.org/10.1086/650733.

[2]

European Food Safety Authority (EFSA);European Centre for Disease Prevention and Control (ECDC). The european union one health 2022 zoonoses report. Efsa J. 2023; 21(12):e8442.

[3]

Knodler LA, Elfenbein JR. Salmonella enterica. Trends Microbiol. 2019; 27(11):964-965. https://doi.org/10.1016/j.tim.2019.05.002.

[4]

Tauxe RV, Doyle MP, Kuchenmuller T, et al. Evolving public health approaches to the global challenge of foodborne infections. Int J Food Microbiol. 2010;139:S16-S28. https://doi.org/10.1016/j.ijfoodmicro.2009.10.014.

[5]

Rhen M. Salmonella and reactive oxygen species: a love-hate relationship. J Innate Immun. 2019; 11(3):216-226. https://doi.org/10.1159/000496370.

[6]

Stecher B, Hapfelmeier S, Muller C, et al. Flagella and chemotaxis are required for efficient induction of Salmonella enterica serovar typhimurium colitis in streptomycin-pretreated mice. Infect Immun. 2004; 72(7):4138-4150. https://doi.org/10.1128/IAI.72.7.4138-4150.2004.

[7]

Rehman T, Yin LZ, Latif MB, et al. Adhesive mechanism of different Salmonella fimbrial adhesins. Microb Pathog. 2019;137:103748. https://doi.org/10.1016/j.micpath.2019.103748.

[8]

Zhang SP, Kingsley RA, Santos RL, et al. Molecular pathogenesis of Salmonella enterica serotype typhimurium-induced diarrhea. Infect Immun. 2003; 71(1):1-12. https://doi.org/10.1128/IAI.71.1.1-12.2003.

[9]

Wagner Cm, Hensel M. Adhesive mechanisms of Salmonella enterica. Adv Exp Med Biol. 2011; 715:17-34. https://doi.org/10.1007/978-94-007-0940-9_2.

[10]

Kompoura V, Karapantzou I, Mitropoulou G, et al. Exploiting the beneficial effects of Salvia officinalis L. extracts in human health and assessing their activity as potent functional regulators of food microbiota. Food Chem. 2024;441:138175. https://doi.org/10.1016/j.foodchem.2023.138175.

[11]

Rochin-Medina JJ, Mendoza-Lopez IA, Campo NCD, et al. Activity of plant essential oils against clinically and environmentally isolated Salmonella enterica serotypes: in vitro assays and molecular docking. Lett Appl Microbiol. 2023; 76(4):ovad045. https://doi.org/10.1093/lambio/ovad045.

[12]

Temraz A, El-Tantawy WH. Characterization of antioxidant activity of extract from Artemisia vulgaris. Pak J Pharm Sci. 2008; 21(4):321-326.

[13]

Gilani AH, Yaeesh S, Jamal Q, et al. Hepatoprotective activity of aqueous - Methanol extract of Artemisia vulgaris. Phytother Res. 2005; 19(2):170-172. https://doi.org/10.1002/ptr.1632.

[14]

Natividad GM, Broadley KJ, Kariuki B, et al. Actions of extracts and isolated sesquiterpene lactones against receptors mediating contraction of guinea pig ileum and trachea. J Ethnopharmacol. 2011; 137(1):808-816. https://doi.org/10.1016/j.jep.2011.06.042.

[15]

Pires JM, Mendes FR, Negri G, et al. Antinociceptive peripheral effect of L. and L. : both plants known popularly by brand names of analgesic drugs. Phytother Res. 2009; 23(2):212-219. https://doi.org/10.1002/ptr.2589.

[16]

Blagojevic P, Radulovic N, Palic R, et al. Chemical composition of the essential oils of Serbian wild-growing and Artemisia vulgaris. J Agric Food Chem. 2006; 54(13):4780-4789. https://doi.org/10.1021/jf060123o.

[17]

Obistioiu D, Cristina RT, Schmerold I, et al. Chemical characterization by GC-MS and activity against of volatile fractions prepared from, Artemisia dracunculus, Artemisia abrotanum, Artemisia absinthium and Artemisia vulgaris. Artemisia vulgaris 2014; 8(1):6. https://doi.org/10.1186/1752-153X-8-6.

[18]

Barney JN, DiTommaso A. The biology of Canadian weeds. 118. Artemisia vulgaris L. Can J Plant Sci. 2003; 83(1):205-215. https://doi.org/10.4141/P01-098.

[19]

Ekiert H, Klimek-Szczykutowicz M, Rzepiela A, et al. Artemisia species with high biological values as a potential source of medicinal and cosmetic raw materials. Molecules. 2022; 27(19):6427. https://doi.org/10.3390/molecules27196427.

[20]

Ficociello B, Giordano D, Incoronato F, et al. WHO laboratory biosafety manual: a new approach to security. Ann Work Expo Health. 2023; 67(4):425-429. https://doi.org/10.1093/annweh/wxac086.

[21]

Xu ZH, Wang C, Luan ZX, et al. Exploring the potential targets of the Hance in the treatment of hepatitis E based on network pharmacology. Front Vet Sci. 2023;10:1155677. https://doi.org/10.3389/fvets.2023.1155677.

[22]

He S, Wang TQ, Shi CW, et al. Network pharmacology-based approach to understand the effect and mechanism of Danshen against anemia. J Ethnopharmacol. 2022;282:114615. https://doi.org/10.1016/j.jep.2021.114615.

[23]

Bogomolnaya LM, Aldrich L, Ragoza Y, et al. Identification of novel factors involved in modulating motility of Salmonella enterica Serotype Typhimurium. PLoS One. 2014; 9(11):e111513.

[24]

Wiegand I, Hilpert K, Hancock REW. Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nat Protoc. 2008; 3(2):163-175. https://doi.org/10.1038/nprot.2007.521.

[25]

Aizawa SI. Purification and characterization of the bacterial flagellar basal body from Salmonella enterica. Methods Mol Biol. 2017; 1593:87-96. https://doi.org/10.1007/978-1-4939-6927-2_6.

[26]

Minamino T, Morimoto YV, Kinoshita M, et al. The bacterial flagellar protein export apparatus processively transports flagellar proteins even with extremely infrequent ATP hydrolysis. Sci Rep. 2014;4:7579. https://doi.org/10.1038/srep07579.

[27]

Xu L, Zhou Y, Ou D, et al. Potent synergistic efficacy of 2-methoxy-1,4-naphthoquinone derived from quinones against drug-resistant bacteria. One Health Adv. 2024; 2(1):1. https://doi.org/10.1186/s44280-023-00030-y.

[28]

Song H, Wang X, Zhang M, et al. Dual effects of feed-additive-derived chelerythrine in combating mobile colistin resistance. Engineering. 2024; 32:163-173. https://doi.org/10.1016/j.eng.2023.06.012.

[29]

Wang XY, Song HW, Yi T, et al. Dihydroartemisinin inhibits plasmid transfer in drug-resistant via limiting energy supply. Zool Res. 2023; 44(5):894-904. https://doi.org/10.24272/j.issn.2095-8137.2023.084.

[30]

Winkelstroter LK, De Martinis ECP. In vitro protective effect of lactic acid bacteria on Listeria monocytogenes adhesion and invasion of Caco-2 cells. Benef Microbes. 2015; 6(4):535-542. https://doi.org/10.3920/BM2013.0091.

[31]

Finn CE, Chong A, Cooper KG, et al. A second wave of Salmonella T3SS1 activity prolongs the lifespan of infected epithelial cells. PLoS Pathog. 2017; 13(4):e1006354. https://doi.org/10.1371/journal.ppat.1006354.

[32]

Wu J, Pugh R, Laughlin RC, et al. High-throughput assay to phenotype Salmonella enterica typhimurium association, invasion, and replication in macrophages. J Vis Exp. 2014(90):e51759. https://doi.org/10.3791/51759.

[33]

Shi Y, Chen X, Shu J, et al. Harmine, an inhibitor of the type III secretion system of Salmonella enterica serovar Typhimurium. Front Cell Infect Microbiol. 2022;12:967149. https://doi.org/10.3389/fcimb.2022.967149.

[34]

Lv QH, Chu X, Yao XY, et al. Inhibition of the type III secretion system by syringaldehyde protects mice from Salmonella enterica serovar Typhimurium. J Cell Mol Med. 2019; 23(7):4679-4688. https://doi.org/10.1111/jcmm.14354.

[35]

Chen YT, Xiang D, Zhao XY, et al. Upregulation of lncRNA NIFK-AS1 in hepatocellular carcinoma by m(6)A methylation promotes disease progression and sorafenib resistance. Hum Cell. 2021; 34(6):1800-1811. https://doi.org/10.1007/s13577-021-00587-z.

[36]

Wu Y and Zhou BP. TNF-alpha/NF-kappaB/Snail pathway in cancer cell migration and invasion. Br J Cancer. 2010; 102(4):639-644. https://doi.org/10.1038/sj.bjc.6605530.

[37]

Gordon MA.Salmonella infections in immunocompromised adults. J Infect. 2008; 56(6):413-422. https://doi.org/10.1016/j.jinf.2008.03.012.

[38]

Wadhawan A, Smith C, Nicholson RI, et al. Src-mediated regulation of homotypic cell adhesion: implications for cancer progression and opportunities for therapeutic intervention. Cancer Treat Rev. 2011; 37(3):234-241. https://doi.org/10.1016/j.ctrv.2010.08.003.

[39]

Althouse C, Patterson S, Fedorka-Cray P, et al. Type 1 fimbriae of Salmonella enterica serovar Typhimurium bind to enterocytes and contribute to colonization of swine in vivo. Infect Immun. 2003; 71(11):6446-6452. https://doi.org/10.1128/IAI.71.11.6446-6452.2003.

[40]

Hahn E, Wild P, Hermanns U, et al. Exploring the 3D molecular architecture of Escherichia coli type 1 pili. J Mol Biol. 2002; 323(5):845-857. https://doi.org/10.1016/S0022-2836(02)01005-7.

[41]

DePamphilis ML, Adler J. Fine structure and isolation of the hook-basal body complex of flagella from Escherichia coli and Bacillus subtilis. J Bacteriol. 1971; 105(1):384-395. https://doi.org/10.1128/jb.105.1.384-395.1971.

[42]

Horstmann JA, Lunelli M, Cazzola H, et al. Methylation of Salmonella Typhimurium flagella promotes bacterial adhesion and host cell invasion. Nat Commun. 2020; 11(1):2013. https://doi.org/10.1038/s41467-020-15738-3.

[43]

Soutourina OA, Bertin PN. Regulation cascade of flagellar expression in Gram-negative bacteria. FEMS Microbiol Rev. 2003; 27(4):505-523. https://doi.org/10.1016/S0168-6445(03)00064-0.

[44]

Spöring I, Felgner S, Preuße M, et al. Regulation of flagellum biosynthesis in response to cell envelope stress in Salmonella enterica Serovar Typhimurium. mBio. 2018; 9(3):e00736-17.

[45]

Zhu SY, Yang BQ, Jia YQ, et al. Comprehensive analysis of disinfectants on the horizontal transfer of antibiotic resistance genes. J Hazard Mater. 2023;453:131428. https://doi.org/10.1016/j.jhazmat.2023.131428.

[46]

Volf J, Havlickova H, Hradecka H, et al. Epidemiology and interaction of Salmonella enterica serovar derby, infantis and Typhimurium with porcine alveolar macrophages. Vet Microbiol. 2010; 146(1-2):105-110. https://doi.org/10.1016/j.vetmic.2010.04.031.

[47]

Everest P, Ketley J, Hardy S, et al. Evaluation of Salmonella typhimurium mutants in a model of experimental gastroenteritis. Infect Immun. 1999; 67(6):2815-2821. https://doi.org/10.1128/IAI.67.6.2815-2821.1999.

[48]

Mittrucker HW, Kaufmann SHE. Immune response to infection with Salmonella typhimurium in mice. J Leukoc Biol. 2000; 67(4):457-463. https://doi.org/10.1002/jlb.67.4.457.

[49]

de Alfonso I, Vacas S, Primo J. Role of α-copaene in the susceptibility of olive fruits to Bactrocera oleae (Rossi). J Agric Food Chem. 2014; 62(49):11976-11979. https://doi.org/10.1021/jf504821a.

[50]

Singh NB, Devi ML, Biona T, et al. Phytochemical composition and antimicrobial activity of essential oil from the leaves of Artemisia vulgaris L. Molecules. 2023; 28(5):2279.

[51]

Mihajilov-Krstev T, Jovanovic B, Jovic J, et al. Antimicrobial, antioxidative, and insect repellent effects of essential oil. Planta Med. 2014; 80(18):1698-1705. https://doi.org/10.1055/s-0034-1383182.

[52]

Pandey BP, Thapa R, Upreti A. Chemical composition, antioxidant and antibacterial activities of essential oil and methanol extract of essential Oil and collected from Nepal. Asian Pac J Trop Med. 2017; 10(10):952-959. https://doi.org/10.1016/j.apjtm.2017.09.005.

[53]

Ruby T, McLaughlin L, Gopinath S, et al. Salmonella’s long-term relationship with its host. FEMS Microbiol Rev. 2012; 36(3):600-615. https://doi.org/10.1111/j.1574-6976.2012.00332.x.

[54]

Macnab RM. The bacterial flagellum: Reversible rotary propeller and type III export apparatus. J Bacteriol. 1999; 181(23):7149-7153. https://doi.org/10.1128/JB.181.23.7149-7153.1999.

[55]

Minamino T, Kawamoto A, Kinoshita M, et al. Molecular organization and assembly of the export apparatus of flagellar type III secretion systems. Curr Top Microbiol Immunol. 2020;427:91-107.

[56]

Westerman TL, McClelland M, Elfenbein JR. YeiE regulates motility and gut colonization in Salmonella enterica Serotype Typhimurium. mBio. 2021; 12(3):e0368020.

[57]

Azriel S, Goren A, Shomer I, et al. The Typhi colonization factor (Tcf) is encoded by multiple non-typhoidal Salmonella serovars but exhibits a varying expression profile and interchanging contribution to intestinal colonization. Virulence. 2017; 8(8):1791-1807. https://doi.org/10.1080/21505594.2017.1380766.

[58]

Zeiner SA, Dwyer BE, Clegg S. FimA, FimF, and FimH are necessary for assembly of type 1 Fimbriae on Salmonella enterica Serovar Typhimurium. Infect Immun. 2012; 80(9):3289-3296. https://doi.org/10.1128/IAI.00331-12.

[59]

Yin LZ, Dai YY, Chen H, et al. Cinnamaldehyde resist Salmonella typhimurium adhesion by inhibiting type I Fimbriae. Molecules. 2022; 27(22):7753. https://doi.org/10.3390/molecules27227753.

[60]

El-Tantawy WH. Biochemical effects, hypolipidemic and anti-inflammatory activities of Artemisia vulgaris extract in hypercholesterolemic rats. J Clin Biochem Nutr. 2015; 57(1):33-38. https://doi.org/10.3164/jcbn.14-141.

PDF (22398KB)

88

Accesses

0

Citation

Detail

Sections
Recommended

/