Bioactivity-guided discovery of antiviral templichalasins A‒C from the endophytic fungus Aspergillus templicola

Teng Cai , Jingzu Sun , Wenxuan Chen , Qiang He , Baosong Chen , Yulong He , Peng Zhang , Yanhong Wei , Hongwei Liu , Xiaofeng Cai

Chinese Journal of Natural Medicines ›› 2025, Vol. 23 ›› Issue (6) : 754 -761.

PDF (11105KB)
Chinese Journal of Natural Medicines ›› 2025, Vol. 23 ›› Issue (6) :754 -761. DOI: 10.1016/S1875-5364(25)60880-6
Original article
research-article

Bioactivity-guided discovery of antiviral templichalasins A‒C from the endophytic fungus Aspergillus templicola

Author information +
History +
PDF (11105KB)

Abstract

The bioactivity-guided isolation of potentially active natural products has been widely utilized in pharmaceutical discovery. In this study, by screening fungal extracts against coxsackievirus B3 (CVB3), three new aspochalasins, templichalasins A‒C (1‒3), along with six known aspochalasins (4‒9) were isolated from an active extract derived from the endophytic fungus Aspergillus templicola LHWf045. Compound 1 features a unique 5/6/5/7/5 pentacyclic ring system, while compounds 2 and 3 possess unusual 5/6/6/7 tetracyclic skeletons. Their structures were characterized through extensive spectroscopic analyses, electronic circular dichroism (ECD) calculations, and single-crystal X-ray diffraction analysis. Additionally, we demonstrated that compound 4 can be readily converted into compounds 1‒3 under mild acidic conditions and proposed a plausible mechanism for this conversion. Bioactivity evaluation of compounds 1‒9 against CVB3 revealed the inhibitory effects of all compounds against the virus. Notably, compound 9 exhibited superior antiviral activity, surpassing the commercial drug ribavirin in selectivity index (SI) value.

Keywords

Aspergillus templicola / Aspochalasins / Structural elucidation / Antiviral activity

Cite this article

Download citation ▾
Teng Cai, Jingzu Sun, Wenxuan Chen, Qiang He, Baosong Chen, Yulong He, Peng Zhang, Yanhong Wei, Hongwei Liu, Xiaofeng Cai. Bioactivity-guided discovery of antiviral templichalasins A‒C from the endophytic fungus Aspergillus templicola. Chinese Journal of Natural Medicines, 2025, 23(6): 754-761 DOI:10.1016/S1875-5364(25)60880-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Massilamany C, Gangaplara A, Reddy J. Intricacies of cardiac damage in coxsackievirus B3 infection: implications for therapy. Int J Cardiol. 2014; 177(2):330-339. https://doi.org/10.1016/j.ijcard.2014.09.136.

[2]

Huber S, Ramsingh AI. Coxsackievirus-induced pancreatitis. Viral Immunol. 2004; 17(3):358-369. https://doi.org/10.1089/vim.2004.17.358.

[3]

Daley AJ, Isaacs D, Dwyer DE, et al. A cluster of cases of neonatal coxsackievirus B meningitis and myocarditis. J Paediatr Child H. 1998; 34(2):196-198. https://doi.org/10.1046/j.1440-1754.1998.00176.x.

[4]

Han JY, Jeong HI, Park CW, et al. Cholic acid attenuates ER stress-induced cell death in coxsackievirus-B3 infection. J Microbiol Biotechnol. 2018; 28(1):109-114. https://doi.org/10.4014/jmb.1708.08009.

[5]

Kim BK, Kim JH, Kim NR, et al. Development of anti-coxsackievirus agents targeting 3C protease. Bioorg Med Chem Lett. 2012; 22(22):6952-6956. https://doi.org/10.1016/j.bmcl.2012.08.120.

[6]

Thibaut HJ, De Palma AM, Neyts J. Combating enterovirus replication: state-of-the-art on antiviral research. Biochem Pharmacol. 2012; 83(2):185-192. https://doi.org/10.1016/j.bcp.2011.08.016.

[7]

El-Hawary SS, Moawad AS, Bahr HS, et al. Natural product diversity from the endophytic fungi of the genus Aspergillus. RSC Adv. 2020; 10(37):22058-22079. https://doi.org/10.1039/D0RA04290K.

[8]

Hagag A, Abdelwahab MF, Abd El-Kader AM, et al. The endophytic Aspergillus strains: a bountiful source of natural products. J Appl Microbiol. 2022; 132(6):4150-4169. https://doi.org/10.1111/jam.15489.

[9]

Zhu H, Chen C, Tong Q, et al. Progress in the chemistry of cytochalasans. Prog Chem Org Nat Prod. 2021; 114:1-134. https://doi.org/10.1007/978-3-030-59444-2_1.

[10]

Chen R, Guo LJ, Li XD, et al. Phomopsischalins A-C, polycyclic-fused cytochalasins from the endophytic fungus Phomopsis sp. shj2 and their abilities to induce lysosomal function. Org Chem Front. 2023; 10(9):2218-2225. https://doi.org/10.1039/D3QO00252G.

[11]

Zhang JM, Liu X, Wei Q, et al. Berberine bridge enzyme-like oxidase-catalysed double bond isomerization acts as the pathway switch in cytochalasin synthesis. Nat Commun. 2022; 13(1):225. https://doi.org/10.1038/s41467-021-27931-z.

[12]

Shang Z, Raju R, Salim AA, et al. Cytochalasins from an Australian marine sediment-derived Phomopsis sp. (CMB-M0042F): acid-mediated intramolecular cycloadditions enhance chemical diversity. J Org Chem. 2017; 82(18):9704-9709. https://doi.org/10.1021/acs.joc.7b01793.

[13]

Kemkuignou BM, Lambert C, Schmidt K, et al. Unreported cytochalasins from an acid-mediated transformation of cytochalasin J isolated from Diaporthe cf. ueckeri. Fitoterapia. 2023;166:105434. https://doi.org/10.1016/j.fitote.2023.105434.

[14]

Scherlach K, Boettger D, Remme N, et al. The chemistry and biology of cytochalasans. Nat Prod Rep. 2010; 27(6):869-886. https://doi.org/10.1039/b903913a.

[15]

Wei G, Tan D, Chen C, et al. Flavichalasines A-M, cytochalasan alkaloids from Aspergillus flavipes. Sci Rep. 2017;7:42434. https://doi.org/10.1038/srep42434.

[16]

Keller‐Schierlein W, Kupfer E. Stoffwechselprodukte von mikroorganismen. 186. mitteilung. über die aspochalasine A, B, C und D. Helv Chim Acta. 1979; 62(5):1501-1524. https://doi.org/10.1002/hlca.19790620516.

[17]

Chen L, Liu YT, Song B, et al. Stereochemical determination of new cytochalasans from the plant endophytic fungus Trichoderma gamsii. Fitoterapia. 2014; 96:115-122. https://doi.org/10.1016/j.fitote.2014.04.009.

[18]

Wu Z, Zhang X, Al Anbari WH, et al.Amiaspochalasins A-H, undescribed aspochalasins with a C-21 ester carbonyl from Aspergillus micronesiensis. J Org Chem. 2019; 84(9):5483-5491. https://doi.org/10.1021/acs.joc.9b00440.

[19]

Ding G, Chen L, Chen A, et al. Trichalasins C and D from the plant endophytic fungus Trichoderma gamsii. Fitoterapia. 2012; 83(3):541-544. https://doi.org/10.1016/j.fitote.2011.12.021.

[20]

Reed LJ, Muench H. A simple method of estimating fifty percent endpoints. Am J Epidemiol. 1938; 27(3):493-497. https://doi.org/10.1093/oxfordjournals.aje.a118408.

[21]

Kumar P, Nagarajan A, Uchil PD. Analysis of cell viability by the MTT assay. Cold Spring Harb Protoc. 2018; 2018(6): 95505. https://doi.org/10.1101/pdb.prot095505.

PDF (11105KB)

80

Accesses

0

Citation

Detail

Sections
Recommended

/