Advancements and applications in radiopharmaceutical therapy

Shiya Wang , Mingyi Cao , Yifei Chen , Jingjing Lin , Jiahao Li , Xinyu Wu , Zhiyue Dai , Yuhan Pan , Xiao Liu , Xian Liu , Liang-Ting Lin , Jianbing Wu , Ji Liu , Qifeng Zhong , Zhenwei Yuan

Chinese Journal of Natural Medicines ›› 2025, Vol. 23 ›› Issue (6) : 641 -657.

PDF (13547KB)
Chinese Journal of Natural Medicines ›› 2025, Vol. 23 ›› Issue (6) :641 -657. DOI: 10.1016/S1875-5364(25)60887-9
Review
research-article

Advancements and applications in radiopharmaceutical therapy

Author information +
History +
PDF (13547KB)

Abstract

Radiopharmaceuticals operate by combining radionuclides with carriers. The radiation energy emitted by radionuclides is utilized to selectively irradiate diseased tissues while minimizing damage to healthy tissues. In comparison to external beam radiation therapy, radionuclide drugs demonstrate research potential due to their biological targeting capabilities and reduced normal tissue toxicity. This article reviews the applications and research progress of radiopharmaceuticals in cancer treatment. Several key radionuclides are examined, including 223Ra, 90Y, Lutetium-177 (177Lu), 212Pb, and Actinium-225 (225Ac). It also explores the current development trends of radiopharmaceuticals, encompassing the introduction of novel radionuclides, advancements in imaging technologies, integrated diagnosis and treatment approaches, and equipment-medication combinations. We review the progress in the development of new treatments, such as neutron capture therapy, proton therapy, and heavy ion therapy. Furthermore, we examine the challenges and breakthroughs associated with the clinical translation of radiopharmaceuticals and provide recommendations for the research and development of novel radionuclide drugs.

Keywords

Radiopharmaceuticals / Radionuclide therapy / Alpha particle nuclide drugs / Beta particle radionuclide drugs / BNCT

Cite this article

Download citation ▾
Shiya Wang, Mingyi Cao, Yifei Chen, Jingjing Lin, Jiahao Li, Xinyu Wu, Zhiyue Dai, Yuhan Pan, Xiao Liu, Xian Liu, Liang-Ting Lin, Jianbing Wu, Ji Liu, Qifeng Zhong, Zhenwei Yuan. Advancements and applications in radiopharmaceutical therapy. Chinese Journal of Natural Medicines, 2025, 23(6): 641-657 DOI:10.1016/S1875-5364(25)60887-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Torre LA, Bray F, Siegel RL, et al.Global cancer statistics, 2012. CA Cancer J Clin. 2015; 65(2):87-108. https://doi.org/10.3322/caac.21262.

[2]

Goldsmith S. Targeted radionuclide therapy: a historical and personal review. Semin Nucl Med. 2020; 50(1):87-97. https://doi.org/10.1053/j.semnuclmed.2019.07.006.

[3]

Costa I, Cheng J, Osytek K, et al. Methods and techniques for in vitro subcellular localization of radiopharmaceuticals and radionuclides. Nucl Med Biol. 2021;98-99:18-29. https://doi.org/10.1016/j.nucmedbio.2021.03.010.

[4]

Wang Y, Li Y, Liu X, et al. Marine antibody-drug conjugates: design strategies and research progress. Mar Drugs. 2017; 15(1):18. https://doi.org/10.3390/md15010018.

[5]

Yang S, Han G, Chen Q, et al. Au-pt nanoparticle formulation as a radiosensitizer for radiotherapy with dual effects. Int J Nanomed. 2021; 16:239-248. https://doi.org/10.2147/IJN.S287523.

[6]

Goel M, Mackeyev Y, Krishnan S. Radiolabeled nanomaterial for cancer diagnostics and therapeutics: principles and concepts. Cancer Nanotechnol. 2023; 14(1):15. https://doi.org/10.1186/s12645-023-00165-y.

[7]

Yang B, Kuai F, Chen Z, et al.Mir-634 decreases the radioresistance of human breast cancer cells by targeting stat3. Cancer Biother Radiopharm. 2020; 35(3):241-248. https://doi.org/10.1089/cbr.2019.3220.

[8]

Salih S, Alkathieri A, Alomaim W, et al. Radiopharmaceutical treatments for cancer therapy, radionuclides characteristics, applications, and challenges. Molecules. 2022; 27(16):5231. https://doi.org/10.3390/molecules27165231.

[9]

St James S, Bednarz B, Benedict S, et al.Current status of radiopharmaceutical therapy. Int J Radiat Oncol Biol Phys. 2021; 109(4):891-901. https://doi.org/10.1016/j.ijrobp.2020.08.035.

[10]

Wang Z, Hu N, Li X, et al. Selection and characterization of fd164, a high-affinity signal regulatory protein α variant with balanced safety and effectiveness, from a targeted epitope mammalian cell-displayed antibody library. Mol Pharmacol. 2021; 100(3):193-202. https://doi.org/10.1124/molpharm.120.000202.

[11]

Ni Q, Lu K, Pan C, et al. The treatment for a patient with cancer of unknown primary: a case report. Dose-Response. 2021; 19(4):15593258211056185. https://doi.org/10.1177/15593258211056185.

[12]

Zhou J, Wang J, Chen C, et al. Usp7: target validation and drug discovery for cancer therapy. Med Chem. 2018; 14(1):3-18. https://doi.org/10.2174/1573406413666171020115539.

[13]

Xia D, Zhang X, Hao H, et al. Strategies to prolong drug retention in solid tumors by aggregating Endo-CMC nanoparticles. J Control Release. 2023; 360:705-717. https://doi.org/10.1016/j.jconrel.2023.07.006.

[14]

Larson S, Carrasquillo J, Cheung N, et al.Radioimmunotherapy of human tumours. Nat Rev Cancer. 2015; 15(6):347-360. https://doi.org/10.1038/nrc3925.

[15]

Wang Z, Shen W, Li X, et al. The pparγ agonist rosiglitazone enhances the radiosensitivity of human pancreatic cancer cells. Drug Des Devel Ther. 2020; 14:3099-3110. https://doi.org/10.2147/DDDT.S242557.

[16]

Pomme S, Marouli M, Suliman G, et al. Measurement of the 225Ac half-life. Appl Radiat Isot. 2012; 70(11):2608-2614. https://doi.org/10.1016/j.apradiso.2012.07.014.

[17]

Zhu Y, Yin W, Yu P, et al. Meso-Hannokinol inhibits breast cancer bone metastasis via the ros/jnk/zeb1 axis. Phytother Res. 2023; 37(6):2262-2279. https://doi.org/10.1002/ptr.7732.

[18]

Gemini-Pierini S, Ricci-Junior E, Ilem-Ozdemir D, et al. Nano-hydroxyapatite radiolabeled with radium dichloride 223Ra-Racl2 for bone cancer targeted alpha therapy: in vitro assay and radiation effect on the nanostructure. Colloids Surf B Biointerfaces. 2023;223:113174. https://doi.org/10.1016/j.colsurfb.2023.113174.

[19]

Diniz Filho J, De Barros A, Pijera M, et al. Ultrastructural analysis of cancer cells treated with the radiopharmaceutical radium dichloride (223Ra-Racl2): understanding the effect on cell structure. Cells. 2023; 12(3):1093.

[20]

Lian Y, Zhu M, Yang B, et al. Characterization of a novel polysaccharide from red ginseng and its ameliorative effect on oxidative stress injury in myocardial ischemia. Chin Med. 2022; 17(1):111. https://doi.org/10.1186/s13020-022-00669-6.

[21]

Wang N, Shao L, Lu W, et al. 5-Aminosalicylic acid pH-sensitive core-shell nanoparticles targeting ulcerative colitis. J Drug Deliv Sci Technol. 2022;74:103578. https://doi.org/10.1016/j.jddst.2022.103578.

[22]

Zhu B, Ren C, Du K, et al. Olean-28, 13b-olide 2 plays a role in cisplatin-mediated apoptosis and reverses cisplatin resistance in human lung cancer through multiple signaling pathways. Biochem Pharmacol. 2019;170:113642. https://doi.org/10.1016/j.bcp.2019.113642.

[23]

Filippi L, Basile P, Schillaci O, et al. The relationship between total lesion activity on 18F choline positron emission tomography-computed tomography and clinical outcome in patients with castration-resistant prostate cancer bone metastases treated with 223radium. Cancer Biother Radiopharm. 2020; 35(6):398-403.

[24]

Xu Y, Xu J, Zhu W, et al. Bioassay-guided fractionation and biological activity of cardenolides from streptocaulon juventas. Planta Med. 2023; 89(15):1444-1456. https://doi.org/10.1055/a-2114-5371.

[25]

Abbasi A, Dadashpour M, Alipourfard I. Calculation of radium-223 and actinium-225 α-emitter radiopharmaceuticals dose rates in treatment of metastatic castration-resistant prostate cancer. J Cancer Res Ther. 2021; 17(2):348-352. https://doi.org/10.4103/jcrt.JCRT_892_18.

[26]

Xiao C, Li J, Kong L, et al. New cyclic c-geranylflavanones isolated from paulownia fortunei fruits with their anti-proliferative effects on three cancer cell lines. Fitoterapia. 2023;168:105542. https://doi.org/10.1016/j.fitote.2023.105542.

[27]

Hago S, Lu T, Alzain A, et al. Phytochemical constituents, in-vitro anticancer activity and computational studies of cymbopogon schoenanthus. Nat Prod Res. 2024; 38(6):1073-1079. https://doi.org/10.1080/14786419.2023.2208360.

[28]

Abou D, Fears A, Summer L, et al. Improved 223Ra therapy with combination epithelial sodium channel blockade. J Nucl Med. 2021; 62(12):1751-1758. https://doi.org/10.2967/jnumed.121.261977.

[29]

Bai Z, Liu X, Guan Q, et al. 5-(3,4,5-trimethoxybenzoyl)-4-methyl-2-(p-tolyl) imidazol (bzml) targets tubulin and dna to induce anticancer activity and overcome multidrug resistance in colorectal cancer cells. Chem Biol Interact. 2020;315:108886. https://doi.org/10.1016/j.cbi.2019.108886.

[30]

Cai B, Hu Z, Tang H, et al. Triptolide impairs genome integrity by directly blocking the enzymatic activity of dna-pkcs in human cells. Biomed Pharmacother. 2020;129:110427. https://doi.org/10.1016/j.biopha.2020.110427.

[31]

Wang J, Yuan W, Shen Q, et al. The key role of organic anion transporter 3 in the drug-drug interaction between tranilast and methotrexate. J Biochem Mol Toxicol. 2022; 36(4):e22983. https://doi.org/10.1002/jbt.22983.

[32]

Wei M, Su J, Ma Q, et al. Erteng tongbi decoction ameliorates collagen-induced arthritis in mice via modulating T cell differentiation and cytokines balance. J Ethnopharmacol. 2022;286:114928. https://doi.org/10.1016/j.jep.2021.114928.

[33]

Zhuang Y, Sun Q, Jing T, et al. Contributions of intestine and liver to the absorption and disposition of fzj-003, a selective jak1 inhibitor with structure modification of filgotinib. Eur J Pharm Sci. 2022;175:106211. https://doi.org/10.1016/j.ejps.2022.106211.

[34]

Jiang S, Pan T, Yu J, et al. Thermal and wine processing enhanced clematidis radix et rhizoma ameliorate collagen ii induced rheumatoid arthritis in rats. J Ethnopharmacol. 2022;288:114993. https://doi.org/10.1016/j.jep.2022.114993.

[35]

Correa L, et al.De Oliveira Henriques M, Rosas E, Intra-articular use of radium dichloride (223Ra-Racl2) showed relevant anti-inflammatory response on experimental arthritis model. Eur J Nucl Med Mol Imaging. 2021; 49(1):336-344. https://doi.org/10.1007/s00259-021-05515-9.

[36]

Xu Y, Xiao Y, Luo C, et al. Blocking PD-1/PD- L1 by an adcc enhanced anti-b7-h3/pd-1 fusion protein engages immune activation and cytotoxicity. Int Immunopharmacol. 2020;84:106584. https://doi.org/10.1016/j.intimp.2020.106584.

[37]

Fang W, Su D, Lu W, et al. Application and future prospect of extracellular matrix targeted nano-materials in tumor theranostics. Curr Drug Targets. 2021; 22(8):913-921. https://doi.org/10.2174/1389450122666210127100430.

[38]

Cao Y, Cheng Y, Ihsan A, et al. A nanoparticle-coupled t2 peptide induces immune tolerance and ameliorates chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS) in mice model. Fundam Clin Pharmacol. 2019; 33(3):267-276. https://doi.org/10.1111/fcp.12438.

[39]

Akhmetova D, Mitusova K, Postovalova A, et al. Size-dependent therapeutic efficiency of 223Ra-labeled calcium carbonate carriers for internal radionuclide therapy of breast cancer. Biomater Sci. 2024; 12(2):453-467. https://doi.org/10.1039/D3BM01651J.

[40]

Sakmar M, Kozempel J, Kucka J, et al. Biodistribution study of 211Pb progeny released from intravenously applied 223Ra labelled tio2 nanoparticles in a mouse model. Nucl Med Biol. 2024;130-131:108890. https://doi.org/10.1016/j.nucmedbio.2024.108890.

[41]

Faulkner S, Long N.Radiopharmaceuticals for imaging and therapy. Dalton Trans. 2011; 40(23):6067. https://doi.org/10.1039/c1dt90067f.

[42]

Banerjee S, Minn I, Kumar V, et al. Preclinical evaluation of 203/211Pb-labeled low-molecular-weight compounds for targeted radiopharmaceutical therapy of prostate cancer. J Nucl Med. 2020; 61(1):80-88. https://doi.org/10.2967/jnumed.119.229393.

[43]

Zhu J, Li F, Gong W, et al. Long non-coding ribonucleic acid disrupted in renal carcinoma 3 inhibits chemo-resistance of prostate cancer via microrna-24-3p/kit ligand axis. Indian J Pharm Sci. 2022;84:152-161.

[44]

Li J, Huang T, Hua J, et al. Cd46 targeted 212Pb alpha particle radioimmunotherapy for prostate cancer treatment. J Exp Clin Cancer Res. 2023; 42(1):61. https://doi.org/10.1186/s13046-023-02636-x.

[45]

Jiao R, Allen K, Malo M, et al. A theranostic approach to imaging and treating melanoma with 203Pb/212Pb-labeled antibody targeting melanin. Cancers. 2023; 15(15):3856. https://doi.org/10.3390/cancers15153856.

[46]

Kasten B, Oliver P, Kim H, et al.212Pb-labeled antibody 225.28 targeted to chondroitin sulfate proteoglycan 4 for triple-negative breast cancer therapy in mouse models. Int J Mol Sci. 2018; 19(4):925. https://doi.org/10.3390/ijms19040925.

[47]

Mi S, Liu X, Zhang L, et al. Chinese medicine formula Baipuhuang Keli inhibits triple-negative breast cancer by hindering dna damage repair via mapk/erk pathway. J Ethnopharmacol. 2023;304:116077. https://doi.org/10.1016/j.jep.2022.116077.

[48]

Li Y, Chu Y, Shi G, et al. A novel inhibitor of arfl and arv7 induces protein degradation to overcome enzalutamide resistance in advanced prostate cancer. Acta Pharm Sin B. 2022; 12(11):4165-4179. https://doi.org/10.1016/j.apsb.2022.05.003.

[49]

Poty S, Francesconi L, McDevitt M, et al.Alpha-emitters for radiotherapy: from basic radiochemistry to clinical studies-part 1. J Nucl Med. 2018; 59(6):878-884. https://doi.org/10.2967/jnumed.116.186338.

[50]

Morgenstern A, Apostolidis C, Kratochwil C, et al. An overview of targeted alpha therapy with 225Actinium and 213Bismuth. Curr Radiopharm. 2018; 11(3):200-208. https://doi.org/10.2174/1874471011666180502104524.

[51]

Banerjee S, Lisok A, Minn I, et al. Preclinical evaluation of 213Bi- and 225Ac-labeled low-molecular-weight compounds for radiopharmaceutical therapy of prostate cancer. J Nucl Med. 2021; 62(7):980-988. https://doi.org/10.2967/jnumed.120.256388.

[52]

Liu Y, Li Y, Xu P, et al. Development of abiraterone acetate nanocrystal tablets to enhance oral bioavailability: formulation optimization, characterization, in vitro dissolution and pharmacokinetic evaluation. Pharmaceutics. 2022; 14(6):1134. https://doi.org/10.3390/pharmaceutics14061134.

[53]

Zeng Q, Liu J, Wu Q, et al. Long non-coding RNA ac008972.1 as a novel therapeutic target for prostate cancer. Cancer Biother Radiopharm. 2022; 39(4):291-305

[54]

Wharton L, Yang H, Jaraquemada-Pelaez M, et al. Rearmed bifunctional chelating ligand for 225Ac/155Tb precision-guided theranostic radiopharmaceuticals horizontal line h(4)noneunpaX. J Med Chem. 2023; 66(19):13705-13730. https://doi.org/10.1021/acs.jmedchem.3c01151.

[55]

Li Z, Benabdallah N, Luo J, et al. Isit-qa: in silico imaging trial to evaluate a low-count quantitative spect method across multiple scanner-collimator configurations for 223Ra-based radiopharmaceutical therapies. J Nucl Med. 2024; 65(5):810-817. https://doi.org/10.2967/jnumed.123.266719.

[56]

Bokhari T, Butt M, Hina S, et al. A review on 90Y-labeled compounds and biomolecules. J Radioanal Nucl Chem. 2017; 314(3):1487-1496. https://doi.org/10.1007/s10967-017-5622-2.

[57]

Rong W, Wan N, Zheng X, et al. Chrysin inhibits hepatocellular carcinoma progression through suppressing programmed death ligand 1 expression. Phytomedicine. 2022;95:153867. https://doi.org/10.1016/j.phymed.2021.153867.

[58]

Zhang W, Han B, Gao C, et al. Integrated platform of oxygen self-enriched nanovesicles: sp94 peptide-directed chemo/sonodynamic therapy for liver cancer. Eur J Pharm Biopharm. 2022; 179:206-220. https://doi.org/10.1016/j.ejpb.2022.09.012.

[59]

Dhondt E, Lambert B, Hermie L, et al. 90Y radioembolization versus drug-eluting bead chemoembolization for unresectable hepatocellular carcinoma: results from the trace phase ii randomized controlled trial. Radiology. 2022; 303(3):699-710. https://doi.org/10.1148/radiol.211806.

[60]

Primrose J.Surgery for colorectal liver metastases. Br J Cancer. 2010; 102(9):1313-1318. https://doi.org/10.1038/sj.bjc.6605659.

[61]

Costa G, Spencer B, Omidvari N, et al. Radioembolization dosimetry with total-body 90Y PET. J Nucl Med. 2022; 63(7):1101-1107. https://doi.org/10.2967/jnumed.121.263145.

[62]

Richetta E, Pasquino M, Poli M, et al. PET-CT post therapy dosimetry in radioembolization with resin 90Y microspheres: comparison with pre-treatment spect-ct 99mTc-maa results. Phys Med Biol. 2019; 64:16-23. https://doi.org/10.1016/j.ejmp.2019.05.025.

[63]

Mee S, Polan D, Dewaraja Y, et al. Stereotactic body radiation therapy (SBRT) following yttrium-90 (90Y) selective internal radiation therapy (sirt): a feasibility planning study using 90Y delivered dose. Phys Med Biol. 2023; 68(6):065003. https://doi.org/10.1088/1361-6560/acbbb5.

[64]

Dietrich A, Andreeff M, Koi L, et al. Radiotherapy enhances uptake and efficacy of 90Y -cetuximab: a preclinical trial. Radiother Oncol. 2021; 155:285-292. https://doi.org/10.1016/j.radonc.2020.11.013.

[65]

Yan T, Wang H, Song X, et al. Fabrication of apigenin nanoparticles using antisolvent crystallization technology: a comparison of supercritical antisolvent, ultrasonic-assisted liquid antisolvent, and high-pressure homogenization technologies. Int J Pharm. 2022;624:121981. https://doi.org/10.1016/j.ijpharm.2022.121981.

[66]

He Y, Zhang W, Xiao Q, et al. Liposomes and liposome-like nanoparticles: from anti-fungal infection to the COVID-19 pandemic treatment. Asian J Pharm Sci. 2022; 17(6):817-837.

[67]

Winter G, Hamp-Goldstein C, Fischer G, et al. Optimization of radiolabeling of a [90Y]Y-anti-CD66-antibody for radioimmunotherapy before allogeneic hematopoietic cell transplantation. Cancers. 2023; 15(14):3660. https://doi.org/10.3390/cancers15143660.

[68]

Budzyńska A, Kubik A, Kasperski K, et al. PET/CT and SPECT/CT imaging of 90Y hepatic radioembolization at therapeutic and diagnostic activity levels: anthropomorphic phantom study. PLoS One. 2024; 19(2):e0271711. https://doi.org/10.1371/journal.pone.0271711.

[69]

Ladrière T, Faudemer J, Levigoureux E, et al. Safety and therapeutic optimization of Lutetium-177 based radiopharmaceuticals. Pharmaceutics. 2023; 15(4):1240. https://doi.org/10.3390/pharmaceutics15041240.

[70]

Lubberink M, Wilking H, Ost A, et al. In vivo instability of 177Lu-dotatate during peptide receptor radionuclide therapy. J Nucl Med. 2020; 61(9):1337-1340. https://doi.org/10.2967/jnumed.119.237818.

[71]

Ihsan A, Khan F, Khongorzul P, et al. Role of oxidative stress in pathology of chronic prostatitis/chronic pelvic pain syndrome and male infertility and antioxidants function in ameliorating oxidative stress. Biomed Pharmacother. 2018; 106:714-723. https://doi.org/10.1016/j.biopha.2018.06.139.

[72]

Chen Y, Huang M, Zhu J, et al. Identification of a dna damage response and repair-related gene-pair signature for prognosis stratification analysis in hepatocellular carcinoma. Front Pharmacol. 2022;13:857060. https://doi.org/10.3389/fphar.2022.857060.

[73]

Ha S, O JH, Park C, et al. Dosimetric analysis of a phase I study of PSMA-targeting radiopharmaceutical therapy with [177Lu]ludotatide in patients with metastatic castration-resistant prostate cancer. Korean J Radiol. 2024; 25(2):179-188. https://doi.org/10.3348/kjr.2023.0656.

[74]

Banerjee S, Kumar V, Lisok A, et al. 177Lu-labeled low-molecular-weight agents for PSMA-targeted radiopharmaceutical therapy. Eur J Nucl Med Mol Imaging. 2019; 46(12):2545-2557. https://doi.org/10.1007/s00259-019-04434-0.

[75]

Zou J, He J, Wang X, et al. Glycoprotein ib-regulated micro platelet ghost for biosafe distribution and photothermal oncotherapy. J Control Release. 2022; 351:341-360. https://doi.org/10.1016/j.jconrel.2022.09.036.

[76]

Li M, Chen H, Peng D, et al. Fu-coating pH-sensitive liposomes for improving the release of gemcitabine by endosome escape in pancreatic cancer cells. J Drug Deliv Sci Technol. 2023;80:104135. https://doi.org/10.1016/j.jddst.2022.104135.

[77]

Zhou M, Wu Y, Sun M, et al. Spatiotemporally sequential delivery of biomimetic liposomes potentiates glioma chemotherapy. J Control Release. 2024; 365:876-888. https://doi.org/10.1016/j.jconrel.2023.11.046.

[78]

Zheng Z, Peng D, Li M, et al. Gemcitabine and pin 1 sirna co-delivery with fucoidan-coated nano-liposomes for therapy of pancreatic cancer. J Drug Deliv Sci Technol. 2023;87:104872. https://doi.org/10.1016/j.jddst.2023.104872.

[79]

Cvjetinovic D, Prijovic Z, Jankovic D, et al. Bioevaluation of glucose-modified liposomes as a potential drug delivery system for cancer treatment using 177-Lu radiotracking. J Control Release. 2021; 332:301-311. https://doi.org/10.1016/j.jconrel.2021.03.006.

[80]

Hughes J, Parsons J. Flash radiotherapy: current knowledge and future insights using proton-beam therapy. Int J Mol Sci. 2020; 21(18):6492. https://doi.org/10.3390/ijms21186492.

[81]

Lamba M, Goswami A, Bandyopadhyay A. A periodic development of BPA and BSH based derivatives in boron neutron capture therapy (BNCT). Chem Commun. 2021; 57(7):827-839. https://doi.org/10.1039/D0CC06557A.

[82]

Morris P, Reiner A, Szenberg O, et al. Leptomeningeal metastasis from non-small cell lung cancer survival and the impact of whole brain radiotherapy. J Thorac Oncol. 2012; 7(2):382-385. https://doi.org/10.1097/JTO.0b013e3182398e4f.

[83]

Le Rhun E, Taillibert S, Zairi F, et al. A retrospective case series of 103 consecutive patients with leptomeningeal metastasis and breast cancer. J Neurooncol. 2013; 113(1):83-92. https://doi.org/10.1007/s11060-013-1092-8.

[84]

Barney C, Brown A, Grosshans D, et al. Technique, outcomes, and acute toxicities in adults treated with proton beam craniospinal irradiation. Neurooncology. 2014; 16(2):303-309.

[85]

Kamada T, Tsujii H, Blakely E, et al. Carbon ion radiotherapy in Japan: an assessment of 20 years of clinical experience. Lancet Oncol. 2015; 16(2):e93-e100. https://doi.org/10.1016/S1470-2045(14)70412-7.

[86]

Jäkel O, Karger C, Debus J. The future of heavy ion radiotherapy. Med Phys. 2008; 35(12):5653-5663. https://doi.org/10.1118/1.3002307.

[87]

Abousaida B, Seneviratne D, Hoppe B, et al. Carbon ion radiotherapy in the management of hepatocellular carcinoma. J Hepatocell Carcinoma. 2021; 8:1169-1179. https://doi.org/10.2147/JHC.S292516.

[88]

Yang J, Wijetunga N, Pentsova E, et al. Randomized phase II trial of proton craniospinal irradiation versus photon involved-field radiotherapy for patients with solid tumor leptomeningeal metastasis. J Clin Oncol. 2022; 40(33):3858. https://doi.org/10.1200/JCO.22.01148.

[89]

Wang Q, Xin X, Dai Q, et al. Medulloblastoma targeted therapy: from signaling pathways heterogeneity and current treatment dilemma to the recent advances in development of therapeutic strategies. Pharmacol Ther. 2023;250:108527. https://doi.org/10.1016/j.pharmthera.2023.108527.

[90]

Tran P, Pham T, Lee H, et al. Magnetic resonance imaging of pancreatic islets using tissue-adhesive particles containing iron oxide nanoparticles. J Control Release. 2023; 364:37-45. https://doi.org/10.1016/j.jconrel.2023.10.008.

[91]

Simone C, Rengan R. The use of proton therapy in the treatment of lung cancers. Cancer J. 2014; 20(6):427-432. https://doi.org/10.1097/PPO.0000000000000080.

[92]

Schild S, Rule W, Ashman J, et al. Proton beam therapy for locally advanced lung cancer: a review. World J Clin Oncol. 2014; 5(4):568-575. https://doi.org/10.5306/wjco.v5.i4.568.

[93]

Du X, Liu W, Chen K, et al. Impact of the gastric acid suppressant use on the safety and effectiveness of egfr-tkis: a systematic review and meta-analysis. Front Pharmacol. 2022;13:796538. https://doi.org/10.3389/fphar.2022.796538.

[94]

Cao H, Zhou W, Xian X, et al. A mixture of baicalein, wogonin, and oroxylin-a inhibits emt in the A549 cell line via the pi3k/akt-twist1-glycolysis pathway. Front Pharmacol. 2022;12:821485. https://doi.org/10.3389/fphar.2021.821485.

[95]

Rui M, Wang Z, Fei Z, et al. The relationship between short-term surrogate endpoint indicators and mPFS and mOS in clinical trials of malignant tumors: a case study of approved molecular targeted drugs for non-small-cell lung cancer in China. Front Pharmacol. 2022;13:862640. https://doi.org/10.3389/fphar.2022.862640.

[96]

Keole S, Ashman JB, Daniels TB.Proton therapy for sarcomas. Cancer J. 2014; 20(6):409-414. https://doi.org/10.1097/PPO.0000000000000084.

[97]

Pugh TJ, Lee AK. Proton beam therapy for the treatment of prostate cancer. Cancer J. 2014; 20(6):415-420. https://doi.org/10.1097/PPO.0000000000000083.

[98]

Cheng P, Wu J, Zong G, et al. Capsaicin shapes gut microbiota and pre-metastatic niche to facilitate cancer metastasis to liver. Pharmacol Res. 2023;188:106643. https://doi.org/10.1016/j.phrs.2022.106643.

[99]

Kuok C, Wang Q, Fong P, et al. Inhibitory effect of hernandezine on the proliferation of hepatocellular carcinoma. Biol Pharm Bull. 2023; 46(2):245-256. https://doi.org/10.1248/bpb.b22-00612.

[100]

Jiang L, Li L, Liu Y, et al. Drug resistance mechanism of kinase inhibitors in the treatment of hepatocellular carcinoma. Front Pharmacol. 2023;14:1097277. https://doi.org/10.3389/fphar.2023.1097277.

[101]

Malouff TD, Peterson JL, Mahajan A, et al. Carbon ion radiotherapy in the treatment of gliomas: a review. J Neurooncol. 2019; 145(2):191-199. https://doi.org/10.1007/s11060-019-03303-y.

[102]

Combs SE, Kessel K, Habermehl D, et al. Proton and carbon ion radiotherapy for primary brain tumors and tumors of the skull base. Acta Oncol. 2013; 52(7):1504-1509. https://doi.org/10.3109/0284186X.2013.818255.

[103]

Barth RF, Coderre JA, Vicente MG, et al. Boron neutron capture therapy of cancer: current status and future prospects. Clin Cancer Res. 2005; 11(11):3987-4002. https://doi.org/10.1158/1078-0432.CCR-05-0035.

[104]

Luderer MJ, De La Puente P, Azab AK. Advancements in tumor targeting strategies for boron neutron capture therapy. Pharm Res. 2015; 32(9):2824-2836. https://doi.org/10.1007/s11095-015-1718-y.

[105]

Xu H, Liu J, Li R, et al. Novel promising boron agents for boron neutron capture therapy: current status and outlook on the future. Coord Chem Rev. 2024;511:215795. https://doi.org/10.1016/j.ccr.2024.215795.

[106]

Kueffer PJ, Maitz CA, Khan AA, et al. Boron neutron capture therapy demonstrated in mice bearing EMT6 tumors following selective delivery of boron by rationally designed liposomes. Proc Natl Acad Sci U S A. 2013; 110(16):6512-6517. https://doi.org/10.1073/pnas.1303437110.

[107]

Milkereit R, Persaud A, Vanoaica L, et al. LAPTM4b recruits the LAT1-4F2hc Leu transporter to lysosomes and promotes mTORC 1 activation. Nat Commun. 2015;6:7250. https://doi.org/10.1038/ncomms8250.

[108]

Michiue H, Sakurai Y, Kondo N, et al. The acceleration of boron neutron capture therapy using multi-linked mercaptoundecahydrododecaborate (BSH) fused cell-penetrating peptide. Biomaterials. 2014; 35(10):3396-3405. https://doi.org/10.1016/j.biomaterials.2013.12.055.

[109]

Li R, Zhang J, Guo J, et al. Application of nitroimidazole-carbobane-modified phenylalanine derivatives as dual-target boron carriers in boron neutron capture therapy. Mol Pharm. 2020; 17(1):202-211. https://doi.org/10.1021/acs.molpharmaceut.9b00898.

[110]

Chen L, Zhang X, Cao Q, et al. Development and application of a physiologically based pharmacokinetic model for HPPH in rats and extrapolate to humans. Eur J Pharm Sci. 2019; 129:68-78. https://doi.org/10.1016/j.ejps.2018.12.014.

[111]

Zhou TJ, Xing L, Fan YT, et al. Light triggered oxygen-affording engines for repeated hypoxia-resistant photodynamic therapy. J Control Release. 2019; 307:44-54. https://doi.org/10.1016/j.jconrel.2019.06.016.

[112]

Zhou TJ, Xing L, Fan YT, et al. Inhibition of breast cancer proliferation and metastasis by strengthening host immunity with a prolonged oxygen-generating phototherapy hydrogel. J Control Release. 2019; 309:82-93. https://doi.org/10.1016/j.jconrel.2019.07.028.

[113]

Fan W, Huang P, Chen X. Overcoming the Achilles’ heel of photodynamic therapy. Chem Soc Rev. 2016; 45(23):6488-6519. https://doi.org/10.1039/C6CS00616G.

[114]

Shaffer TM, Pratt EC, Grimm J. Utilizing the power of Cerenkov light with nanotechnology. Nat Nanotechnol. 2017; 12(2):106-117. https://doi.org/10.1038/nnano.2016.301.

[115]

Wang Q, Liu N, Hou Z, et al. Radioiodinated persistent luminescence nanoplatform for radiation-induced photodynamic therapy and radiotherapy. Adv Healthc Mater. 2021; 10(5):e2000802. https://doi.org/10.1002/adhm.202000802.

[116]

Li Z, Zhang Y, Wu X, et al. Direct aqueous-phase synthesis of sub-10 nm“Luminous Pearls”with enhanced in vivo renewable near-infrared persistent luminescence. J Am Chem Soc. 2015; 137(16):5304-5307. https://doi.org/10.1021/jacs.5b00872.

[117]

Baig M MFA, Naveed M, Abbas M, et al. DNA scaffold nanoparticles coated with HPMC/EC for oral delivery. Int J Pharm. 2019; 562:321-32. https://doi.org/10.1016/j.ijpharm.2019.03.054.

[118]

Huang L, Asghar S, Zhu T, et al. Advances in chlorin-based photodynamic therapy with nanoparticle delivery system for cancer treatment. Expert Opin Drug Deliv. 2021; 18(10):1473-1499. https://doi.org/10.1080/17425247.2021.1950685.

[119]

Xu Y, Yao Y, Wang L, et al. Hyaluronic acid coated liposomes co-delivery of natural cyclic peptide RA-XII and mitochondrial targeted photosensitizer for highly selective precise combined treatment of colon cancer. Int J Nanomed. 2021; 16:4929-4942. https://doi.org/10.2147/IJN.S311577.

[120]

Kamkew A, Cheng L, Goel S, et al. Cerenkov radiation induced photodynamic therapy using chlorin e6-loaded hollow mesoporous silica nanoparticles. ACS Appl Mater Interfaces. 2016; 8(40):26630-26637. https://doi.org/10.1021/acsami.6b10255.

[121]

Guo J, Feng K, Wu W, et al. Smart 131I-labeled self-illuminating photosensitizers for deep tumor therapy. Angew Chem Int Ed Engl. 2021; 60(40):21884-21889. https://doi.org/10.1002/anie.202107231.

[122]

Li J, Zhang J, Yang S, et al. Synthesis and preclinical evaluation of radioiodinated hypericin dicarboxylic acid as a necrosis avid agent in rat models of induced hepatic, muscular, and myocardial necroses. Mol Pharm. 2016; 13(1):232-240. https://doi.org/10.1021/acs.molpharmaceut.5b00686.

[123]

Liu N, Shi Y, Guo J, et al. Radioiodinated tyrosine based carbon dots with efficient renal clearance for single photon emission computed tomography of tumor. Nano Res. 2019; 12(12):3037-3043. https://doi.org/10.1007/s12274-019-2549-7.

[124]

Sun Y, Zhao D, Wang G, et al. Recent progress of hypoxia-modulated multifunctional nanomedicines to enhance photodynamic therapy: opportunities, challenges, and future development. Acta Pharm Sin B. 2020; 10(8):1382-1396. https://doi.org/10.1016/j.apsb.2020.01.004.

[125]

Gao HL, Xiao D, Gong GY, et al. Vielanin P enhances the cytotoxicity of doxorubicin via the inhibition of PI3K/Nrf2-stimulated MRP1 expression in MCF-7 and K562 DOX-resistant cell lines. Phytomedicine. 2019;58:152885. https://doi.org/10.1016/j.phymed.2019.152885.

[126]

Qin SY, Zhang AQ, Zhang XZ. Recent advances in targeted tumor chemotherapy based on smart nanomedicines. Small. 2018; 14(45):e1802417. https://doi.org/10.1002/smll.201802417.

[127]

Velema WA, Szymanski W, Feringa BL.Photopharmacology: beyond proof of principle. J Am Chem Soc. 2014; 136(6):2178-2191. https://doi.org/10.1021/ja413063e.

[128]

Liu H, Wang Q, Guo J, et al. Prodrug-based strategy with a two-in-one liposome for Cerenkov-induced photodynamic therapy and chemotherapy. J Control Release. 2023; 364:206-215. https://doi.org/10.1016/j.jconrel.2023.10.036.

[129]

Shi Q, Tong Y, Zheng Y, et al. PDT-sensitized ROS-responsive dextran nanosystem for maximizing antitumor potency of multi-target drugs. Int J Pharm. 2023;633:122567. https://doi.org/10.1016/j.ijpharm.2022.122567.

[130]

Li Z, Shen Y, Wang Y, et al. Perfluorocarbon nanoemulsions for combined pulmonary siRNA treatment of lung metastatic osteosarcoma. Adv Ther. 2019; 2(7):1900039. https://doi.org/10.1002/adtp.201900039.

[131]

Yu L, Wang Y, He Y, et al. Combination of apatinib with apo-IDO1 inhibitor for the treatment of colorectal cancer. Int Immunopharmacol. 2022;112:109233. https://doi.org/10.1016/j.intimp.2022.109233.

[132]

Yun X, Zhang Q, Fang Y, et al. Madecassic acid alleviates colitis-associated colorectal cancer by blocking the recruitment of myeloid-derived suppressor cells via the inhibition of IL-17 expression in γδT17 cells. Biochem Pharmacol. 2022;202:115138. https://doi.org/10.1016/j.bcp.2022.115138.

[133]

Yu W, Huang J, Dong Q, et al. Ag120-mediated inhibition of ASCT2-dependent glutamine transport has an anti-tumor effect on colorectal cancer cells. Front Pharmacol. 2022;13:871392. https://doi.org/10.3389/fphar.2022.871392.

[134]

Morgat C, MacGrogan G, Brouste V, et al. Expression of gastrin-releasing peptide receptor in breast cancer and its association with pathologic, biologic, and clinical parameters: a study of 1 432 primary tumors. J Nucl Med. 2017; 58(9):1401-1407. https://doi.org/10.2967/jnumed.116.188011.

[135]

Fleischmann A, Waser B, Gebbers JO, et al. Gastrin-releasing peptide receptors in normal and neoplastic human uterus: involvement of multiple tissue compartments. J Clin Endocrinol Metab. 2005; 90(8):4722-4729. https://doi.org/10.1210/jc.2005-0964.

[136]

Liu P, Tu Y, Tao J, et al. GRPR-targeted SPECT imaging using a novel bombesin-based peptide for colorectal cancer detection. Biomater Sci. 2020; 8(23):6764-6772. https://doi.org/10.1039/D0BM01432J.

[137]

Yang Y, Ren R, Chen Q, et al. Coptis chinensis polysaccharides dynamically influence the paracellular absorption pathway in the small intestine by modulating the intestinal mucosal immunity microenvironment. Phytomedicine. 2022;104:154322. https://doi.org/10.1016/j.phymed.2022.154322.

[138]

Ayuso C, Rimola J, Vilana R, et al. Diagnosis and staging of hepatocellular carcinoma (HCC): current guidelines. Eur J Radiol. 2018; 101:72-81. https://doi.org/10.1016/j.ejrad.2018.01.025.

[139]

Gong QZ, Xiao D, Gong GY, et al. EH-42: a novel small molecule induces apoptosis and inhibits migration and invasion of human hepatoma cells through suppressing STAT3 signaling pathway. Curr Cancer Drug Targets. 2019; 19(7):583-593. https://doi.org/10.2174/1568009619666181226094814.

[140]

Sun J, Tao R, Mao T, et al. The involvement of lipid raft pathway in suppression of TGFβ-mediated metastasis by tolfenamic acid in hepatocellular carcinoma cells. Toxicol Appl Pharmacol. 2019;380:114696. https://doi.org/10.1016/j.taap.2019.114696.

[141]

Wang H, Rao B, Lou J, et al. The function of the HGF/c-Met axis in hepatocellular carcinoma. Front Cell Dev Biol. 2020;8:55. https://doi.org/10.3389/fcell.2020.00055.

[142]

Tang Y, Xu H, Dai Y, et al. A novel peptide targeting c-Met for hepatocellular carcinoma diagnosis. J Mater Chem B. 2021; 9(22):4577-4586. https://doi.org/10.1039/D1TB00408E.

[143]

Yang Y, Liao Y, Gui YP, et al. GL-V9 reverses adriamycin resistance in hepatocellular carcinoma cells by affecting JNK2-related autophagy. Chin J Nat Med. 2020; 18(7):491-499.

[144]

Siegel RL, Miller KD, Fuchs HE, et al. Cancer statistics, 2021. CA Cancer J Clin. 2021; 71(1):7-33. https://doi.org/10.3322/caac.21654.

[145]

Zeng SL, Li SZ, Lai CJS, et al. Evaluation of anti-lipase activity and bioactive flavonoids in the Citri Reticulatae Pericarpium from different harvest time. Phytomedicine. 2018; 43:103-109. https://doi.org/10.1016/j.phymed.2018.04.008.

[146]

Baig M MFA, Khan S, Naeem MA, et al. Vildagliptin loaded triangular DNA nanospheres coated with eudragit for oral delivery and better glycemic control in type 2 diabetes mellitus. Biomed Pharmacother. 2018;97:1250-1258.

[147]

Khan GJ, Rizwan M, Abbas M, et al.Pharmacological effects and potential therapeutic targets of DT-13. Biomed Pharmacother. 2018;97:255-263.

[148]

Kamisawa T, Wood LD, Itoi T, et al. Pancreatic cancer. Lancet. 2016; 388(10039):73-85. https://doi.org/10.1016/S0140-6736(16)00141-0.

[149]

Xue X, Li Q, Zhang P, et al. PET/NIR fluorescence bimodal imaging for targeted tumor detection. Mol Pharm. 2023; 20(12):6262-6271. https://doi.org/10.1021/acs.molpharmaceut.3c00660.

[150]

Zhang L, Wang B, Yin G, et al. Rapid fluorescence sensor guided detection of urinary tract bacterial infections. Int J Nanomed. 2022; 17:3723-3733. https://doi.org/10.2147/IJN.S377575.

[151]

Li R, Shu M, Tian Y, et al. Quantum dots combined with a fluorescence-linked immunosorbent assay for detecting the metabolic balance of DT-13 excretion in rats. J Pharm Biomed Anal. 2020;190:113508. https://doi.org/10.1016/j.jpba.2020.113508.

[152]

Fujita K, Kamiya M, YoshioKA T, et al.Rapid and accurate visualization of breast tumors with a fluorescent probe targeting alpha-mannosidase 2C1. ACS Cent Sci. 2020; 6(12):2217-2227. https://doi.org/10.1021/acscentsci.0c01189.

[153]

De Valk KS, Deeken MM, Schaap DP, et al. Dose-finding study of a CEA-targeting agent, SGM-101, for intraoperative fluorescence imaging of colorectal cancer. Ann Surg Oncol. 2021; 28(3):1832-1844. https://doi.org/10.1245/s10434-020-09069-2.

[154]

Sun X, Liu L, Zou H, et al. Intelligent drug delivery microparticles with visual stimuli-responsive structural color changes. Int J Nanomed. 2020; 15:4959-4967. https://doi.org/10.2147/IJN.S249009.

[155]

Tummers WS, Miller SE, Teraphongphom NT, et al. Intraoperative pancreatic cancer detection using tumor-specific multimodality molecular imaging. Ann Surg Oncol. 2018; 25(7):1880-1888. https://doi.org/10.1245/s10434-018-6453-2.

[156]

Gao Y, Zeng Y, Xue W, et al. Anti-IL-12/23 p40 antibody attenuates chronic graft-versus-host disease with lupus nephritis via inhibiting Tfh cell in mice. Biomed Pharmacother. 2020;129:110396.

[157]

Tu Y, Han Z, Pan R, et al. Novel GRPR-targeting peptide for pancreatic cancer molecular imaging in orthotopic and liver metastasis mouse models. Anal Chem. 2023; 95(30):11429-11439. https://doi.org/10.1021/acs.analchem.3c01765.

[158]

Dai X, Zhao W, Tong X, et al. Non-clinical immunogenicity, biodistribution and toxicology evaluation of a chimpanzee adenovirus-based COVID-19 vaccine in rat and rhesus macaque. Arch Toxicol. 2022; 96(5):1437-1453. https://doi.org/10.1007/s00204-021-03221-x.

[159]

Zhao Z, Li M, Zheng L, et al. Noninvasive transdermal delivery of mesoporous silica nanoparticles using deep eutectic solvent. J Control Release. 2022; 343:43-56. https://doi.org/10.1016/j.jconrel.2022.01.019.

[160]

Peng H, Wang J, Chen J, et al. Challenges and opportunities in delivering oral peptides and proteins. Expert Opin Drug Deliv. 2023; 20(10):1349-1369. https://doi.org/10.1080/17425247.2023.2237408.

[161]

Zhang T, Luo X, Xu K, et al. Peptide-containing nanoformulations: skin barrier penetration and activity contribution. Adv Drug Deliv Rev. 2023;203:115139. https://doi.org/10.1016/j.addr.2023.115139.

[162]

Yang J, Huo Y, Jin X, et al. Compatibility study of peptide and glycerol using chromatographic and spectroscopic techniques: application to a novel antimicrobial peptide Cbf-14 gel. Pharmaceutics. 2023; 15(12):2784. https://doi.org/10.3390/pharmaceutics15122784.

[163]

Zhang C, Fei Y, Wang H, et al. CAFs orchestrates tumor immune microenvironment-a new target in cancer therapy? Front Pharmacol. 2023;14:1113378. https://doi.org/10.3389/fphar.2023.1113378.

[164]

Sun X, Zhou L, Wang Y, et al. Single-cell analyses reveal cannabidiol rewires tumor microenvironment via inhibiting alternative activation of macrophage and synergizes with anti-PD-1 in colon cancer. J Pharm Anal. 2023; 13(7):726-744. https://doi.org/10.1016/j.jpha.2023.04.013.

[165]

Li Z, Deng Y, Sun H, et al. Redox modulation with a perfluorocarbon nanoparticle to reverse Treg-mediated immunosuppression and enhance anti-tumor immunity. J Control Release. 2023; 358:579-590. https://doi.org/10.1016/j.jconrel.2023.05.013.

[166]

Zhou X, Zhang P, Liu N, et al. Enhancing chemotherapy for pancreatic cancer through efficient and sustained tumor microenvironment remodeling with a fibroblast-targeted nanosystem. J Control Release. 2023; 361:161-177. https://doi.org/10.1016/j.jconrel.2023.07.061.

[167]

Fu S, Song X, Hu Y, et al. Neotuberostemonine and tuberostemonine ameliorate pulmonary fibrosis through suppressing TGF-β and SDF-1 secreted by macrophages and fibroblasts via the PI3K-dependent AKT and ERK pathways. Chin J Nat Med. 2023; 21(7):527-539.

[168]

Fitzgerald AA, Weiner LM. The role of fibroblast activation protein in health and malignancy. Cancer Metastasis Rev. 2020; 39(3):783-803. https://doi.org/10.1007/s10555-020-09909-3.

[169]

Jansen K, Heirbaut L, Cheng JD, et al. Selective inhibitors of fibroblast activation protein (FAP) with a (4-quinolinoyl)-glycyl-2-cyanopyrrolidine scaffold. ACS Med Chem Lett. 2013; 4(5):491-496. https://doi.org/10.1021/ml300410d.

[170]

Loktev A, Lindner T, Mier W, et al. A tumor-imaging method targeting cancer-associated fibroblasts. J Nucl Med. 2018; 59(9):1423-1429. https://doi.org/10.2967/jnumed.118.210435.

[171]

Zhao L, Niu B, Fang J, et al. Synthesis, preclinical evaluation, and a pilot clinical PET imaging study of 68Ga-labeled FAPI dimer. J Nucl Med. 2022; 63(6):862-868. https://doi.org/10.2967/jnumed.121.263016.

[172]

Zhong X, Guo J, Han X, et al. Synthesis and preclinical evaluation of a novel FAPI-04 dimer for cancer theranostics. Mol Pharm. 2023; 20(5):2402-2414. https://doi.org/10.1021/acs.molpharmaceut.2c00965.

[173]

Jiang X, Yang X, Shi Y, et al. Maackiain inhibits proliferation and promotes apoptosis of nasopharyngeal carcinoma cells by inhibiting the MAPK/Ras signaling pathway. Chin J Nat Med. 2023; 21(3):185-196. https://doi.org/10.1016/S1875-5364(23)60420-0.

[174]

Mikrani R, Liang C, Naveed M, et al. A cardiac troponin I study in a minimally invasive myocardial infarction canine model. Appl Biomed. 2019; 17(1):39. https://doi.org/10.32725/jab.2018.001.

[175]

Li X, He S, Liang W, et al. Marsdenia tenacissima injection induces the apoptosis of prostate cancer by regulating the AKT/GSK3β/STAT3 signaling axis. Chin J Nat Med. 2023; 21(2):113-126. https://doi.org/10.1016/S1875-5364(23)60389-9.

[176]

Wu P, Zhang Z, Ma G, et al. Transcriptomics and metabolomics reveal the cardioprotective effect of Compound Danshen tablet on isoproterenol-induced myocardial injury in high-fat-diet fed mice. J Ethnopharmacol. 2020;246:112210. https://doi.org/10.1016/j.jep.2019.112210.

[177]

Lai Q, Yuan G, Wang H, et al. Metabolomic profiling of metoprolol-induced cardioprotection in a murine model of acute myocardial ischemia. Biomed Pharmacother. 2020;124:109820. https://doi.org/10.1016/j.biopha.2020.109820.

[178]

Li X, Mikrani R, Li C, et al. An epicardial delivery of nitroglycerine by active hydraulic ventricular support drug delivery system improves cardiac function in a rat model. Drug Deliv Transl Res. 2020; 10(1):23-33. https://doi.org/10.1007/s13346-019-00656-9.

[179]

Liao J, Zhang Y, Ma C, et al. Microbiome-metabolome reveals that the Suxiao Jiuxin Pill attenuates acute myocardial infarction associated with fatty acid metabolism. J Ethnopharmacol. 2023;312:116529. https://doi.org/10.1016/j.jep.2023.116529.

[180]

Wang C, Jin Q, Yang S, et al. Synthesis and evaluation of 131I-Skyrin as a necrosis avid agent for potential targeted radionuclide therapy of solid tumors. Mol Pharm. 2016; 13(1):180-189. https://doi.org/10.1021/acs.molpharmaceut.5b00630.

[181]

Wu X, Liu L, Zheng Q, et al. Dihydrotanshinone I preconditions myocardium against ischemic injury via PKM2 glutathionylation sensitive to ROS. Acta Pharm Sin B. 2023; 13(1):113-127. https://doi.org/10.1016/j.apsb.2022.07.006.

[182]

Duan X, Yin Z, Jiang C, et al. Radioiodinated hypericin disulfonic acid sodium salts as a DNA-binding probe for early imaging of necrotic myocardium. Eur J Pharm Biopharm. 2017; 117:151-159. https://doi.org/10.1016/j.ejpb.2017.04.006.

[183]

Pei L, Li R, Zhou H, et al. A physiologically based pharmacokinetic approach to recommend an individual dose of tacrolimus in adult heart transplant recipients. Pharmaceutics. 2023; 15(11):2580. https://doi.org/10.3390/pharmaceutics15112580.

[184]

Wu X, Sia JEV, Hai M, et al. Physiologically based pharmacokinetic model for older adults and its application in geriatric drug research. Curr Drug Metab. 2023; 24(3):211-222. https://doi.org/10.2174/1389200224666230509104404.

[185]

Xu R, Liu W, Ge W, et al. Physiologically-based pharmacokinetic pharmacodynamic parent-metabolite model of edoxaban to predict drug-drug-disease interactions: M4 contribution. CPT Pharmacometrics Syst Pharmacol. 2023; 12(8):1093-1106. https://doi.org/10.1002/psp4.12977.

[186]

Chen Q, Li Y, Zhou S, et al. Sequentially sustained release of anticarcinogens for postsurgical chemoimmunotherapy. J Control Release. 2022; 350:803-814. https://doi.org/10.1016/j.jconrel.2022.09.006.

[187]

Yang L, Wang Y, Ye X, et al. Traditional Chinese medicine-based drug delivery systems for anti-tumor therapies. Chin J Nat Med. 2024; 22(12):1177-1192. https://doi.org/10.1016/S1875-5364(24)60746-6.

[188]

Yin T, Wu Q, Wang L, et al. Well-defined redox-sensitive polyethene glycol-paclitaxel prodrug conjugate for tumor-specific delivery of paclitaxel using octreotide for tumor targeting. Mol Pharm. 2015; 12(8):3020-3031. https://doi.org/10.1021/acs.molpharmaceut.5b00280.

[189]

Ni X, Tang X, Wang D, et al. Research progress of sensors based on molecularly imprinted polymers in analytical and biomedical analysis. J Pharm Biomed Anal. 2023;235:115659. https://doi.org/10.1016/j.jpba.2023.115659.

[190]

Jin Y, Han G, Gao Y, et al. Serum-tolerant polymeric complex for stem-cell transfection and neural differentiation. Nat Commun. 2025; 16(1):2022. https://doi.org/10.1038/s41467-025-57278-8.

PDF (13547KB)

86

Accesses

0

Citation

Detail

Sections
Recommended

/