Oroxylin A inhibits UVB-induced non-melanoma skin cancer by regulating XPA degradation

Renjie Dou , Jiarui Sun , Hang Yang , Yufen Zheng , Kang Yuan , Lei Qiang , Run Ma , Yunyao Liu

Chinese Journal of Natural Medicines ›› 2025, Vol. 23 ›› Issue (6) : 742 -753.

PDF (15651KB)
Chinese Journal of Natural Medicines ›› 2025, Vol. 23 ›› Issue (6) :742 -753. DOI: 10.1016/S1875-5364(25)60893-4
Original article
research-article

Oroxylin A inhibits UVB-induced non-melanoma skin cancer by regulating XPA degradation

Author information +
History +
PDF (15651KB)

Abstract

Oroxylin A (OA), a natural compound extracted from Scutellaria baicalensis, demonstrates preventive potential against ultraviolet B (UVB)-induced non-melanoma skin cancer (NMSC), the most prevalent cancer worldwide with increasing incidence. Utilizing SKH-1 hairless mice exposed to UVB, this study showed that OA delayed NMSC onset and alleviated acute skin damage. Mechanistic investigations revealed its dual action: inhibiting inflammation and enhancing nucleotide excision repair (NER) by stabilizing XPA, a crucial deoxyribonucleic acid (DNA) repair protein. This stabilization occurred through OA’s interaction with glucose-regulated protein 94 (GRP94), which disrupted murine double minute 2 (MDM2)-mediated XPA ubiquitination and proteasomal degradation. By maintaining XPA levels, OA expedited photoproduct clearance and diminished genomic instability, ultimately impeding NMSC development. These findings suggest OA as a promising chemopreventive agent targeting the GRP94/MDM2-XPA axis to counteract UVB-induced carcinogenesis.

Keywords

Non-melanoma skin cancer / Oroxylin A / XPA / GRP94 / MDM2

Cite this article

Download citation ▾
Renjie Dou, Jiarui Sun, Hang Yang, Yufen Zheng, Kang Yuan, Lei Qiang, Run Ma, Yunyao Liu. Oroxylin A inhibits UVB-induced non-melanoma skin cancer by regulating XPA degradation. Chinese Journal of Natural Medicines, 2025, 23(6): 742-753 DOI:10.1016/S1875-5364(25)60893-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Kocarnik JM, Compton K, Dean FE, et al. Cancer incidence, mortality, years of life lost, years lived with disability, and disability-adjusted life years for 29 cancer groups from 2010 to 2019: a systematic analysis for the global burden of disease study 2019. JAMA Oncol. 2022; 8(3):420-444. https://doi.org/10.1001/jamaoncol.2021.6987.

[2]

Zink A. Trends in the treatment and prevention of keratinocyte carcinoma (non-melanoma skin cancer). Curr Opin Pharmacol. 2019; 46:19-23. https://doi.org/10.1016/j.coph.2018.12.002.

[3]

Didona D, Paolino G, Bottoni U, et al. Non melanoma skin cancer pathogenesis overview. Biomedicines. 2018; 6(1):6. https://doi.org/10.3390/biomedicines6010006.

[4]

Smith H, Wernham A, Patel A. When to suspect a non-melanoma skin cancer. BMJ. 2020;368:m692. https://doi.org/10.1136/bmj.m692.

[5]

Winge MC, Kellman LN, Guo K, et al. Advances in cutaneous squamous cell carcinoma. Nat Rev Cancer. 2023; 23(7):430-449. https://doi.org/10.1038/s41568-023-00583-5.

[6]

Bernard JJ, Gallo RL, Krutmann J. Photoimmunology: how ultraviolet radiation affects the immune system. Nat Rev Immunol. 2019; 19(11):688-701. https://doi.org/10.1038/s41577-019-0185-9.

[7]

Estadt SN, Maz MP, Musai J, et al.Mechanisms of photosensitivity in autoimmunity. J Invest Dermatol. 2022; 142(3):849-856. https://doi.org/10.1016/j.jid.2021.05.007.

[8]

Salminen A, Kaarniranta K, Kauppinen A. Photoaging: UV radiation-induced inflammation and immunosuppression accelerate the aging process in the skin. Inflamm Res. 2022; 71(7):817-831. https://doi.org/10.1007/s00011-022-01598-8.

[9]

Nieto MN, Olthof AM, Svejstrup JQ. Transcription-coupled nucleotide excision repair and the transcriptional response to UV-induced DNA damage. Annu Rev Biochem. 2023; 92:81-113. https://doi.org/10.1146/annurev-biochem-052621-091205.

[10]

Martens MC, Emmert S, Boeckmann L. Sunlight,vitamin D, and xeroderma pigmentosum. Adv Exp Med Biol. 2020; 1268:319-331. https://doi.org/10.1007/978-3-030-46227-7_16.

[11]

Sugitani N, Sivley RM, Perry KE, et al. XPA: a key scaffold for human nucleotide excision repair. DNA Repair. 2016; 44:123-135. https://doi.org/10.1016/j.dnarep.2016.05.018.

[12]

Kim J, Li CL, Chen X, et al. Lesion recognition by XPC, TFIIH and XPA in DNA excision repair. Nature. 2023; 617(7959):170-175. https://doi.org/10.1038/s41586-023-05959-z.

[13]

Borszéková PL, Ward TA, Chovanec M. XPA: DNA repair protein of significant clinical importance. Int J Mol Sci. 2020; 21(6):2182. https://doi.org/10.3390/ijms21062182.

[14]

Jiang H, Yang LY. Cell cycle checkpoint abrogator UCN-01 inhibits DNA repair: association with attenuation of the interaction of XPA and ERCC1 nucleotide excision repair proteins. Cancer Res. 1999; 59(18):4529-4534.

[15]

Barret JM, Cadou M, Hill BT. Inhibition of nucleotide excision repair and sensitisation of cells to DNA cross-linking anticancer drugs by F11782, a novel fluorinated epipodophylloid. Biochem Pharmacol. 2002; 63(2):251-258. https://doi.org/10.1016/S0006-2952(01)00835-8.

[16]

Aune GJ, Furuta T, Pommier Y. Ecteinascidin 743: a novel anticancer drug with a unique mechanism of action. Anticancer Drugs. 2002; 13(6):545-555. https://doi.org/10.1097/00001813-200207000-00001.

[17]

Neher TM, Shuck SC, Liu JY, et al. Identification of novel small molecule inhibitors of the XPA protein using in silico based screening. ACS Chem Biol. 2010; 5(10):953-965. https://doi.org/10.1021/cb1000444.

[18]

Yao JY, Xu S, Sun YN, et al. Novel CDK9 inhibitor oroxylin A promotes wild-type P53 stability and prevents hepatocellular carcinoma progression by disrupting both MDM2 and SIRT 1 signaling. Acta Pharmacol Sin. 2022; 43(4):1033-1045. https://doi.org/10.1038/s41401-021-00708-2.

[19]

Huo TX, Wang XP, Yu Z, et al. Oroxylin A inhibits the migration of hepatocellular carcinoma cells by inducing NAG-1 expression. Acta Pharmacol Sin. 2022; 43(3):724-734. https://doi.org/10.1038/s41401-021-00695-4.

[20]

Cao Y, Cao W, Qiu Y, et al. Oroxylin A suppresses ACTN1 expression to inactivate cancer-associated fibroblasts and restrain breast cancer metastasis. Pharmacol Res. 2020;159:104981. https://doi.org/10.1016/j.phrs.2020.104981.

[21]

Wei M, Ma R, Huang S, et al. Oroxylin A increases the sensitivity of temozolomide on glioma cells by hypoxia‐inducible factor 1α/hedgehog pathway under hypoxia. J Cell Physiol. 2019; 234(10):17392-17404. https://doi.org/10.1002/jcp.28361.

[22]

Qiang L, Sample A, Shea CR, et al. Autophagy gene ATG7 regulates ultraviolet radiation-induced inflammation and skin tumorigenesis. Autophagy. 2017; 13(12):2086-2103. https://doi.org/10.1080/15548627.2017.1380757.

[23]

Li B, Birt DF. In vivo and in vitro percutaneous absorption of cancer preventive flavonoid apigenin in different vehicles in mouse skin. Pharm Res. 1996; 13:1710-1715. https://doi.org/10.1023/A:1016453009818.

[24]

Li B, Pinch H, Birt DR. Influence of vehicle, distant topical delivery, and biotransformation on the chemopreventive activity of apigenin, a plant flavonoid, in mouse skin. Pharm Res. 1996; 13:1530-1534. https://doi.org/10.1023/A:1016083613916.

[25]

Qiang L, Zhao B, Shah P, et al. Autophagy positively regulates DNA damage recognition by nucleotide excision repair. Autophagy. 2016; 12(2):357-368. https://doi.org/10.1080/15548627.2015.1110667.

[26]

Bowden GT. Prevention of non-melanoma skin cancer by targeting ultraviolet-B-light signalling. Nat Re Cancer. 2004; 4(1):23-35. https://doi.org/10.1038/nrc1253.

[27]

Montes de OMK, Pearlman RL, Mcclees SF, et al. Phytochemicals for the prevention of photocarcinogenesis. Photochem Photobiol. 2017; 93(4):956-974. https://doi.org/10.1111/php.12711.

[28]

Liu Y, Wang X, Li W, et al. Oroxylin A reverses hypoxia-induced cisplatin resistance through inhibiting HIF-1α mediated XPC transcription. Oncogene. 2020; 39(45):6893-6905. https://doi.org/10.1038/s41388-020-01474-x.

[29]

de Oliveira AN, Pereira GM, di Domenico M, et al. Inflammation response, oxidative stress and DNA damage caused by urban air pollution exposure increase in the lack of DNA repair XPC protein. Environ Int. 2020;145:106150. https://doi.org/10.1016/j.envint.2020.106150.

[30]

Kunisada M, Hosaka C, Takemori C, et al. CXCL1 inhibition regulates UVB-induced skin inflammation and tumorigenesis in Xpa-deficient mice. J Invest Dermatol. 2017; 137(9):1975-1983. https://doi.org/10.1016/j.jid.2017.04.034.

[31]

Kunisada M, Yamano N, Hosaka C, et al. Inflammation due to voriconazole‐induced photosensitivity enhanced skin phototumorigenesis in Xpa‐knockout mice. Photochem Photobiol. 2018; 94(5):1077-1081. https://doi.org/10.1111/php.12972.

[32]

Huck JD, Que NL, Hong F, et al. Structural and functional analysis of GRP94 in the closed state reveals an essential role for the pre-N domain and a potential client-binding site. Cell Rep. 2017; 20(12):2800-2809. https://doi.org/10.1016/j.celrep.2017.08.079.

[33]

Wu B, Chu X, Feng C, et al. Heat shock protein gp96 decreases p53 stability by regulating Mdm2 E3 ligase activity in liver cancer. Cancer Lett. 2015; 359(2):325-334. https://doi.org/10.1016/j.canlet.2015.01.034.

[34]

Apalla Z, Lallas A, Sotiriou E, et al.Epidemiological trends in skin cancer. Dermatol Pract Conce. 2017; 7(2):1-6. https://doi.org/10.5826/dpc.0702a01.

[35]

Olsen CM, Pandeya N, Ragaini BS, et al.International patterns and trends in the incidence of melanoma and cutaneous squamous cell carcinoma, 1989-2020. Brit J Dermatol. 2024; 190(4):492-500. https://doi.org/10.1093/bjd/ljad425.

[36]

Katiyar SK, Pal HC, Prasad R. Dietary proanthocyanidins prevent ultraviolet radiation-induced non-melanoma skin cancer through enhanced repair of damaged DNA-dependent activation of immune sensitivity. Semin Cancer Biol. 2017; 46:138-145. https://doi.org/10.1016/j.semcancer.2017.04.003.

[37]

Huang H, Cai H, Zhang L, et al. Oroxylin A inhibits carcinogen-induced skin tumorigenesis through inhibition of inflammation by regulating SHCBP1 in mice. Int Immuno. 2020;80:106123. https://doi.org/10.1016/j.intimp.2019.106123.

[38]

Greten FR, Grivennikov SI. Inflammation and cancer: triggers, mechanisms, and consequences. Immunity. 2019; 51(1):27-41. https://doi.org/10.1016/j.immuni.2019.06.025.

[39]

Locati M, Curtale G, Mantovani A. Diversity, mechanisms, and significance of macrophage plasticity. Annu Rev Pathol-Mech. 2020; 15:123-147. https://doi.org/10.1146/annurev-pathmechdis-012418-012718.

[40]

Klapp V, Álvarez-abril B, Leuzzi G, et al. The DNA damage response and inflammation in cancer. Cancer Discov. 2023; 13(7):1521-1545. https://doi.org/10.1158/2159-8290.CD-22-1220.

[41]

Piotrowski I, Kulcenty K, Suchorska W.Interplay between inflammation and cancer. Rep Pract Oncol Radi. 2020; 25(3):422-427. https://doi.org/10.1016/j.rpor.2020.04.004.

[42]

Chen DH, Zheng G, Zhong XY, et al. Oroxylin A attenuates osteoarthritis progression by dual inhibition of cell inflammation and hypertrophy. Food Funct. 2021; 12(1):328-329. https://doi.org/10.1039/D0FO02159H.

[43]

Yang J, Li J, Wang J, et al. Oroxylin A relieves intrauterine adhesion in mice through inhibiting macrophage pyroptosis via SIRT3-SOD2-ROS pathway. Int Immunopharmacol. 2023;118:110023. https://doi.org/10.1016/j.intimp.2023.110023.

[44]

Sahan AZ, Hazra TK, Das S. The pivotal role of DNA repair in infection mediated-inflammation and cancer. Front Microbiol. 2018;9:663. https://doi.org/10.3389/fmicb.2018.00663.

[45]

Taffoni C, Marines J, Chamma H, et al. DNA damage repair kinase DNA‐PK and cGAS synergize to induce cancer‐related inflammation in glioblastoma. EMBO J. 2023; 42(7):e111961. https://doi.org/10.15252/embj.2022111961.

[46]

Chatterjee N, Walker GC. Mechanisms of DNA damage, repair, and mutagenesis. Environ Mol Mutagen. 2017; 58(5):235-263. https://doi.org/10.1002/em.22087.

[47]

Horio T, Miyauchi‐hashimoto H, Kuwamoto K, et al. Photobiological information obtained from XPA gene‐deficient mice. Photochem Photobiol. 2007; 83(1):218-224. https://doi.org/10.1562/2006-03-02-IR-829.

[48]

Duan X, Iwanowycz S, Ngoi S, et al. Molecular chaperone GRP94/GP96 in cancers: oncogenesis and therapeutic target. Front Oncol. 2021;11:629846. https://doi.org/10.3389/fonc.2021.629846.

[49]

Senft D, Ze’ev AR. UPR, autophagy, and mitochondria crosstalk underlies the ER stress response. Trends Biochem Sci. 2015; 40(3):141-148. https://doi.org/10.1016/j.tibs.2015.01.002.

[50]

Lee AS. Glucose-regulated proteins in cancer: molecular mechanisms and therapeutic potential. Nat Rev Cancer. 2014; 14(4):263-276. https://doi.org/10.1038/nrc3701.

[51]

Birbo B, Madu EE, Madu CO, et al. Role of HSP 90 in cancer. Int J Mol Sci. 2021; 22(19):10317. https://doi.org/10.3390/ijms221910317.

[52]

Duerfeldt AS, Peterson LB, Maynard JC, et al. Development of a Grp 94 inhibitor. J Am Chem Soc. 2012; 134(23):9796-9804. https://doi.org/10.1021/ja303477g.

[53]

Xu S, Guo A, Chen NN, et al. Design and synthesis of Grp94 selective inhibitors based on Phe199 induced fit mechanism and their anti-inflammatory effects. Eur J Med Chem. 2021;223:113604. https://doi.org/10.1016/j.ejmech.2021.113604.

[54]

Jiang F, Guo AP, Xu JC, et al. Discovery of a potent Grp94 selective inhibitor with anti-inflammatory efficacy in a mouse model of ulcerative colitis. J Med Chem. 2018; 61(21):9513-9533. https://doi.org/10.1021/acs.jmedchem.8b00800.

PDF (15651KB)

77

Accesses

0

Citation

Detail

Sections
Recommended

/