Emerging evidence of inter-organ interaction on drug transporters under liver injury

Ling Jiang , Ying Deng , Ruijing Mu , Wenke Feng , Xiaonan Liu , Li Liu

Chinese Journal of Natural Medicines ›› 2025, Vol. 23 ›› Issue (6) : 687 -699.

PDF (12067KB)
Chinese Journal of Natural Medicines ›› 2025, Vol. 23 ›› Issue (6) :687 -699. DOI: 10.1016/S1875-5364(25)60888-0
Review
research-article

Emerging evidence of inter-organ interaction on drug transporters under liver injury

Author information +
History +
PDF (12067KB)

Abstract

Dysfunction of drug transporters significantly affects therapeutic outcomes and drug efficacy in patients with liver injury. Clinical and experimental evidence demonstrates that liver injury involves complex inter-organ interactions among the brain, eye, liver, intestine, and kidney. Recent advances in basic and clinical research have illuminated the physiologic and molecular mechanisms underlying transporter alterations in liver injury, particularly those associated with bilirubin, reactive oxygen species, ammonia, bile acid, and inflammatory factors. Notably, the influence of these transporter modifications on drug pharmacokinetics in liver injury patients remains inadequately understood. Additional research is necessary to fully comprehend these effects and their therapeutic implications. The documented alterations of transporters in distant organs across various liver diseases indicate that dosage modifications may be required when administering transporter-substrate drugs, including both traditional Chinese and Western medicines, to patients with liver dysfunction. This strategy helps maintain drug concentrations within therapeutic ranges while reducing adverse reactions. Furthermore, when utilizing transporter inducers or inhibitors clinically, consideration of their long-term effects on transporters and subsequent therapeutic impact is essential. Careful attention must be paid to avoid compromising the elimination of toxic metabolites and proteins when inhibiting these transporters. Similarly, prudent use of inducers or inducer-type therapeutic drugs is necessary to prevent enhanced drug resistance. This review examines recent clinical and experimental findings regarding the inter-organ interaction of drug transporters in liver injury conditions and their clinical relevance.

Keywords

Liver injury / Dysfunction / Inter-organ interaction / Drug transporters / Pharmacokinetics

Cite this article

Download citation ▾
Ling Jiang, Ying Deng, Ruijing Mu, Wenke Feng, Xiaonan Liu, Li Liu. Emerging evidence of inter-organ interaction on drug transporters under liver injury. Chinese Journal of Natural Medicines, 2025, 23(6): 687-699 DOI:10.1016/S1875-5364(25)60888-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Devarbhavi H, Asrani SK, Arab JP, et al. Global burden of liver disease: 2023 update. J Hepatol. 2023; 79(2):516-537. https://doi.org/10.1016/j.jhep.2023.03.017.

[2]

Zeng DY, Li JM, Lin S, et al.Global burden of acute viral hepatitis and its association with socioeconomic development status, 1990-2019. J Hepatol. 2021; 75(3):547-556. https://doi.org/10.1016/j.jhep.2021.04.035.

[3]

Hosack T, Damry D, Biswas S. Drug-induced liver injury: a comprehensive review. Therap Adv Gastroenterol. 2023;16:17562848231163410. https://doi.org/10.1177/17562848231163410.

[4]

Larson AM. Acetaminophen hepatotoxicity. Clin Liver Dis. 2007; 11(3):525-548,vi. https://doi.org/10.1016/j.cld.2007.06.006.

[5]

Hagström H, Thiele M, Roelstraete B, et al. Mortality in biopsy-proven alcohol-related liver disease: a population-based nationwide cohort study of 3453 patients. Gut. 2021; 70(1):170-179. https://doi.org/10.1136/gutjnl-2019-320446.

[6]

Fede G, D'Amico G, Arvaniti V, et al. Renal failure and cirrhosis: a systematic review of mortality and prognosis. J Hepatol. 2012; 56(4):810-818. https://doi.org/10.1016/j.jhep.2011.10.016.

[7]

Ye Q, Zou B, Yeo YH, et al. Global prevalence, incidence, and outcomes of non-obese or lean non-alcoholic fatty liver disease: a systematic review and meta-analysis. Lancet Gastroenterol Hepatol. 2020; 5(8):739-752. https://doi.org/10.1016/S2468-1253(20)30077-7.

[8]

Chen K, Guo W, Li R, et al. Demethylzeylasteral attenuates hepatic stellate cell activation and liver fibrosis by inhibiting AGAP2 mediated signaling. Phytomedicine. 2022;105:154349. https://doi.org/10.1016/j.phymed.2022.154349.

[9]

Yan T, Yan N, Wang H, et al. FXR-deoxycholic acid-TNF-α axis modulates acetaminophen-induced hepatotoxicity. Toxicol Sci. 2021; 181(2):273-284. https://doi.org/10.1093/toxsci/kfab027.

[10]

Yang Y, Jiang HY, Shi Y, et al. Chinese herbal medicine for carriers of the hepatitis B virus: an updated systematic review and meta-analysis. Pharmazie. 2014; 69(10):723-730.

[11]

Mackowiak B, Fu Y, Maccioni L, et al.Alcohol-associated liver disease. J Clin Invest. 2024; 134(3):e176345. https://doi.org/10.1172/JCI176345.

[12]

Wei S, Wang L, Evans PC, et al. NAFLD and NASH: etiology, targets and emerging therapies. Drug Discov Today. 2024; 29(3):103910. https://doi.org/10.1016/j.drudis.2024.103910.

[13]

Leng YR, Zhang MH, Luo JG, et al. Pathogenesis of NASH and promising natural products. Chin J Nat Med. 2021; 19(1):12-27. https://doi.org/10.1016/S1875-5364(21)60002-X.

[14]

Carbone M, Neuberger JM. Autoimmune liver disease, autoimmunity and liver transplantation. J Hepatol. 2014; 60(1):210-223. https://doi.org/10.1016/j.jhep.2013.09.020.

[15]

Wang X, Zhang L, Jiang Z. T-helper cell-mediated factors in drug-induced liver injury. J Appl Toxicol. 2015; 35(7):695-700. https://doi.org/10.1002/jat.3115.

[16]

Ginès P, Krag A, Abraldes JG, et al. Liver cirrhosis. Lancet. 2021; 398(10308):1359-1376. https://doi.org/10.1016/S0140-6736(21)01374-X.

[17]

Vogel A, Meyer T, Sapisochin G, et al. Hepatocellular carcinoma. Lancet. 2022; 400(10360):1345-1362. https://doi.org/10.1016/S0140-6736(22)01200-4.

[18]

Wang FS, Fan JG, Zhang Z, et al. The global burden of liver disease: the major impact of China. Hepatology. 2014; 60(6):2099-2108. https://doi.org/10.1002/hep.27406.

[19]

Odenwald MA, Paul S. Viral hepatitis: past, present, and future. World J Gastroenterol. 2022; 28(14):1405-1429. https://doi.org/10.3748/wjg.v28.i14.1405.

[20]

Deng W, Chen F, Zhao Y, et al. Anti-hepatitis B virus activities of natural products and their antiviral mechanisms. Chin J Nat Med. 2023; 21(11):803-811. https://doi.org/10.1016/S1875-5364(23)60505-9.

[21]

Zhang X, Su H, Yu H, et al. A polysaccharide from Eupolyphaga sinensis walker with anti-HBV activities in vitro and in vivo. Front Pharmacol. 2022;13:827128. https://doi.org/10.3389/fphar.2022.827128.

[22]

Qian M, Lyu Q, Liu Y, et al. Chitosan oligosaccharide ameliorates nonalcoholic fatty liver disease (NAFLD) in diet-induced obese mice. Mar Drugs. 2019; 17(7):391. https://doi.org/10.3390/md17070391.

[23]

Yan C, Zhang Y, Zhang X, et al. Curcumin regulates endogenous and exogenous metabolism via Nrf2-FXR-LXR pathway in NAFLD mice. Biomed Pharmacother. 2018; 105:274-281. https://doi.org/10.1016/j.biopha.2018.05.135.

[24]

Feng X, Yu W, Li X, et al. Apigenin, a modulator of PPARγ attenuates HFD-induced NAFLD by regulating hepatocyte lipid metabolism and oxidative stress via Nrf2 activation. Biochem Pharmacol. 2017; 136:136-149. https://doi.org/10.1016/j.bcp.2017.04.014.

[25]

Seitz HK, Bataller R, Cortez-Pinto H, et al.Alcoholic liver disease. Nat Rev Dis Primers. 2018; 4(1):16. https://doi.org/10.1038/s41572-018-0014-7.

[26]

Gao B, Bataller R. Alcoholic liver disease: pathogenesis and new therapeutic targets. Gastroenterology. 2011; 141(5):1572-1585. https://doi.org/10.1053/j.gastro.2011.09.002.

[27]

Liu J, Sha M, Wang Q, et al. Small ubiquitin-related modifier 2/3 interacts with p65 and stabilizes it in the cytoplasm in HBV-associated hepatocellular carcinoma. BMC Cancer. 2015;15:675. https://doi.org/10.1186/s12885-015-1665-3.

[28]

Chen X, Wang X, Yang L, et al. Magnesium isoglycyrrhizinate prevents cadmium-induced activation of JNK and apoptotic hepatocyte death by reversing ROS-inactivated PP2A. J Pharm Pharmacol. 2021; 73(12):1663-1674. https://doi.org/10.1093/jpp/rgab125.

[29]

Hassan HM, Guo HL, Yousef BA, et al. Hepatotoxicity mechanisms of isoniazid: a mini-review. J Appl Toxicol. 2015; 35(12):1427-1432. https://doi.org/10.1002/jat.3175.

[30]

Tao L, Qing Y, Cui Y, et al. Lysosomal membrane permeabilization mediated apoptosis involve in perphenazine-induced hepatotoxicity in vitro and in vivo. Toxicol Lett. 2022; 367:76-87. https://doi.org/10.1016/j.toxlet.2022.07.814.

[31]

Todorović VN, Đorđević J, Pejić S, et al.Antidepressants- and antipsychotics-induced hepatotoxicity. Arch Toxicol. 2021; 95(3):767-789. https://doi.org/10.1007/s00204-020-02963-4.

[32]

Qu B, Xing R, Wang H, et al. Multiple effects of magnesium isoglycyrrhizinate on the disposition of docetaxel in docetaxel-induced liver injury. Xenobiotica. 2017; 47(4):290-296. https://doi.org/10.1080/00498254.2016.1185195.

[33]

Floyd J, Mirza I, Sachs B, et al.Hepatotoxicity of chemotherapy. Semin Oncol. 2006; 33(1):50-67. https://doi.org/10.1053/j.seminoncol.2005.11.002.

[34]

Woolbright BL, Jaeschke H. Mechanisms of inflammatory liver injury and drug-induced hepatotoxicity. Curr Pharmacol Rep. 2018; 4(5):346-357. https://doi.org/10.1007/s40495-018-0147-0.

[35]

Liang P, Zhou S, Yuan Z, et al. Obeticholic acid improved triptolide/lipopolysaccharide-induced hepatotoxicity by inhibiting caspase-11-GSDMD pyroptosis pathway. J Appl Toxicol. 2023; 43(4):599-614. https://doi.org/10.1002/jat.4410.

[36]

Zhang H, Yuan Z, Wang J, et al. Triptolide leads to hepatic intolerance to exogenous lipopolysaccharide and natural-killer-cell mediated hepatocellular damage by inhibiting MHC class I molecules. Phytomedicine. 2023;109:154621. https://doi.org/10.1016/j.phymed.2022.154621.

[37]

Zou M, Nong C, Yu Z, et al. The role of invariant natural killer T cells and associated immunoregulatory factors in triptolide-induced cholestatic liver injury. Food Chem Toxicol. 2020;146:111777. https://doi.org/10.1016/j.fct.2020.111777.

[38]

Xie W, Sun J, Zhang X, et al. Necrosis factor-alpha (TNF-α) response in human hepatoma HepG2 cells treated with hepatotoxic agents. Pharmazie. 2014; 69(5):379-384.

[39]

Guo H, Sun J, Li D, et al. Shikonin attenuates acetaminophen-induced acute liver injury via inhibition of oxidative stress and inflammation. Biomed Pharmacother. 2019;112:108704. https://doi.org/10.1016/j.biopha.2019.108704.

[40]

Xing L, Chang X, Shen L, et al. Progress in drug delivery system for fibrosis therapy. Asian J Pharm Sci. 2021; 16(1):47-61. https://doi.org/10.1016/j.ajps.2020.06.005.

[41]

Xiang D, Zou J, Zhu X, et al. Physalin D attenuates hepatic stellate cell activation and liver fibrosis by blocking TGF-β/Smad and YAP signaling. Phytomedicine. 2020;78:153294. https://doi.org/10.1016/j.phymed.2020.153294.

[42]

Qiao JB, Fan QQ, Zhang CL, et al. Hyperbranched lipoid-based lipid nanoparticles for bidirectional regulation of collagen accumulation in liver fibrosis. J Controlled Release. 2020; 321:629-640. https://doi.org/10.1016/j.jconrel.2020.02.049.

[43]

Wang J, Ding Y, Zhou W. Albumin self-modified liposomes for hepatic fibrosis therapy via SPARC-dependent pathways. Int J Pharm. 2020;574:118940. https://doi.org/10.1016/j.ijpharm.2019.118940.

[44]

Du D, Liu C, Qin M, et al. Metabolic dysregulation and emerging therapeutical targets for hepatocellular carcinoma. Acta Pharm Sin B. 2022; 12(2):558-580. https://doi.org/10.1016/j.apsb.2021.09.019.

[45]

Yang Y, Liao Y, Gui YP, et al. GL-V9 reverses adriamycin resistance in hepatocellular carcinoma cells by affecting JNK2-related autophagy. Chin J Nat Med. 2020; 18(7):491-499. https://doi.org/10.1016/S1875-5364(20)30059-5.

[46]

Jiang L, Li L, Liu YZ, et al. Drug resistance mechanism of kinase inhibitors in the treatment of hepatocellular carcinoma. Front Pharmacol. 2023;14:1097277. https://doi.org/10.3389/fphar.2023.1097277.

[47]

Mezghrani O, Tang Y, Ke X, et al. Hepatocellular carcinoma dually-targeted nanoparticles for reduction triggered intracellular delivery of doxorubicin. Int J Pharm. 2015; 478(2):553-568. https://doi.org/10.1016/j.ijpharm.2014.10.041.

[48]

Wang FZ, Xing L, Tang ZH, et al. Codelivery of doxorubicin and shAkt1 by poly(ethylenimine)-glycyrrhetinic acid nanoparticles to induce autophagy-mediated liver cancer combination therapy. Mol Pharmaceutics. 2016; 13(4):1298-1307. https://doi.org/10.1021/acs.molpharmaceut.5b00879.

[49]

Ge T, Shao Y, Bao X, et al. Cellular senescence in liver diseases: from mechanisms to therapies. Int Immunopharmacol. 2023;121:110522. https://doi.org/10.1016/j.intimp.2023.110522.

[50]

Wang K. Autophagy and apoptosis in liver injury. Cell Cycle. 2015; 14(11):1631-1642. https://doi.org/10.1080/15384101.2015.1038685.

[51]

Chalifoux O, Faerman B, Mailloux RJ. Mitochondrial hydrogen peroxide production by pyruvate dehydrogenase and α-ketoglutarate dehydrogenase in oxidative eustress and oxidative distress. J Biol Chem. 2023; 299(12):105399. https://doi.org/10.1016/j.jbc.2023.105399.

[52]

Ramírez A, Vázquez-Sánchez AY, Carrión-Robalino N, et al. Ion channels and oxidative stress as a potential link for the diagnosis or treatment of liver diseases. Oxid Med Cell Longev. 2016;2016:3928714. https://doi.org/10.1155/2016/3928714.

[53]

Chen J, Li X, Ge C, et al. The multifaceted role of ferroptosis in liver disease. Cell Death Differ. 2022; 29(3):467-480. https://doi.org/10.1038/s41418-022-00941-0.

[54]

Yu Q, Jiang Z, Zhang L. Bile acid regulation: a novel therapeutic strategy in non-alcoholic fatty liver disease. Pharmacol Ther. 2018; 190:81-90. https://doi.org/10.1016/j.pharmthera.2018.04.005.

[55]

Zhang H, Jiang Z, Zhang L. Dual effect of T helper cell 17 (Th17) and regulatory T cell (Treg) in liver pathological process: from occurrence to end stage of disease. Int Immunopharmacol. 2019; 69:50-59. https://doi.org/10.1016/j.intimp.2019.01.005.

[56]

Li X, Liu R, Zhang L, et al. The emerging role of AMP-activated protein kinase in cholestatic liver diseases. Pharmacol Res. 2017; 125:105-113. https://doi.org/10.1016/j.phrs.2017.09.002.

[57]

Zhang P, Qiang X, Zhang M, et al. Demethyleneberberine, a natural mitochondria-targeted antioxidant, inhibits mitochondrial dysfunction, oxidative stress, and steatosis in alcoholic liver disease mouse model. J Pharmacol Exp Ther. 2015; 352(1):139-U364. https://doi.org/10.1124/jpet.114.219832.

[58]

Sun J, Zhang J, Wang X, et al. Gut-liver crosstalk in sepsis-induced liver injury. Crit Care. 2020; 24(1):614. https://doi.org/10.1186/s13054-020-03327-1.

[59]

Arteel GE. Liver-lung axes in alcohol-related liver disease. Clin Mol Hepatol. 2020; 26(4):670-676. https://doi.org/10.3350/cmh.2020.0174.

[60]

Rose CF, Amodio P, Bajaj JS, et al. Hepatic encephalopathy: novel insights into classification, pathophysiology and therapy. J Hepatol. 2020; 73(6):1526-1547. https://doi.org/10.1016/j.jhep.2020.07.013.

[61]

Correale M, Tricarico L, Leopizzi A, et al.Liver disease and heart failure. Panminerva Med. 2020; 62(1):26-37. https://doi.org/10.23736/S0031-0808.19.03768-6.

[62]

Gupta K, Bhurwal A, Law C, et al. Acute kidney injury and hepatorenal syndrome in cirrhosis. World J Gastroenterol. 2021; 27(26):3984-4003. https://doi.org/10.3748/wjg.v27.i26.3984.

[63]

Xie Y, Hao H, Wang H, et al. Reversing effects of lignans on CCl4-induced hepatic CYP450 down regulation by attenuating oxidative stress. J Ethnopharmacol. 2014; 155(1):213-221. https://doi.org/10.1016/j.jep.2014.05.016.

[64]

Cabrera DeBuc D, Somfai GM, Koller A. Retinal microvascular network alterations: potential biomarkers of cerebrovascular and neural diseases. Am J Physiol Heart Circ Physiol. 2017; 312(2):H201-H212. https://doi.org/10.1152/ajpheart.00201.2016.

[65]

Reichenbach A, Fuchs U, Kasper M, et al. Hepatic retinopathy: morphological features of retinal glial (Müller) cells accompanying hepatic failure. Acta Neuropathol. 1995; 90(3):273-281. https://doi.org/10.1007/BF00296511.

[66]

Vitiello L, De Bernardo M, Guercio NS, et al. Pediatric liver diseases and ocular changes: what hepatologists and ophthalmologists should know and share with each other. Dig Liver Dis. 2020; 52(1):1-8. https://doi.org/10.1016/j.dld.2019.11.009.

[67]

Eckstein AK, Reichenbach A, Jacobi P, et al. Hepatic retinopathia.Changes in retinal function. Vision Res. 1997; 37(12):1699-1706. https://doi.org/10.1016/S0042-6989(96)00318-5.

[68]

Liccardo D, Mosca A, Petroni S, et al. The association between retinal microvascular changes, metabolic risk factors, and liver histology in pediatric patients with non-alcoholic fatty liver disease (NAFLD). J Gastroenterol. 2015; 50(8):903-912. https://doi.org/10.1007/s00535-014-1024-1.

[69]

Hosoya K, Tachikawa M. Inner blood-retinal barrier transporters: role of retinal drug delivery. Pharm Res. 2009; 26(9):2055-2065. https://doi.org/10.1007/s11095-009-9930-2.

[70]

Cunha-Vaz JG. The blood-ocular barriers: past, present, and future. Doc Ophthalmol. 1997; 93(1-2):149-157. https://doi.org/10.1007/BF02569055.

[71]

Kahán A, Málnási S, Szalai L, et al. Bilirubin retinopathy. Br J Ophthalmol. 1968; 52(11):808-817. https://doi.org/10.1136/bjo.52.11.808.

[72]

BenEzra D, Maftzir G, de Courten C, et al.Ocular penetration of cyclosporin A. III: the human eye. Br J Ophthalmol. 1990; 74(6):350-352. https://doi.org/10.1136/bjo.74.6.350.

[73]

BenEzra D, Maftzir G. Ocular penetration of cyclosporine A in the rat eye. Arch Ophthalmol. 1990; 108(4):584-587. https://doi.org/10.1001/archopht.1990.01070060132063.

[74]

Duvvuri S, Gandhi MD, Mitra AK. Effect of P-glycoprotein on the ocular disposition of a model substrate, quinidine. Curr Eye Res. 2003; 27(6):345-353. https://doi.org/10.1076/ceyr.27.6.345.18187.

[75]

Hosoya K, Makihara A, Tsujikawa Y, et al. Roles of inner blood-retinal barrier organic anion transporter 3 in the vitreous/retina-to-blood efflux transport of p-aminohippuric acid, benzylpenicillin, and 6-mercaptopurine. J Pharmacol Exp Ther. 2009; 329(1):87-93. https://doi.org/10.1124/jpet.108.146381.

[76]

Barza M, Kane A, Baum J. Pharmacokinetics of intravitreal carbenicillin, cefazolin, and gentamicin in rhesus monkeys. Invest Ophthalmol Vis Sci. 1983; 24(12):1602-1606.

[77]

Zou M, Wang A, Wei J, et al. An insight into the mechanism and molecular basis of dysfunctional immune response involved in cholestasis. Int Immunopharmacol. 2021;92:107328. https://doi.org/10.1016/j.intimp.2020.107328.

[78]

Li P, Yang Y, Lin Z, et al.Bile duct ligation impairs function and expression of Mrp1 at rat blood-retinal barrier via bilirubin-induced P38 MAPK pathway activations. Int J Mol Sci. 2022; 23(14):7666. https://doi.org/10.3390/ijms23147666.

[79]

Asashima T, Hori S, Ohtsuki S, et al. ATP-binding cassette transporter G2 mediates the efflux of phototoxins on the luminal membrane of retinal capillary endothelial cells. Pharm Res. 2006; 23(6):1235-1242. https://doi.org/10.1007/s11095-006-0067-2.

[80]

Boulton M, Rózanowska M, Rózanowski B. Retinal photodamage. J Photochem Photobiol B. 2001; 64(2-3):144-161. https://doi.org/10.1016/S1011-1344(01)00227-5.

[81]

Bynoe LA, Del Priore LV, Hornbeck R. Photosensitization of retinal pigment epithelium by protoporphyrin IX. Graefes Arch Clin Exp Ophthalmol. 1998; 236(3):230-233. https://doi.org/10.1007/s004170050069.

[82]

Jonker JW, Buitelaar M, Wagenaar E, et al. The breast cancer resistance protein protects against a major chlorophyll-derived dietary phototoxin and protoporphyria. Proc Natl Acad Sci U S A. 2002; 99(24):15649-15654. https://doi.org/10.1073/pnas.202607599.

[83]

Khungar V, Poordad F.Management of overt hepatic encephalopathy. Clinics In Liver Disease. 2012; 16(1):73-89. https://doi.org/10.1016/j.cld.2011.12.007.

[84]

Zhan T, Stremmel W. The diagnosis and treatment of minimal hepatic encephalopathy. Deutsches Arzteblatt International. 2012; 109(10):180-187. https://doi.org/10.3238/arztebl.2012.0180.

[85]

American Association for the Study of Liver Diseases, European Association for the Study of the Liver. Hepatic encephalopathy in chronic liver disease: 2014 practice guideline by the European Association for the Study of the Liver and the American Association for the Study of Liver Diseases. J Hepatol. 2014; 61(3):642-659. https://doi.org/10.1016/j.jhep.2014.05.042.

[86]

Redzic Z. Molecular biology of the blood-brain and the blood-cerebrospinal fluid barriers: similarities and differences. Fluids Barriers CNS. 2011; 8(1):3. https://doi.org/10.1186/2045-8118-8-3.

[87]

Miller DS. Regulation of P-glycoprotein and other ABC drug transporters at the blood-brain barrier. Trends Pharmacol Sci. 2010; 31(6):246-254. https://doi.org/10.1016/j.tips.2010.03.003.

[88]

Huang L, Li B, Li X, et al. Significance and mechanisms of P-glycoprotein in central nervous system diseases. Curr Drug Targets. 2019; 20(11):1141-1155. https://doi.org/10.2174/1389450120666190308144448.

[89]

Hediger MA, Romero MF, Peng JB, et al. The ABCs of solute carriers: physiological, pathological and therapeutic implications of human membrane transport proteinsIntroduction. Pflugers Arch Eur J Physiol. 2004; 447(5):465-468. https://doi.org/10.1007/s00424-003-1192-y.

[90]

Anderson CMH, Thwaites DT. Hijacking solute carriers for proton-coupled drug transport. Physiology (Bethesda Md). 2010; 25(6):364-377. https://doi.org/10.1152/physiol.00027.2010.

[91]

Fan Y, LIU X. Alterations in expression and function of ABC family transporters at blood-brain barrier under liver failure and their clinical significances. Pharmaceutics. 2018; 10(3):102. https://doi.org/10.3390/pharmaceutics10030102.

[92]

Jiang Q, Jiang G, Shi KQ, et al. Oral acetyl-L-carnitine treatment in hepatic encephalopathy: view of evidence-based medicine. Ann Hepatol. 2013; 12(5):803-809. https://doi.org/10.1016/S1665-2681(19)31323-7.

[93]

Cecere A, Ciaramella F, Tancredi L, et al. Efficacy of L-carnitine in reducing hyperammonaemia and improving neuropsychological test performance in patients with hepatic cirrhosis : results of a randomised trial. Clin Drug Invest. 2002; 22(Suppl 1):7-14. https://doi.org/10.2165/00044011-200222001-00002.

[94]

Malaguarnera M, Pistone G, Elvira R, et al. Effects of L-carnitine in patients with hepatic encephalopathy. World J Gastroenterol. 2005; 11(45):7197-7202. https://doi.org/10.3748/wjg.v11.i45.7197.

[95]

Skowrońska M, Albrecht J. Alterations of blood brain barrier function in hyperammonemia: an overview. Neurotoxic Res. 2012; 21(2):236-244. https://doi.org/10.1007/s12640-011-9269-4.

[96]

Weiss N, Barbier SHP, Colsch B, et al. Cerebrospinal fluid metabolomics highlights dysregulation of energy metabolism in overt hepatic encephalopathy. J Hepatol. 2016; 65(6):1120-1130. https://doi.org/10.1016/j.jhep.2016.07.046.

[97]

Li J, Wang X, Liu H, et al. Impaired hepatic and intestinal ATP-binding cassette transporter G5/8 was associated with high exposure of β-sitosterol and the potential risks to blood-brain barrier integrity in diabetic rats. J Pharm Pharmacol. 2014; 66(3):428-436. https://doi.org/10.1111/jphp.12178.

[98]

Jin S, Wang XT, Liu L, et al. P-glycoprotein and multidrug resistance-associated protein 2 are oppositely altered in brain of rats with thioacetamide-induced acute liver failure. Liver int. 2013; 33(2):274-282. https://doi.org/10.1111/j.1478-3231.2012.02862.x.

[99]

Li Y, Zhang J, Xu P, et al. Acute liver failure impairs function and expression of breast cancer-resistant protein (BCRP) at rat blood-brain barrier partly via ammonia-ROS-ERK1/2 activation. J Neurochem. 2016; 138(2):282-294. https://doi.org/10.1111/jnc.13666.

[100]

Liu L, Miao M, Chen Y, et al. Altered function and expression of ABC transporters at the blood-brain barrier and increased brain distribution of phenobarbital in acute liver failure mice. Front Pharmacol. 2018;9:190. https://doi.org/10.3389/fphar.2018.00190.

[101]

Xu P, Ling ZL, Zhang J, et al. Unconjugated bilirubin elevation impairs the function and expression of breast cancer resistance protein (BCRP) at the blood-brain barrier in bile duct-ligated rats. Acta Pharmacol Sin. 2016; 37(8):1129-1140. https://doi.org/10.1038/aps.2016.25.

[102]

Qin YY, Xu P, Wu T, et al. Bile duct ligation enhances AZT CNS toxicity partly by impairing the expression and function of BCRP in rat brain. Acta Pharmacol Sin. 2020; 41(2):181-191. https://doi.org/10.1038/s41401-019-0242-8.

[103]

Wu T, Sheng Y, Qin YY, et al. Bile duct ligation causes opposite impacts on the expression and function of BCRP and P-gp in rat brain partly via affecting membrane expression of ezrin/radixin/moesin proteins. Acta Pharmacol Sin. 2021; 42(11):1942-1950. https://doi.org/10.1038/s41401-020-00602-3.

[104]

Zhu L, Zhou H, Xu F, et al. Hepatic ischemia-reperfusion impairs blood-brain barrier partly due to release of arginase from injured liver. Front Pharmacol. 2021;12:724471. https://doi.org/10.3389/fphar.2021.724471.

[105]

Yamauchi A, Dohgu S, Takata F, et al. Partial hepatectomy aggravates cyclosporin A-induced neurotoxicity by lowering the function of the blood-brain barrier in mice. Life Sci. 2011; 88(11-12):529-534. https://doi.org/10.1016/j.lfs.2011.01.012.

[106]

Zhang J, Zhang M, Sun B, et al. Hyperammonemia enhances the function and expression of P-glycoprotein and Mrp2 at the blood-brain barrier through NF-κB. J Neurochem. 2014; 131(6):791-802. https://doi.org/10.1111/jnc.12944.

[107]

Zhou Y, Zhou J, Li P, et al. Increase in P-glycoprotein levels in the blood-brain barrier of partial portal vein ligation/chronic hyperammonemia rats is medicated by ammonia/reactive oxygen species/ERK1/2 activation: in vitro and in vivo studies. Eur J Pharmacol. 2019; 846:119-127. https://doi.org/10.1016/j.ejphar.2019.01.005.

[108]

Gazzin S, Berengeno AL, Strazielle N, et al. Modulation of Mrp 1 (ABCc1) and Pgp (ABCb1) by bilirubin at the blood-CSF and blood-brain barriers in the Gunn rat. PLoS One. 2011; 6(1):e16165. https://doi.org/10.1371/journal.pone.0016165.

[109]

Bouzbib C, El Mourabit H, Wendum D, et al. ATP-binding cassette transporters expression in rats with cirrhosis and hepatic encephalopathy. Clin Res Hepatol Gastroenterol. 2022; 46(9):101784. https://doi.org/10.1016/j.clinre.2021.101784.

[110]

Miah MK, Shaik IH, Bickel U, et al. Effects of hepatic ischemia-reperfusion injury on the P-glycoprotein activity at the liver canalicular membrane and blood-brain barrier determined by in vivo administration of rhodamine 123 in rats. Pharm Res. 2014; 31(4):861-873. https://doi.org/10.1007/s11095-013-1208-z.

[111]

Varma MV, Ambler CM, Ullah M, et al. Targeting intestinal transporters for optimizing oral drug absorption. Curr Drug Metab. 2010; 11(9):730-742. https://doi.org/10.2174/138920010794328850.

[112]

Dos Reis SCH, Mori Koono EE, Kano EK, et al. Bioequivalence and pharmacokinetics of two zidovudine formulations in healthy Brazilian volunteers: an open-label, randomized, single-dose, two-way crossover study. Clin Ther. 2008; 30(5):902-908. https://doi.org/10.1016/j.clinthera.2008.05.003.

[113]

Child S, Montaner J, Tsoukas C, et al. Canadian multicenter azidothymidine trial: AZT pharmacokinetics. J Acquir Immune Defic Syndr (1988). 1991; 4(9):865-870.

[114]

Taburet AM, Naveau S, Zorza G, et al. Pharmacokinetics of zidovudine in patients with liver cirrhosis. Clin Pharmacol Ther. 1990; 47(6):731-739. https://doi.org/10.1038/clpt.1990.101.

[115]

Moore KH, Raasch RH, Brouwer KL, et al. Pharmacokinetics and bioavailability of zidovudine and its glucuronidated metabolite in patients with human immunodeficiency virus infection and hepatic disease (AIDS Clinical Trials Group Protocol 062). Antimicrob Agents Chemother. 1995; 39(12):2732-2737. https://doi.org/10.1128/AAC.39.12.2732.

[116]

Dalpiaz A, Fogagnolo M, Ferraro L, et al. Nasal chitosan microparticles target a zidovudine prodrug to brain HIV sanctuaries. Antiviral Res. 2015; 123:146-157. https://doi.org/10.1016/j.antiviral.2015.09.013.

[117]

Pan G, Giri N, Elmquist WF. Abcg2/Bcrp1 mediates the polarized transport of antiretroviral nucleosides abacavir and zidovudine. Drug Metab Dispos. 2007; 35(7):1165-1173. https://doi.org/10.1124/dmd.106.014274.

[118]

de Souza J, Benet LZ, Huang Y, et al. Comparison of bidirectional lamivudine and zidovudine transport using MDCK, MDCK-MDR1, and Caco-2 cell monolayers. J Pharm Sci. 2009; 98(11):4413-4419. https://doi.org/10.1002/jps.21744.

[119]

Zimmermann C, Hruz P, Gutmann H, et al. Decreased expression of breast cancer resistance protein in the duodenum in patients with obstructive cholestasis. Digestion. 2006; 74(2):101-108. https://doi.org/10.1159/000097800.

[120]

Dietrich CG, Geier A, Salein N, et al.Consequences of bile duct obstruction on intestinal expression and function of multidrug resistance-associated protein 2. Gastroenterology. 2004; 126(4):1044-1053. https://doi.org/10.1053/j.gastro.2003.12.046.

[121]

Wang F, Miao MX, Sun BB, et al. Acute liver failure enhances oral plasma exposure of zidovudine in rats by downregulation of hepatic UGT2B7 and intestinal P-gp. Acta Pharmacol Sin. 2017; 38(11):1554-1565. https://doi.org/10.1038/aps.2017.54.

[122]

Yumoto R, Murakami T, Takano M. Differential effect of acute hepatic failure on in vivo and in vitro P-glycoprotein functions in the intestine. Pharm Res. 2003; 20(5):765-771. https://doi.org/10.1023/A:1023485519485.

[123]

Huang ZH, Murakami T, Okochi A, et al. Expression and function of P-glycoprotein in rats with carbon tetrachloride-induced acute hepatic failure. J Pharm Pharmacol. 2001; 53(6):873-881. https://doi.org/10.1211/0022357011776036.

[124]

Murakami T, Yumoto R, Nagai J, et al. Factors affecting the expression and function of P-glycoprotein in rats: drug treatments and diseased states. Pharmazie. 2002; 57(2):102-107.

[125]

Kamisako T, Ogawa H. Alteration of the expression of adenosine triphosphate-binding cassette transporters associated with bile acid and cholesterol transport in the rat liver and intestine during cholestasis. J Gastroenterol Hepatol. 2005; 20(9):1429-1434. https://doi.org/10.1111/j.1440-1746.2005.03950.x.

[126]

Koepsell H. Organic cation transporters in health and disease. Pharmacol Rev. 2020; 72(1):253-319. https://doi.org/10.1124/pr.118.015578.

[127]

Koepsell H, Lips K, Volk C. Polyspecific organic cation transporters: structure, function, physiological roles, and biopharmaceutical implications. Pharm Res. 2007; 24(7):1227-1251. https://doi.org/10.1007/s11095-007-9254-z.

[128]

Vollmar J, Kim YO, Marquardt JU, et al. Deletion of organic cation transporter Oct3 promotes hepatic fibrosis via upregulation of TGFβ. Am J Physiol Gastrointest Liver Physiol. 2019; 317(2):G195-G202. https://doi.org/10.1152/ajpgi.00088.2019.

[129]

Hong S, Li S, Meng X, et al. Bile duct ligation differently regulates protein expressions of organic cation transporters in intestine, liver and kidney of rats through activation of farnesoid X receptor by cholate and bilirubin. Acta Pharm Sin B. 2023; 13(1):227-245. https://doi.org/10.1016/j.apsb.2022.06.010.

[130]

Ali I, Slizgi JR, Kaullen JD, et al. Transporter-mediated alterations in patients with NASH increase systemic and hepatic exposure to an OATP and MRP2 substrate. Clin Pharmacol Ther. 2018; 104(4):749-756. https://doi.org/10.1002/cpt.997.

[131]

Hatorp V, Walther KH, Christensen MS, et al. Single-dose pharmacokinetics of repaglinide in subjects with chronic liver disease. J Clin Pharmacol. 2000; 40(2):142-152. https://doi.org/10.1177/00912700022008793.

[132]

Yuan ZW, Li YZ, Liu ZQ, et al. Role of tangeretin as a potential bioavailability enhancer for silybin: pharmacokinetic and pharmacological studies. Pharmacol Res. 2018; 128:153-166. https://doi.org/10.1016/j.phrs.2017.09.019.

[133]

Yin T, Zhang Y, Liu Y, et al. The efficiency and mechanism of N-octyl-O, N-carboxymethyl chitosan-based micelles to enhance the oral absorption of silybin. Int J Pharm. 2018; 536(1):231-240. https://doi.org/10.1016/j.ijpharm.2017.11.034.

[134]

Schrieber SJ, Wen Z, Vourvahis M, et al. The pharmacokinetics of silymarin is altered in patients with hepatitis C virus and nonalcoholic fatty liver disease and correlates with plasma caspase-3/7 activity. Drug Metab Dispos. 2008; 36(9):1909-1916. https://doi.org/10.1124/dmd.107.019604.

[135]

Lawitz E, Rodriguez-Torres M, Cornpropst MT, et al. 1130 The effect of hepatic impairment on the pharmacokinetics and antiviral activity of PSI-7977 in hepatitis C infected subjects treated for seven days. J Hepatol. 2012;56:S445-S446. https://doi.org/10.1016/S0168-8278(12)61142-8.

[136]

Hui CK, Cheung BMY, Lau GKK. Pharmacokinetics of pitavastatin in subjects with Child-Pugh A and B cirrhosis. Br J Clin Pharmacol. 2005; 59(3):291-297. https://doi.org/10.1111/j.1365-2125.2004.02251.x.

[137]

Sharpton SR, Loomba R. Emerging role of statin therapy in the prevention and management of cirrhosis, portal hypertension, and HCC. Hepatology. 2023; 78(6):1896-1906. https://doi.org/10.1097/HEP.0000000000000278.

[138]

Guo C, He L, Yao D, et al. Alpha-naphthylisothiocyanate modulates hepatobiliary transporters in sandwich-cultured rat hepatocytes. Toxicol Lett. 2014; 224(1):93-100. https://doi.org/10.1016/j.toxlet.2013.09.019.

[139]

Jia YM, Zhu T, Zhou H, et al. Multidrug resistance-associated protein 3 is responsible for the efflux transport of curcumin glucuronide from hepatocytes to the blood. Drug Metab Dispos. 2020; 48(10):966-971. https://doi.org/10.1124/dmd.119.089193.

[140]

Martinez-Becerra P, Vaquero J, Romero MR, et al. No correlation between the expression of FXR and genes involved in multidrug resistance phenotype of primary liver tumors. Mol Pharmaceutics. 2012; 9(6):1693-1704. https://doi.org/10.1021/mp300028a.

[141]

Asensio M, Herraez E, Macias RIR, et al. Relevance of the organic anion transporting polypeptide 1B3 (OATP1B3) in the personalized pharmacological treatment of hepatocellular carcinoma. Biochem Pharmacol. 2023;214:115681. https://doi.org/10.1016/j.bcp.2023.115681.

[142]

Wang L, Collins C, Kelly EJ, et al. Transporter expression in liver tissue from subjects with alcoholic or hepatitis C cirrhosis quantified by targeted quantitative proteomics. Drug Metab Dispos. 2016; 44(11):1752-1758. https://doi.org/10.1124/dmd.116.071050.

[143]

Ogasawara K, Terada T, Katsura T, et al. Hepatitis C virus-related cirrhosis is a major determinant of the expression levels of hepatic drug transporters. Drug Metab Pharmacokinet. 2010; 25(2):190-199. https://doi.org/10.2133/dmpk.25.190.

[144]

Lake AD, Novak P, Fisher CD, et al. Analysis of global and absorption, distribution, metabolism, and elimination gene expression in the progressive stages of human nonalcoholic fatty liver disease. Drug Metab Dispos. 2011; 39(10):1954-1960. https://doi.org/10.1124/dmd.111.040592.

[145]

Fickert P, Wagner M. Biliary bile acids in hepatobiliary injury-what is the link?. J Hepatol. 2017; 67(3):619-631. https://doi.org/10.1016/j.jhep.2017.04.026.

[146]

Liang Y, Li S, Chen L. The physiological role of drug transporters. Protein Cell. 2015; 6(5):334-350. https://doi.org/10.1007/s13238-015-0148-2.

[147]

Templeton I, Eichenbaum G, Sane R, et al.Case study 5. Deconvoluting hyperbilirubinemia: differentiating between hepatotoxicity and reversible inhibition of UGT1A1, MRP2, or OATP1B 1 in drug development. Methods Mol Biol. 2014; 1113:471-483. https://doi.org/10.1007/978-1-62703-758-7_22.

[148]

Canet MJ, Merrell MD, Hardwick RN, et al. Altered regulation of hepatic efflux transporters disrupts acetaminophen disposition in pediatric nonalcoholic steatohepatitis. Drug Metab Dispos. 2015; 43(6):829-835. https://doi.org/10.1124/dmd.114.062703.

[149]

Dzierlenga AL, Clarke JD, Hargraves TL, et al. Mechanistic basis of altered morphine disposition in nonalcoholic steatohepatitis. J Pharmacol Exp Ther. 2015; 352(3):462-470. https://doi.org/10.1124/jpet.114.220764.

[150]

Clarke JD, Hardwick RN, Lake AD, et al. Synergistic interaction between genetics and disease on pravastatin disposition. J Hepatol. 2014; 61(1):139-147. https://doi.org/10.1016/j.jhep.2014.02.021.

[151]

Paulusma CC, Kothe MJ, Bakker CT, et al. Zonal down-regulation and redistribution of the multidrug resistance protein 2 during bile duct ligation in rat liver. Hepatology (Baltimore Md). 2000; 31(3):684-693. https://doi.org/10.1002/hep.510310319.

[152]

Donner MG, Keppler D. Up-regulation of basolateral multidrug resistance protein 3 (Mrp3) in cholestatic rat liver. Hepatology (Baltimore Md). 2001; 34(2):351-359. https://doi.org/10.1053/jhep.2001.26213.

[153]

Xu P, Zhou H, Li YZ, et al.Baicalein enhances the oral bioavailability and hepatoprotective effects of silybin through the inhibition of efflux transporters BCRP and MRP2. Front Pharmacol. 2018;9:1115. https://doi.org/10.3389/fphar.2018.01115.

[154]

Zhao JQ, Zhao Z, Zhang C, et al. Long-term oral administration of Epimedii Folium induced cholestasis in mice by interfering with bile acid transport. J Ethnopharmacol. 2022;293:115254. https://doi.org/10.1016/j.jep.2022.115254.

[155]

Johnson RJ, Couser WG. Hepatitis B infection and renal disease: clinical, immunopathogenetic and therapeutic considerations. Kidney International. 1990; 37(2):663-676. https://doi.org/10.1038/ki.1990.32.

[156]

Agnello V, De Rosa FG. Extrahepatic disease manifestations of HCV infection: some current issues. J Hepatol. 2004; 40(2):341-352. https://doi.org/10.1016/j.jhep.2003.10.009.

[157]

Minemura M, Tajiri K, Shimizu Y.Systemic abnormalities in liver disease. World J Gastroentero. 2009; 15(24):2960-2974. https://doi.org/10.3748/wjg.15.2960.

[158]

Zhou Y, Du B, Kan M, et al. Drug elimination alteration in acute lymphoblastic leukemia mediated by renal transporters and glomerular filtration. Pharm Res. 2020; 37(8):158. https://doi.org/10.1007/s11095-020-02896-8.

[159]

Yacovino LL, Aleksunes LM. Endocrine and metabolic regulation of renal drug transporters. J Biochem Mol Toxicol. 2012; 26(10):407-421. https://doi.org/10.1002/jbt.21435.

[160]

Granados JC, Richelle A, Gutierrez JM, et al.Coordinate regulation of systemic and kidney tryptophan metabolism by the drug transporters OAT1 and OAT3. J Biol Chem. 2021;296:100575. https://doi.org/10.1016/j.jbc.2021.100575.

[161]

Frost KL, Jilek JL, Sinari S, et al. Renal transporter alterations in patients with chronic liver diseases: nonalcoholic steatohepatitis, alcohol-associated, viral hepatitis, and alcohol-viral combination. Drug Metab Dispos. 2023; 51(2):155-164. https://doi.org/10.1124/dmd.122.001038.

[162]

Pinzani M, Daskalopoulos G, Laffi G, et al. Altered furosemide pharmacokinetics in chronic alcoholic liver disease with ascites contributes to diuretic resistance. Gastroenterology. 1987; 92(2):294-298. https://doi.org/10.1016/0016-5085(87)90120-X.

[163]

Yang Y, Liu X. Imbalance of drug transporter-CYP450s interplay by diabetes and its clinical significance. Pharmaceutics. 2020; 12(4):348. https://doi.org/10.3390/pharmaceutics12040348.

[164]

Brookman LJ, Rolan PE, Benjamin IS, et al. Pharmacokinetics of valsartan in patients with liver disease. Clin Pharmacol Ther. 1997; 62(3):272-278. https://doi.org/10.1016/S0009-9236(97)90029-1.

[165]

Stangier J, Su CA, Schöndorfer G, et al. Pharmacokinetics and safety of intravenous and oral telmisartan 20 mg and 120 mg in subjects with hepatic impairment compared with healthy volunteers. J Clin Pharmacol. 2000; 40(12 Pt1):1355-1364.

[166]

Yamashiro W, Maeda K, Hirouchi M, et al. Involvement of transporters in the hepatic uptake and biliary excretion of valsartan, a selective antagonist of the angiotensin II AT1-receptor, in humans. Drug Metab Dispos. 2006; 34(7):1247-1254. https://doi.org/10.1124/dmd.105.008938.

[167]

Tirona RG, Kassam Z, Strapp R, et al. Apixaban and rosuvas-tatin pharmacokinetics in nonalcoholic fatty liver disease. Drug Metab Dispos. 2018; 46(5):485-492. https://doi.org/10.1124/dmd.117.079624.

[168]

Chevalier C, Dubourg J, Bolze S, et al. Pharmacokinetics of imeglimin in subjects with moderate hepatic impairment. Clin Pharmacokinet. 2021; 60(4):485-490. https://doi.org/10.1007/s40262-020-00948-1.

[169]

Tanaka Y, Kobayashi Y, Gabazza EC, et al. Increased renal expression of bilirubin glucuronide transporters in a rat model of obstructive jaundice. Am J Physiol Gastrointest Liver Physiol. 2002; 282(4):G656-G662. https://doi.org/10.1152/ajpgi.00383.2001.

[170]

Lee J, Azzaroli F, Wang L, et al. Adaptive regulation of bile salt transporters in kidney and liver in obstructive cholestasis in the rat. Gastroenterology. 2001; 121(6):1473-1484. https://doi.org/10.1053/gast.2001.29608.

[171]

Khemawoot P, Maruyama C, Tsukada H, et al. Influence of chronic hepatic failure on disposition kinetics of valproate excretion through a phase II reaction in rats treated with carbon tetrachloride. Biopharm Drug Dispos. 2007; 28(6):331-338. https://doi.org/10.1002/bdd.563.

[172]

Chen C, Slitt AL, Dieter MZ, et al. Up-regulation of Mrp 4 expression in kidney of Mrp2-deficient TR-rats. Biochem Pharmacol. 2005; 70(7):1088-1095. https://doi.org/10.1016/j.bcp.2005.06.019.

[173]

Laho T, Clarke JD, Dzierlenga AL, et al. Effect of nonalcoholic steatohepatitis on renal filtration and secretion of adefovir. Biochem Pharmacol. 2016; 115:144-151. https://doi.org/10.1016/j.bcp.2016.07.001.

[174]

Ikemura K, Nakagawa E, Kurata T, et al. Altered pharmacokinetics of cimetidine caused by down-regulation of renal rat organic cation transporter 2 (rOCT2) after liver ischemia-reperfusion injury. Drug Metab Pharmacokinet. 2013; 28(6):504-509. https://doi.org/10.2133/dmpk.DMPK-13-RG-021.

[175]

Tanphaichitr V, Leelahagul P. Carnitine metabolism and human carnitine deficiency. Nutrition. 1993; 9(3):246-254.

[176]

Bowyer BA, Miles JM, Haymond MW, et al. L-carnitine therapy in home parenteral nutrition patients with abnormal liver tests and low plasma carnitine concentrations. Gastroenterology. 1988; 94(2):434-438. https://doi.org/10.1016/0016-5085(88)90433-7.

[177]

Nowaczyk MJ, Whelan D, Hill RE, et al. Long-chain hydroxydicarboxylic aciduria, carnitine depletion and acetaminophen exposure. J Inherit Metab Dis. 2000; 23(2):188-189. https://doi.org/10.1023/A:1005630218986.

[178]

Zhi H, Dai Y, Su L, et al. Thioacetamide-induced acute liver injury increases metformin plasma exposure by downregulating renal OCT2 and MATE1 expression and function. Biomedicines. 2023; 11(12):3314. https://doi.org/10.3390/biomedicines11123314.

[179]

Lane K, Dixon JJ, MacPhee IA, et al. Renohepatic crosstalk: does acute kidney injury cause liver dysfunction. Nephrol Dial Transplant. 2013; 28(7):1634-1647. https://doi.org/10.1093/ndt/gft091.

[180]

Szabo G. Gut-liver axis in alcoholic liver disease. Gastroenterology. 2015; 148(1):30-36. https://doi.org/10.1053/j.gastro.2014.10.042.

[181]

Liu KD, Glidden DV, Eisner MD, et al. Predictive and pathogenetic value of plasma biomarkers for acute kidney injury in patients with acute lung injury. Crit Care Med. 2007; 35(12):2755-2761. https://doi.org/10.1097/01.CCM.0000291649.72238.6D.

[182]

Arakawa H, Kato Y. Emerging roles of uremic toxins and inflammatory cytokines in the alteration of hepatic drug disposition in patients with kidney dysfunction. Drug Metab Dispos. 2023; 51(9):1127-1135. https://doi.org/10.1124/dmd.122.000967.

[183]

Kuno T, Hirayama-Kurogi M, Ito S, et al. Effect of intestinal flora on protein expression of drug-metabolizing enzymes and transporters in the liver and kidney of germ-free and antibiotics-treated mice. Mol Pharmaceutics. 2016; 13(8):2691-2701. https://doi.org/10.1021/acs.molpharmaceut.6b00259.

[184]

Wang L, Hartmann P, Haimerl M, et al. Nod2 deficiency protects mice from cholestatic liver disease by increasing renal excretion of bile acids. J Hepatol. 2014; 60(6):1259-1267. https://doi.org/10.1016/j.jhep.2014.02.012.

[185]

Laouari D, Yang R, Veau C, et al. Two apical multidrug transporters, P-gp and MRP2, are differently altered in chronic renal failure. Am J Physiol Renal Physiol. 2001; 280(4):F636-F645. https://doi.org/10.1152/ajprenal.2001.280.4.F636.

[186]

Lu Y, Luo Q, Jia X, et al. Multidisciplinary strategies to enhance therapeutic effects of flavonoids from Epimedii Folium: integration of herbal medicine, enzyme engineering, and nanotechnology. J Pharm Anal. 2023; 13(3):239-254. https://doi.org/10.1016/j.jpha.2022.12.001.

[187]

Zhao Z, Du JF, Wang QL, et al. An integrated strategy combining network toxicology and feature-based molecular networking for exploring hepatotoxic constituents and mechanism of Epimedii Folium-induced hepatotoxicity in vitro. Food Chem Toxicol. 2023;176:113785. https://doi.org/10.1016/j.fct.2023.113785.

[188]

Zhang C, Zhao JQ, Sun JX, et al. Psoralen and isopsoralen from Psoraleae Fructus aroused hepatotoxicity via induction of aryl hydrocarbon receptor-mediated CYP1A2 expression. J Ethnopharmacol. 2022;297:115577. https://doi.org/10.1016/j.jep.2022.115577.

[189]

Zhang C, Fan S, Zhao JQ, et al. Transcriptomics and metabolomics reveal the role of CYP1A2 in psoralen/isopsoralen-induced metabolic activation and hepatotoxicity. Phytother Res. 2023; 37(1):163-180. https://doi.org/10.1002/ptr.7604.

[190]

Zhang C, Qian DD, Yu T, et al. Multi-parametric cellular imaging coupled with multi-component quantitative profiling for screening of hepatotoxic equivalent markers from Psoraleae Fructus. Phytomedicine. 2021;93:153518. https://doi.org/10.1016/j.phymed.2021.153518.

[191]

Zhang Y, Zhang Y, Li J, et al. The role of hepatic antioxidant capacity and hepatobiliary transporter in liver injury induced by isopsoralen in zebrafish larvae. Hum Exp Toxicol. 2019; 38(1):36-44. https://doi.org/10.1177/0960327118774873.

[192]

Li P, Li S, Gu H, et al. The exposure-effect-toxicity correlation of docetaxel and magnesium isoglycyrrhizinate in non-small cell lung tumor-bearing mice. Biomed Pharmacother. 2018; 97:1000-1010. https://doi.org/10.1016/j.biopha.2017.10.158.

[193]

Qu B, Xing R, Ge Q, et al. Pharmacokinetic study of docetaxel after intravenous administration of magnesium isoglycyrrhizinate injection in rats by UPLC-MS-MS. Lat Am J Pharm. 2016; 35(8):1776-1782.

[194]

Sun X, Li J, Guo C, et al. Pharmacokinetic effects of curcumin on docetaxel mediated by OATP1B1, OATP1B3 and CYP450s. Drug Metab Pharmacokinet. 2016; 31(4):269-275. https://doi.org/10.1016/j.dmpk.2016.02.005.

[195]

Hao T, Ling Y, Wu M, et al. Enhanced oral bioavailability of docetaxel in rats combined with myricetin: in situ and in vivo evidences. Eur J Pharm Sci. 2017; 101:71-79. https://doi.org/10.1016/j.ejps.2017.02.009.

[196]

Wei Y, Zhou S, Hao T, et al. Further enhanced dissolution and oral bioavailability of docetaxel by coamorphization with a natural P-gp inhibitor myricetin. Eur J Pharm Sci. 2019; 129:21-30. https://doi.org/10.1016/j.ejps.2018.12.016.

[197]

Jiang W, Guo H, Su D, et al. Ameliorative effect of magnesium isoglycyrrhizinate on hepatic encephalopathy by epirubicin. Int Immunopharmacol. 2019;75:105774. https://doi.org/10.1016/j.intimp.2019.105774.

[198]

Zhang L, Yang SY, Qi Li FR, et al. Administration of isoliquiritigenin prevents nonalcoholic fatty liver disease through a novel IQGAP2-CREB-SIRT1 axis. Phytother Res. 2021; 35(7):3898-3915. https://doi.org/10.1002/ptr.7101.

[199]

Hou Z, Chen L, Fang P, et al. Mechanisms of triptolide-induced hepatotoxicity and protective effect of combined use of isoliquiritigenin: possible roles of Nrf2 and hepatic transporters. Front Pharmacol. 2018;9:226. https://doi.org/10.3389/fphar.2018.00226.

[200]

Li FY, Xie H, Weng L, et al. Effects of diammonium glycyrrhizinate on hepatic and intestinal UDP-glucuronosyltransferases in rats: implication in herb-drug interactions. Chin J Nat Med. 2016; 14(7):534-540.

[201]

Xu R, Wang Q, Zhang J, et al. Changes in pharmacokinetic profiles of acetaminophen and its glucuronide after pretreatment with combinations of N-acetylcysteine and either glycyrrhizin, silibinin or spironolactone in rat. Xenobiotica. 2014; 44(6):541-546. https://doi.org/10.3109/00498254.2013.858849.

[202]

Yan T, Wang H, Cao L, et al. Glycyrrhizin alleviates nonalcoholic steatohepatitis via modulating bile acids and meta-inflammation. Drug Metab Dispos. 2018; 46(9):1310-1319. https://doi.org/10.1124/dmd.118.082008.

[203]

Yan T, Wang H, Zhao M, et al. Glycyrrhizin protects against acetaminophen-induced acute liver injury via alleviating tumor necrosis factor α-mediated apoptosis. Drug Metab Dispos. 2016; 44(5):720-731. https://doi.org/10.1124/dmd.116.069419.

[204]

Kong LL, Zhuang XM, Yang HY, et al. Inhibition of P-glycoprotein gene expression and function enhances triptolide-induced hepatotoxicity in mice. Sci Rep. 2015;5:11747. https://doi.org/10.1038/srep11747.

[205]

Yuan Z, Hasnat M, Liang P, et al. The role of inflammasome activation in triptolide-induced acute liver toxicity. Int Immunopharmacol. 2019;75:105754. https://doi.org/10.1016/j.intimp.2019.105754.

[206]

Wang L, Xu D, Li L, et al. Possible role of hepatic macrophage recruitment and activation in triptolide-induced hepatotoxicity. Toxicol Lett. 2018; 299:32-39. https://doi.org/10.1016/j.toxlet.2018.08.017.

[207]

Huang S, Liu L, Mei HF, et al. Altered integrity of hepatocyte tight junctions in rats with triptolide-induced cholestasis. Chin J Nat Med. 2021; 19(3):188-194.

[208]

Sun R, Xu D, Wei Q, et al. Silybin ameliorates hepatic lipid accumulation and modulates global metabolism in an NAFLD mouse model. Biomed Pharmacother. 2020;123:109721. https://doi.org/10.1016/j.biopha.2019.109721.

[209]

Zhang R, Xu D, Zhang Y, et al. Silybin restored CYP3A expression through the sirtuin 2/nuclear factor κ-B pathway in mouse nonalcoholic fatty liver disease. Drug Metab Dispos. 2021; 49(9):770-779. https://doi.org/10.1124/dmd.121.000438.

[210]

Cui S, Pan XJ, Ge CL, et al. Silybin alleviates hepatic lipid accumulation in methionine-choline deficient diet-induced nonalcoholic fatty liver disease in mice via peroxisome proliferator-activated receptor α. Chin J Nat Med. 2021; 19(6):401-411. https://doi.org/10.1016/S1875-5364(21)60039-0.

[211]

Wu J, Zhang C, He T, et al. Polyunsaturated fatty acids drive neutrophil extracellular trap formation in nonalcoholic steatohepatitis. Eur J Pharmacol. 2023;945:175618. https://doi.org/10.1016/j.ejphar.2023.175618.

[212]

Wu F, Cui M, Wang S, et al. Effect of berberine on pharmacokinetics and pharmacodynamics of atorvastatin in hyperlipidemia rats. Xenobiotica. 2023; 53(12):644-652. https://doi.org/10.1080/00498254.2023.2290648.

[213]

Zha W, Wang G, Xu W, et al. Inhibition of P-glycoprotein by HIV protease inhibitors increases intracellular accumulation of berberine in murine and human macrophages. PLoS One. 2013; 8(1):e54349. https://doi.org/10.1371/journal.pone.0054349.

[214]

Shu N, Hu M, Liu C, et al.Decreased exposure of atorvastatin in diabetic rats partly due to induction of hepatic Cyp3a and Oatp2. Xenobiotica. 2016; 46(10):875-881. https://doi.org/10.3109/00498254.2016.1141437.

[215]

Wang Z, Yang H, Xu J, et al. Prediction of atorvastatin pharmacokinetics in high-fat diet and low-dose streptozotocin-induced diabetic rats using a semiphysiologically based pharmacokinetic model involving both enzymes and transporters. Drug Metab Dispos. 2019; 47(10):1066-1079. https://doi.org/10.1124/dmd.118.085902.

[216]

Tang X, Yang Q, Yang F, et al. Target profiling analyses of bile acids in the evaluation of hepatoprotective effect of gentiopicroside on anti-induced cholestatic liver injury in mice. J Ethnopharmacol. 2016; 194:63-71. https://doi.org/10.1016/j.jep.2016.08.049.

[217]

Chai J, Du X, Chen S, et al. Oral administration of oleanolic acid, isolated from Swertia mussotii Franch, attenuates liver injury, inflammation, and cholestasis in bile duct-ligated rats. Int J Clin Exp Med. 2015; 8(2):1691-1702.

[218]

Feng XC, Du XH, Chen S, et al. Swertianlarin, isolated from Swertia mussotii Franch, increases detoxification enzymes and efflux transporters expression in rats. Int J Clin Exp Path. 2015; 8(1):184-195.

[219]

Chouhan MD, Taylor SA, Bainbridge A, et al. Haemodynamic changes in cirrhosis following terlipressin and induction of sepsis-a preclinical study using caval subtraction phase-contrast and cardiac MRI. Eur Radiol. 2021; 31(4):2518-2528. https://doi.org/10.1007/s00330-020-07259-w.

[220]

Pose E, Piano S, Juanola A, et al. Hepatorenal syndrome in cirrhosis. Gastroenterology. 2024; 166(4):588-604. e581. https://doi.org/10.1053/j.gastro.2023.11.306.

[221]

Bonavia A, Singbartl K. Kidney injury and electrolyte abnormalities in liver failure. Semin Respir Crit Care Med. 2018; 39(5):556-565. https://doi.org/10.1055/s-0038-1673616.

[222]

Dbouk N, McGuire BM. Hepatic encephalopathy: a review of its pathophysiology and treatment. Curr Treat Options Gastroenterol. 2006; 9(6):464-474. https://doi.org/10.1007/s11938-006-0003-x.

[223]

R GB, Panisello-Roselló A, Sanchez-Nuno S, et al.Nrf2 and oxidative stress in liver ischemia/reperfusion injury. FEBS J. 2022; 289(18):5463-5479. https://doi.org/10.1111/febs.16336.

[224]

Song J, Zhao X, Bo J, et al. A polysaccharide from Alhagi honey protects the intestinal barrier and regulates the Nrf2/HO-1-TLR4/MAPK signaling pathway to treat alcoholic liver disease in mice. J Ethnopharmacol. 2024;321:117552. https://doi.org/10.1016/j.jep.2023.117552.

[225]

Paradies G, Paradies V, Ruggiero FM, et al. Oxidative stress, cardiolipin and mitochondrial dysfunction in nonalcoholic fatty liver disease. World J Gastroenterol. 2014; 20(39):14205-14218. https://doi.org/10.3748/wjg.v20.i39.14205.

[226]

Nakazato PCG, Victorino JP, Fina CF, et al. Liver ischemia and reperfusion injury. Pathophysiology and new horizons in preconditioning and therapy. Acta Cir Bras. 2018; 33(8):723-735. https://doi.org/10.1590/s0102-865020180080000008.

[227]

Hamoud AR, Weaver L, Stec DE, et al. Bilirubin in the liver-gut signaling axis. Trends Endocrinol Metab. 2018; 29(3):140-150. https://doi.org/10.1016/j.tem.2018.01.002.

[228]

Butterworth RF, Giguère JF, Michaud J, et al. Ammonia: key factor in the pathogenesis of hepatic encephalopathy. Neurochem Pathol. 1987; 6(1-2):1-12. https://doi.org/10.1007/BF02833598.

[229]

Alm R, Carlson J, Eriksson S. Fasting serum bile acids in liver disease. A comparison with histological features. Scand J Gastroenterol. 1982; 17(2):213-218. https://doi.org/10.3109/00365528209182042.

[230]

Jeppesen JB, Mortensen C, Bendtsen F, et al. Lactate metabolism in chronic liver disease. Scand J Clin Lab Invest. 2013; 73(4):293-299. https://doi.org/10.3109/00365513.2013.773591.

[231]

Hammerich L, Tacke F. Hepatic inflammatory responses in liver fibrosis. Nat Rev Gastroenterol Hepatol. 2023; 20(10):633-646. https://doi.org/10.1038/s41575-023-00807-x.

[232]

Jiang L, Sun XY, Wang SQ, et al. Indoxyl sulphate-TNFα axis mediates uremic encephalopathy in rodent acute kidney injury. Acta Pharmacol Sin. 2024; 45(7):1406-1424. https://doi.org/10.1038/s41401-024-01251-6.

[233]

González-Martin G, Arancibia A, Fajuri M, et al. Pharmacokinetics of cimetidine in patients with liver disease. Int J Clin Pharmacol Ther Toxicol. 1985; 23(7):355-358.

[234]

Kurata T, Muraki Y, Mizutani H, et al.Elevated systemic elimination of cimetidine in rats with acute biliary obstruction: the role of renal organic cation transporter OCT2. Drug Metab Pharmacokinet. 2010; 25(4):328-334. https://doi.org/10.2133/dmpk.DMPK-10-RG-004.

PDF (12067KB)

92

Accesses

0

Citation

Detail

Sections
Recommended

/