Please wait a minute...

Frontiers of Optoelectronics

Front. Optoelectron.    2016, Vol. 9 Issue (3) : 353-361     DOI: 10.1007/s12200-016-0598-z
RESEARCH ARTICLE |
Performance improvement by enhancing the well-barrier hole burning in a quantum well semiconductor optical amplifier
Tong CAO,Xinliang ZHANG()
Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
Download: PDF(377 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In this paper, we demonstrated a novel physical mechanism based on the well-barrier hole burning enhancement in a quantum well (QW) semiconductor optical amplifier (SOA) to improve the operation performance. To completely characterize the physical mechanism, a complicated theoretical model by combining QW band structure calculation with SOA’s dynamic model was constructed, in which the carrier transport, interband effects and intraband effects were all taken into account. The simulated results showed optimizing the thickness of the separate confinement heterostructure (SCH) layer can effectively enhance the well-barrier hole burning, further enhance the nonlinear effects in SOA and reduce the carrier recovery time. At the optimal thickness, the SCH layer can store enough carrier numbers, and simultaneously the stored carriers can also be fast and effectively injected into the QWs.

Keywords nonlinear optics      optical signal processing      semiconductor optical amplifier (SOA)     
Corresponding Authors: Xinliang ZHANG   
Just Accepted Date: 19 August 2016   Online First Date: 12 September 2016    Issue Date: 28 September 2016
 Cite this article:   
Tong CAO,Xinliang ZHANG. Performance improvement by enhancing the well-barrier hole burning in a quantum well semiconductor optical amplifier[J]. Front. Optoelectron., 2016, 9(3): 353-361.
 URL:  
http://journal.hep.com.cn/foe/EN/10.1007/s12200-016-0598-z
http://journal.hep.com.cn/foe/EN/Y2016/V9/I3/353
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Tong CAO
Xinliang ZHANG
Fig.1  Schematic diagram of a QW SOA with a SCH layer used in SOA model
quantity value
L SOA length 500 × 10-6 m
w SOA width 2.0 × 10-6 m
Aw nonradiative recombination constant 3.5 × 108 s-1
Bw bimolecular recombination constant 5.6 × 10-16 m3·s-1
Cw Auger recombination constant 3.0 × 10-41 m6·s-1
ASCH nonradiative recombination constant 5.0 × 108 s-1
BSCH bimolecular recombination constant 8.0 × 10-16 m3·s-1
CSCH Auger recombination constant 5.0 × 10-41 m6·s-1
ηinj injection efficiency 0.8
αint? internal loss 2 × 103 m-1
Dn electron diffusion coefficient 1.19 × 10-2 m4·s-1
Dp hole diffusion coefficient 3.885 × 10-4 m4·s-1
τcap capture time 1.0 ps
M number of QWs 8
twell_total total QW thickness 8 × 8= 64 nm
tSCH SCH thickness variable
αFc free carrier absorption 2.0 × 10-21 m2
τT intraband scatting time 1.5 ps
Tab.1  Main modeling parameters
Fig.2  (a) Conduction band structure; (b) valence band structure. The gallium mole fraction is 0.47 and the well thickness is selected as 8 nm; (c) material gains of TE and TM mode versus the wavelength, the carrier density is 2.2 × 1024 m-3
Fig.3  Geometric structure of the active region
Fig.4  (a) Transverse field distribution at 45 nm SCH thickness; (b) optical confinement factor versus the SCH thickness
Fig.5  Pump-probe technique to measure the carrier recovery time
Fig.6  Carrier recovery time versus the SCH thickness
Fig.7  (a) Amplitude dynamics of probe signal for different samples; (b) phase dynamics of probe signal for different samples
1 Durhuus T, Mikkelsen B, Joergensen C, Lykke Danielsen S, Stubkjaer K E. All-optical wavelength conversion by semiconductor optical amplifiers. Journal of Lightwave Technology, 1996, 14(6): 942–954 doi:10.1109/50.511594
2 Liu Y, Tangdiongga E, Li Z, de Waardt H, Koonen A M J, Khoe G D, Shu X, Bennion I, Dorren H J S. Error-free 320-Gb/s all-optical wavelength conversion using a single semiconductor optical amplifier. Journal of Lightwave Technology, 2007, 25(1): 103–108
doi: 10.1109/JLT.2006.888484
3 Krzczanowicz L, Connelly M J. 40 Gb/s NRZ-DQPSK data all-optical wavelength conversion using four wave mixing in a bulk SOA. IEEE Photonics Technology Letters, 2013, 25(24): 2439–2441
doi: 10.1109/LPT.2013.2288010
4 Stubkjaer K E. Semiconductor optical amplifier-based all-optical gates for high-speed optical processing. IEEE Journal of Selected Topics in Quantum Electronics, 2000, 6(6): 1428–1435
doi: 10.1109/2944.902198
5 Dong J, Zhang X, Fu S, Xu J, Shum P, Huang D. Ultrafast all-optical signal processing based on single semiconductor optical amplifier and optical filtering. IEEE Journal of Selected Topics in Quantum Electronics, 2008, 14(3): 770–778
doi: 10.1109/JSTQE.2008.916248
6 Xu J, Zhang X, Zhang Y, Dong J, Liu D, Huang D. Reconfigurable all-optical logic gates for multi-input differential phase-shift keying signals: design and experiments. Journal of Lightwave Technology, 2009, 27(23): 5268–5275
doi: 10.1109/JLT.2009.2028036
7 Lee C G, Kim Y J, Park C S, Lee H J, Park C. Experimental demonstration of 10-Gb/s data format conversions between NRZ and RZ using SOA-loop-mirror. Journal of Lightwave Technology, 2005, 23(2): 834–841 doi:10.1109/JLT.2004.838851
8 Dong J, Zhang X, Xu J, Huang D, Fu S, Shum P. 40 Gb/s all-optical NRZ to RZ format conversion using single SOA assisted by optical bandpass filter. Optics Express, 2007, 15(6): 2907–2914
doi: 10.1364/OE.15.002907 pmid: 19532526
9 Banchi L, Presi M, D'Errico A, Contestabile G, Ciaramella E. All-optical 10 and 40 Gbit/s RZ-to-NRZ format and wavelength conversion using semiconductor optical amplifiers. Journal of Lightwave Technology, 2010, 28(1): 32–38
doi: 10.1109/JLT.2009.2035365
10 Yu Y, Wu W, Huang X, Zou B, Hu S, Zhang X. Multichannel all-optical RZ-PSK amplitude regeneration based on the XPM effect in a single SOA. Journal of Lightwave Technology, 2012, 30(23): 3633–3639
doi: 10.1109/JLT.2012.2225093
11 Porzi C, Serafino G, Bogoni A, Contestabile G. Phase-preserving amplitude noise compression of 40 Gb/s DPSK signals in a single SOA. Journal of Lightwave Technology, 2014, 32(10): 1966–1972
doi: 10.1109/JLT.2014.2316415
12 Cao T, Chen L, Yu Y, Zhang X. Experimental demonstration and devices optimization of NRZ-DPSK amplitude regeneration scheme based on SOAs. Optics Express, 2014, 22(26): 32138–32149
doi: 10.1364/OE.22.032138 pmid: 25607178
13 Yu J, Jeppesen P. Improvement of cascaded semiconductor optical amplifier gates by using holding light injection. Journal of Lightwave Technology, 2001, 19(5): 614–623
doi: 10.1109/50.923474
14 Pleumeekers J L, Kauer M, Dreyer K, Burrus C, Dentai A G, Shunk S, Leuthold J, Joyner C H. Acceleration of gain recovery in semiconductor optical amplifiers by optical injection near transparency wavelength. IEEE Photonics Technology Letters, 2002, 14(1): 12–14
doi: 10.1109/68.974145
15 Dupertuis M A, Pleumeekers J L, Hessler T P, Selbmann P E, Deveaud B, Dagens B, Emery J Y. Extremely fast high-gain and low-current SOA by optical speed-up at transparency. IEEE Photonics Technology Letters, 2000, 12(11): 1453–1455
doi: 10.1109/68.887655
16 Kumar Y, Shenoy M R. A novel scheme of optical injection for fast gain recovery in semiconductor optical amplifier. IEEE Photonics Technology Letters, 2014, 26(9): 933–936
doi: 10.1109/LPT.2014.2309600
17 Nielsen M L, Mørk J. Increasing the modulation bandwidth of semiconductor-optical-amplifier-based switches by using optical filtering. Journal of the Optical Society of America B, Optical Physics, 2004, 21(9): 1606–1619
doi: 10.1364/JOSAB.21.001606
18 Liu Y, Tangdiongga E, Li Z, Zhang S, Waardt H D, Khoe G D, Dorren H J S. Error-free all-optical wavelength conversion at 160 Gb/s using a semiconductor optical amplifier and an optical bandpass filter. Journal of Lightwave Technology, 2006, 24(1): 230–236
doi: 10.1109/JLT.2005.861136
19 Zhang L, Kang I, Bhardwaj A, Sauer N, Cabot S, Jaques J, Neilson D T. Reduced recovery time semiconductor optical amplifier using p-type-doped multiple quantum wells. IEEE Photonics Technology Letters, 2006, 18(22): 2323–2325
doi: 10.1109/LPT.2006.882225
20 Qin C, Huang X, Zhang X. Gain recovery acceleration by enhancing differential gain in quantum well semiconductor optical amplifiers. IEEE Journal of Quantum Electronics, 2011, 47(11): 1443–1450
doi: 10.1109/JQE.2011.2170190
21 Qin C, Huang X, Zhang X. Theoretical investigation on gain recovery dynamics in step quantum well semiconductor optical amplifiers. Journal of the Optical Society of America B, Optical Physics, 2012, 29(4): 607–613
doi: 10.1364/JOSAB.29.000607
22 Huang X, Qin C, Yu Y, Zhang X. Acceleration of carrier recovery in a quantum well semiconductor optical amplifier due to the tunneling effect. Journal of the Optical Society of America B, Optical Physics, 2012, 29(10): 2990–2994
doi: 10.1364/JOSAB.29.002990
23 Matsuura M, Raz O, Gomez-Agis F, Calabretta N, Dorren H J S. Ultrahigh-speed and widely tunable wavelength conversion based on cross-gain modulation in a quantum-dot semiconductor optical amplifier. Optics Express, 2011, 19(26): B551–B559
doi: 10.1364/OE.19.00B551 pmid: 22274069
24 Rideout W, Sharfin W F, Koteles E S, Vassell M O, Elman B. Well-barrier hole burning in quantum well lasers. IEEE Photonics Technology Letters, 1991, 3(9): 784–786
doi: 10.1109/68.84492
25 Kersting R, Schwedler R, Wolter K, Leo K, Kurz H. Dynamics of carrier transport and carrier capture in In1-xGaxAs/InP heterostructures. Physical Review B: Condensed Matter and Materials Physics, 1992, 46(3): 1639–1648
doi: 10.1103/PhysRevB.46.1639 pmid: 10003810
26 Lysak V V, Kawaguchi H, Sukhoivanov I A, Katayama T, Shulika A V. Ultrafast gain dynamics in asymmetrical multiple quantum-well semiconductor optical amplifiers. IEEE Journal of Quantum Electronics, 2005, 41(6): 797–807 doi:10.1109/JQE.2005.846694
27 Xia F, Wei J, Menon V, Forrest S R. Monolithic integration of a semiconductor optical amplifier and a high bandwidth p-i-n photodiode using asymmetric twin-waveguide technology. IEEE Photonics Technology Letters, 2003, 15(3): 452–454
doi: 10.1109/LPT.2002.807930
28 Nagarajan R, Ishikawa M, Fukushima T, Geels R S, Bowers J E. High speed quantum-well lasers and carrier transport effects. IEEE Journal of Quantum Electronics, 1992, 28(10): 1990–2008
doi: 10.1109/3.159508
29 Tsai C Y, Tsai C Y, Lo Y, Spencer R M, Eastman L F. Nonlinear gain coefficients in semiconductor quantum-well lasers: effects of carrier diffusion, capture, and escape. IEEE Journal of Selected Topics in Quantum Electronics, 1995, 1(2): 316–330
doi: 10.1109/2944.401211
30 Agrawal G P, Olsson N A. Self-phase modulation and spectral broadening of optical pulses in semiconductor laser amplifiers. IEEE Journal of Quantum Electronics, 18989, 25(11): 2297–2306
31 Dailey J M, Koch T L. Simple rules for optimizing asymmetries in SOA-based Mach-Zehnder wavelength converters. Journal of Lightwave Technology, 2009, 27(11): 1480–1488
doi: 10.1109/JLT.2009.2012875
32 Bennett B R, Soref R A, Alamo J A. Carrier-induced change in refractive index of InP, GaAs and InGaAsP. IEEE Journal of Quantum Electronics, 1990, 26(1): 113–122
doi: 10.1109/3.44924
33 Chang C, Chuang S. Modeling of strained quantum-well lasers with spin-orbit coupling. IEEE Journal of Selected Topics in Quantum Electronics, 1995, 1(2): 218–229
doi: 10.1109/2944.401200
Related articles from Frontiers Journals
[1] Ting YANG,Shasha LIAO,Li LIU,Jianji DONG. Large-range tunable fractional-order differentiator based on cascaded microring resonators[J]. Front. Optoelectron., 2016, 9(3): 399-405.
[2] Yi YU,Evarist PALUSHANI,Mikkel HEUCK,Leif Katsuo OXENLØWE,Kresten YVIND,Jesper MØRK. Switching dynamics in InP photonic-crystal nanocavity[J]. Front. Optoelectron., 2016, 9(3): 395-398.
[3] Xinliang ZHANG,Zhao WU. Linear optical signal processing with optical filters: a tutorial[J]. Front. Optoelectron., 2016, 9(3): 377-389.
[4] Yunhong DING,Haiyan OU,Jing XU,Meng XIONG,Yi AN,Hao HU,Michael GALILI,Abel Lorences RIESGO,Jorge SEOANE,Kresten YVIND,Leif Katsuo OXENLØWE,Xinliang ZHANG,Dexiu HUANG,Christophe PEUCHERET. Linear all-optical signal processing using silicon micro-ring resonators[J]. Front. Optoelectron., 2016, 9(3): 362-376.
[5] Xuelin YANG,Weisheng HU. Principle and applications of semiconductor optical amplifiers-based turbo-switches[J]. Front. Optoelectron., 2016, 9(3): 346-352.
[6] Michael J. CONNELLY,Lukasz KRZCZANOWICZ,Pascal MOREL,Ammar SHARAIHA,Francois LELARGE,Romain BRENOT,Siddharth JOSHI,Sophie BARBET. 40 Gb/s NRZ-DQPSK data wavelength conversion with amplitude regeneration using four-wave mixing in a quantum dash semiconductor optical amplifier[J]. Front. Optoelectron., 2016, 9(3): 341-345.
[7] Zhao WU,Yu YU,Xinliang ZHANG. Chromatic dispersion monitoring using semiconductor optical amplifier[J]. Front. Optoelectron., 2014, 7(3): 399-405.
[8] Chaotan SIMA, James C. GATES, Michalis N. ZERVAS, Peter G. R. SMITH. Review of photonic Hilbert transformers[J]. Front Optoelec, 2013, 6(1): 78-88.
[9] Claudio PORZI, Giovanni SERAFINO, Sergio PINNA, An NGUYEN, Giampiero CONTESTABILE, Antonella BOGONI. Review on SOA-MZI-based photonic add/drop and switching operations[J]. Front Optoelec, 2013, 6(1): 67-77.
[10] Li HUO, Qiang WANG, Yanfei XING, Caiyun LOU. Signal generation and processing at 100 Gb/s based on optical time division multiplexing[J]. Front Optoelec, 2013, 6(1): 57-66.
[11] Ehsan MOHADESRAD, Kambiz ABEDI. Proposal for modeling of tapered quantum-dot semiconductor optical amplifiers[J]. Front Optoelec, 2012, 5(4): 457-464.
[12] Hussein TALEB, Kambiz ABEDI. Homogeneous and inhomogeneous broadening effects on static and dynamic responses of quantum-dot semiconductor optical amplifiers[J]. Front Optoelec, 2012, 5(4): 445-456.
[13] Tan SHU, Yonglin YU, Hui LV, Dexiu Huang, Kai SHI, Liam BARRY. Influence of facet reflection of SOA on SOA-integrated SGDBR laser[J]. Front Optoelec, 2012, 5(4): 390-394.
[14] Cong YIN, Xiaojun ZHOU, Zhiyao ZHANG, Shenghui SHI, Sixian JIANG, Liu LIU, Tingpeng LUO, Yong LIU. Second-order optical differentiator using mechanically-induced LPFG with a single π-shift[J]. Front Optoelec, 2012, 5(3): 261-265.
[15] Yin ZHANG, Jianji DONG, Lei LEI, Hao HE, Xinliang ZHANG. 40-Gbit/s 3-input all-optical priority encoder based on cross-gain modulation in two parallel semiconductor optical amplifiers[J]. Front Optoelec, 2012, 5(2): 195-199.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed