Please wait a minute...

Frontiers of Mechanical Engineering

Front Mech Eng    2013, Vol. 8 Issue (2) : 169-180
Exergy analysis and simulation of a 30MW cogeneration cycle
Nikhil Dev1(), Samsher2, S. S. Kachhwaha3, Rajesh Attri1
1. Department of Mechanical Engineering, YMCA University of Science and Technology, Faridabad, Haryana, India; 2. Department of Mechanical Engineering, Delhi Technological University, Delhi, India; 3. Department of Mechanical Engineering, Pandit Deendayal Petroleum University, Gandhinagar, Gujrat, India
Download: PDF(305 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks

Cogeneration cycle is an efficient mean to recover the waste heat from the flue gases coming out of gas turbine. With the help of computer simulation, design parameters may be selected for the best performance of cogeneration cycle. In the present work a program is executed in software EES on the basis of mathematical modelling described in paper to study cogeneration cycle performance for different parameters. Results obtained are compared with the results available in literature and are found in good agreement with them. Real gas and water properties are inbuilt in the software. Results show that enthalpy of air entering the combustion chamber is higher than that of the flue gases at combustion chamber outlet. For different operative conditions, energy and exergy efficiencies follow similar trends; although, exergy efficiency values are always lower than the corresponding energy efficiency ones. From the results it is found that turbine outlet temperature (TIT) of 524°C is uniquely suited to efficient cogeneration cycle because it enables the transfer of heat from exhaust gas to the steam cycle to take place over a minimal temperature difference. This temperature range results in the maximum thermodynamic availability while operating with highest temperature and highest efficiency cogeneration cycle. Effect of cycle pressure ratio (CR), inlet air temperature (IAT) and water pressure at heat recovery steam generator (HRSG) inlet on the 30 MW cogeneration cycle is also studied.

Keywords Cogeneration cycle      air compressor      HRSG      gas turbine      regenerator      CR      IAT     
Corresponding Author(s): Dev Nikhil,   
Issue Date: 05 June 2013
 Cite this article:   
Rajesh Attri,Nikhil Dev,Samsher, et al. Exergy analysis and simulation of a 30MW cogeneration cycle[J]. Front Mech Eng, 2013, 8(2): 169-180.
1 Khaliq A, Kaushik S C. Second-law based thermodynamic analysis of Brayton/Rankine combined power cycle with reheat. Applied Energy , 2004, 78(2): 179-197
doi: 10.1016/j.apenergy.2003.08.002
2 Butcher C J, Reddy B V. Second law analysis of a waste heat recovery based power generation system. International Journal of Heat and Mass Transfer , 2007, 50(11-12): 2355-2363
doi: 10.1016/j.ijheatmasstransfer.2006.10.047
3 Som S K, Datta A. Thermodynamic Irreversibilities and Exergy Balance in Combustion Processes. Progress in Energy and Combustion Science , 2008, 34(3): 351-376
doi: 10.1016/j.pecs.2007.09.001
4 Kotowicz J, Bartela L. The influence of economic parameters on the optimal values of the design variables of a combined cycle plant. Energy , 2010, 35(2): 911-919
doi: 10.1016/
5 Poma C, Verda V, Consonni S. Design and performance evaluation of a waste-to-energy plant integrated with a combined cycle. Energy , 2010, 35(2): 786-793
doi: 10.1016/
6 Woudstra N, Woudstra T, Pirone A, Van der Stelt T. Thermodynamic evaluation of combined cycle plants. Energy Conversion and Management , 2010, 51(5): 1099-1110
doi: 10.1016/j.enconman.2009.12.016
7 Regulagadda P, Dincer I, Naterer G F. Exergy analysis of a thermal power plant with measured boiler and turbine losses. Applied Thermal Engineering , 2010, 30(8-9): 970-976
doi: 10.1016/j.applthermaleng.2010.01.008
8 Ahmadi P, Dincer I. Thermodynamic and exergoenvironmental analyses, and multi-objective optimization of a gas turbine power plant. Applied Thermal Engineering , 2011, 31(14-15): 2529-2540
doi: 10.1016/j.applthermaleng.2011.04.018
9 Godoy E, Benz S J, Scenna N J. A strategy for the economic optimization of combined cycle gas turbine power plants by taking advantage of useful thermodynamic relationships. Applied Thermal Engineering , 2011, 31(5): 852-871
doi: 10.1016/j.applthermaleng.2010.11.004
10 Dunbar W R, Lior N. Sources of combustion irreversibility. Combustion Science and Technology , 1994, 103(1-6): 41-61
doi: 10.1080/00102209408907687
11 Dincer I. The role of exergy in energy policy making. Energy Policy , 2002, 30(2): 137-149
doi: 10.1016/S0301-4215(01)00079-9
12 Khaliq A, Kaushik S C. Thermodynamic performance evaluation of combustion gas turbine cogeneration system with reheat. Applied Thermal Engineering , 2004, 24(13): 1785-1795
doi: 10.1016/j.applthermaleng.2003.12.013
13 Kotas T J. The exergy method of thermal plant analysis. Krieger Publishing Company , 1995
Related articles from Frontiers Journals
[1] Vivek PATEL, Gaurav TIWARI, Ravikumar DUMPALA. Review of the crushing response of collapsible tubular structures[J]. Front. Mech. Eng., 2020, 15(3): 438-474.
[2] Ziyuan LIU, Hang GAO, Dongming GUO. Experimental study on high-efficiency polishing for potassium dihydrogen phosphate (KDP) crystal by using two-phase air-water fluid[J]. Front. Mech. Eng., 2020, 15(2): 294-302.
[3] Song ZHANG, Lelun WANG, Anze YI, Honggang GU, Xiuguo CHEN, Hao JIANG, Shiyuan LIU. Dynamic modulation performance of ferroelectric liquid crystal polarization rotators and Mueller matrix polarimeter optimization[J]. Front. Mech. Eng., 2020, 15(2): 256-264.
[4] Haitao YU, Haibo GAO, Liang DING, Zongquan DENG. Sagittal SLIP-anchored task space control for a monopode robot traversing irregular terrain[J]. Front. Mech. Eng., 2020, 15(2): 193-208.
[5] Emmanuel TROMME, Atsushi KAWAMOTO, James K. GUEST. Topology optimization based on reduction methods with applications to multiscale design and additive manufacturing[J]. Front. Mech. Eng., 2020, 15(1): 151-165.
[6] Pan JIA, Huaiju LIU, Caichao ZHU, Wei WU, Guocheng LU. Contact fatigue life prediction of a bevel gear under spectrum loading[J]. Front. Mech. Eng., 2020, 15(1): 123-132.
[7] Tianfeng ZHOU, Ying WANG, Benshuai RUAN, Zhiqiang LIANG, Xibin WANG. Modeling of the minimum cutting thickness in micro cutting with consideration of the friction around the cutting zone[J]. Front. Mech. Eng., 2020, 15(1): 81-88.
[8] Yun-Shuai SU, Shu-Rong YU, Shu-Xin LI, Yan-Ni HE. Review of the damage mechanism in wind turbine gearbox bearings under rolling contact fatigue[J]. Front. Mech. Eng., 2019, 14(4): 434-441.
[9] Dianyin HU, Xiyuan WANG, Jianxing MAO, Rongqiao WANG. Creep-fatigue crack growth behavior in GH4169 superalloy[J]. Front. Mech. Eng., 2019, 14(3): 369-376.
[10] Guizhong XIE, Fenglin ZHOU, Hao LI, Xiaoyu WEN, Fannian MENG. A family of non-conforming crack front elements of quadrilateral and triangular types for 3D crack problems using the boundary element method[J]. Front. Mech. Eng., 2019, 14(3): 332-341.
[11] Yu-Chin CHAN, Kohei SHINTANI, Wei CHEN. Robust topology optimization of multi-material lattice structures under material and load uncertainties[J]. Front. Mech. Eng., 2019, 14(2): 141-152.
[12] Jiadong DENG, Claus B. W. PEDERSEN, Wei CHEN. Connected morphable components-based multiscale topology optimization[J]. Front. Mech. Eng., 2019, 14(2): 129-140.
[13] Runhua TAN, Wei LIU, Guozhong CAO, Yuan SHI. Creative design inspired by biological knowledge: Technologies and methods[J]. Front. Mech. Eng., 2019, 14(1): 1-14.
[14] B. J. WANG, D. K. XU, S. D. WANG, E. H. HAN. Fatigue crack initiation of magnesium alloys under elastic stress amplitudes: A review[J]. Front. Mech. Eng., 2019, 14(1): 113-127.
[15] Y. Luo, S. C. Wu, Y. N. Hu, Y. N. Fu. Cracking evolution behaviors of lightweight materials based on in situ synchrotron X-ray tomography: A review[J]. Front. Mech. Eng., 2018, 13(4): 461-481.
Full text



  Shared   0