Please wait a minute...

Frontiers of Mechanical Engineering

Front Mech Eng    2013, Vol. 8 Issue (3) : 252-260
Kinematic calibration of precise 6-DOF stewart platform-type positioning systems for radio telescope applications
Juan Carlos JáUREGUI1(), Eusebio E. HERNáNDEZ2, Marco CECCARELLI3, Carlos LóPEZ-CAJúN4, Alejandro GARCíA5
1. División de Estudios de Posgrado, Facultad de Ingeniería, Universidad Autónoma de Quéretaro Quéretaro, Qro. Mexico; 2. National Polytechnic Institute, IPN, Section of Graduate Studies and Research, ESIME-UPT, México D.F., Mexico; 3. Laboratory of Robotics and Mechatronics University of Cassino, Italy; 4. Universidad Autónoma de Quéretaro Querétaro, Qro. México; 5. CIATEQ, A.C. Aguascalientes, Ags. México
Download: PDF(455 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks

The pose accuracy of a parallel robot is a function of the mobile platform posture. Thus, there is no a single value of the robot’s accuracy. In this paper, two novel methods for estimating the accuracy of parallel robots are presented. In the first method, the pose accuracy estimation is calculated by considering the propagation of each error, i.e., error variations are considered as a function of the actuator’s stroke. In the second method, it is considered that each actuator has a constant error at any stroke. Both methods can predict pose accuracy of precise robots at design stages, and/or can reduce calibration time of existing robots. An example of a six degree-of-freedom parallel manipulator is included to show the application of the proposed methods.

Keywords pose errors      error estimation      parallel robot      radio telescopes     
Corresponding Author(s): JáUREGUI Juan Carlos,   
Issue Date: 05 September 2013
 Cite this article:   
Juan Carlos JáUREGUI,Eusebio E. HERNáNDEZ,Marco CECCARELLI, et al. Kinematic calibration of precise 6-DOF stewart platform-type positioning systems for radio telescope applications[J]. Front Mech Eng, 2013, 8(3): 252-260.
Fig.1  A Gough-Stewart platform for positioning the secondary mirror of the millimeter radio-telescope
Fig.2  The actual Gough-Stewart platform. (a) The built prototype; (b) a scheme with kinematic parameters (mm)
Fig.3  Actuator used for the platform
Fig.4  Main parts of the actuator
Fig.5  Calibration equipment RENISHAW ML10 consisting of leg (1), laser (2), and interferometer (3)
Fig.6  Schemes for layout of base (a) and moving (b) platforms
Tab.1  Points along the workspace
Fig.7  Difference between commanded position and actual position for actuator 1
Fig.8  Difference between commanded position and actual position for actuator 2
Fig.9  Difference between commanded position and actual position for actuator 3
Fig.10  Difference between commanded position and actual position for actuator 4
Fig.11  Difference between commanded position and actual position for actuator 5
Fig.12  Difference between commanded position and actual position for actuator 6
Tab.2  RMS values of each actuator
Fig.13  Error comparisons between the Comprehensive and the Simplified Methods
1 Merlet J P. Parallel Robots. Springer , 2006
2 Masory O, Wang J. On the accuracy of a stewart platform-part I: The effect of manufacturing tolerances. In: IEEE Int. Conf. on Robotics and Automation, Atlanta , 1993, 725–731
3 Merlet J P. Parallel Robots: Open Problems. In: ASME Conference DECT , 2002
4 Castillo E, Takeda Y. Improving path accuracy of a crank-type 6-DOF parallel mechanism by stiction compensation. Mechanism and Machine Theory , 2008, 43(1): 104–114
doi: 10.1016/j.mechmachtheory.2006.12.002
5 Zhuang H, Roth Z. Method for kinematic calibration of stewart platforms. Journal of Robotic Systems , 1993, 10(3): 391–405
doi: 10.1002/rob.4620100306
6 Ziegert J C.Volumetric performance of hexapod machine tools, Hexapod Machine Tool Users Group. Internal report 13 , 1996
7 Soons J A. Error Analysis of a hexapod machine tool. In: 3rd International Conference and Exhibition on Laser Metrology and Machine Performance, Lamdamap , 1997, 347–358
8 Rudder F F. Thermal expansion of long slender rods with forced convection cooling along the rod length. Report NISTIR , 1997, 5975: 46
9 Gupta K. Measure of positional error for a rigid body. Journal of Mechanical Design, ASME , 1997, 119(3): 346–348
doi: 10.1115/1.2826354
10 Parenti-Castelli V. Di Gregorio R., Lenarcic J. Sensitivity to geometric parameter variation of a 3 DOF fully-parallel manipulator. In: 3rd International Conference on Advanced Mechatronics JSME , 1998, 364–369
11 Oiwa T, Tamaki M. Study on abbe's principle in parallel kinematics. In: 2nd Chemnitz Parallel Kinematics Seminar, Chemnitz , 354–352 , 2000.
12 Cui H, Zhu Z, Gan Z, Brogangrdh T. Kinematic analysis and error modeling of TAU parallel robot. Robotics and Integrated Manufacturing , 2005, 21(6): 497–505
doi: 10.1016/j.rcim.2004.07.018
13 Brogangrdh T. Device for relative movement of two elements. United States Patent 6425303 , 2002.
14 Oiwa T. Error compensation system for joints, links and machine frame of parallel kinematics machines. International Journal of Robotics Research , 2005, 24(12): 1087–1102
doi: 10.1177/0278364905060149
15 Yu A, Bonev I, Zsombor P. Geometric approach to the accuracy of a class of 3-DOF planar parallel robots. Mechanism and Machine Theory , 2008, 43(3): 364–375
doi: 10.1016/j.mechmachtheory.2007.03.002
16 Briota S, Bonev I. Accuracy analysis of 3-DOF planar parallel robots. Mechanism and Machine Theory , 2008, 43(4): 445–458
doi: 10.1016/j.mechmachtheory.2007.04.002
17 Chebbia A, Affia Z, Romdhaneb L. Prediction of the pose errors produced by joints clearance for a 3-UPU parallel robot. Mechanism and Machine Theory , 2009, 44(9): 1768–1783
doi: 10.1016/j.mechmachtheory.2009.03.006
18 Pashkevich A, Chablat D, Wenger P. Kinematic Calibration of orthoglide-type mechanism from observation of parallel leg motions. Mechatronics , 2009, 19(4): 478–488
doi: 10.1016/j.mechatronics.2008.11.008
19 Ren X, Feng Z, Su C A. New calibration method for parallel kinematic machine tools using orientation constraint. International Journal of Machine Tools & Manufacture , 2009, 49(9): 708–721
doi: 10.1016/j.ijmachtools.2009.03.004
20 Hernandez-Martinez E, Ceccarelli M, Carbone G, Lopez-Cajun C, Jauregui-Correa J C. Characterization of a cable-based parallel mechanism for measurement purposes. Mechanism Based Design of Structures and Machines an International Journal , 2010, 38(1): 25–49
doi: 10.1080/15397730903386101
21 Angeles J. On the Nature of the Cartesian Stifiness Matrix. Ingenieria Mecanica Tecnologia y Desarrollo , 2010, 3(5): 163–170
22 Bohm J, Hefele J, Fritsch D. Towards on-line pose measurement for robots. In: Pattern Recognition, 23rd DAGM Symposium, LCNS-2191 , 2003, 298–303
23 Minor M, Merrel R. Instrumentation and algorithms for posture estimation in compliant framed modular mobile robots. International Journal of Robotics Research , 2007, 26(5): 491–512
doi: 10.1177/0278364907077899
24 Gosselin C, Angeles J. Singularity analysis of closed-loop kinematic chains. IEEE Transactions on Robotics and Automation , 1990, 6(3): 281–290
doi: 10.1109/70.56660
Related articles from Frontiers Journals
[1] Qizhi MENG, Fugui XIE, Xin-Jun LIU. Conceptual design and kinematic analysis of a novel parallel robot for high-speed pick-and-place operations[J]. Front. Mech. Eng., 2018, 13(2): 211-224.
[2] Gang HAN, Fugui XIE, Xin-Jun LIU. Evaluation of the power consumption of a high-speed parallel robot[J]. Front. Mech. Eng., 2018, 13(2): 167-178.
[3] Fugui XIE,Xin-Jun LIU. Analysis of the kinematic characteristics of a high-speed parallel robot with Schönflies motion: Mobility, kinematics, and singularity[J]. Front. Mech. Eng., 2016, 11(2): 135-143.
[4] Saeed ABDOLSHAH,Erfan SHOJAEI BARJUEI. Linear quadratic optimal controller for cable-driven parallel robots[J]. Front. Mech. Eng., 2015, 10(4): 344-351.
[5] Mahdi BAMDAD. Analytical dynamic solution of a flexible cable-suspended manipulator[J]. Front Mech Eng, 2013, 8(4): 350-359.
[6] Alin STOICA, Doina PISLA, Szilaghyi ANDRAS, Bogdan GHERMAN, Bela-Zoltan GYURKA, Nicolae PLITEA. Kinematic, workspace and singularity analysis of a new parallel robot used in minimally invasive surgery[J]. Front Mech Eng, 2013, 8(1): 70-79.
[7] Jens KOTLARSKI, Bodo HEIMANN, Tobias ORTMAIER. Influence of kinematic redundancy on the singularity-free workspace of parallel kinematic machines[J]. Front. Mech. Eng., 2012, 7(2): 120-134.
[8] Fengfeng XI, Yuwen LI, Hongbo WANG. Module-based method for design and analysis of reconfigurable parallel robots[J]. Front Mech Eng, 2011, 6(2): 151-159.
[9] QI Lin, ZHANG Hui, DUAN Guanghong. Task-space position/attitude tracking control of FAST fine tuning system[J]. Front. Mech. Eng., 2008, 3(4): 392-399.
[10] DU Zhaocai, YU Yueqing, ZHANG Xuping, DU Zhaocai. Dynamic modeling of flexible-links planar parallel robots[J]. Front. Mech. Eng., 2008, 3(2): 232-237.
[11] DU Zhaocai, YU Yueqing, YANG Jianxin. Analysis of the dynamic stress of planar flexible-links parallel robots[J]. Front. Mech. Eng., 2007, 2(2): 152-158.
[12] MA Lv-zhong, GUO Zong-he, YANG Qi-zhi, YIN Xiao-qin, HAN Ya-li, SHEN Hui-ping. Precision analysis of a weakly-coupled parallel mechanism with three translational degrees of freedom[J]. Front. Mech. Eng., 2006, 1(2): 227-232.
Full text



  Shared   0