Base editing technology
Yidi SUN, Erwei ZUO, Hui YANG
Base editing technology
[1] |
Goodwin S, McPherson J D, McCombie W R. Coming of age: ten years of next-generation sequencing technologies. Nature Reviews: Genetics, 2016, 17(6): 333–351
CrossRef
Pubmed
Google scholar
|
[2] |
Komor A C, Kim Y B, Packer M S, Zuris J A, Liu D R. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature, 2016, 533(7603): 420–424
CrossRef
Pubmed
Google scholar
|
[3] |
Nishida K, Arazoe T, Yachie N, Banno S, Kakimoto M, Tabata M, Mochizuki M, Miyabe A, Araki M, Hara K Y, Shimatani Z, Kondo A. Targeted nucleotide editing using hybrid prokaryotic and vertebrate adaptive immune systems. Science, 2016, 353(6305): aaf8729
CrossRef
Pubmed
Google scholar
|
[4] |
Gaudelli N M, Komor A C, Rees H A, Packer M S, Badran A H, Bryson D I, Liu D R. Programmable base editing of A·T to G·C in genomic DNA without DNA cleavage. Nature, 2017, 551(7681): 464–471
CrossRef
Pubmed
Google scholar
|
[5] |
Rees H A, Liu D R. Base editing: precision chemistry on the genome and transcriptome of living cells. Nature Reviews: Genetics, 2018, 19(12): 770–788
CrossRef
Pubmed
Google scholar
|
[6] |
Nishimasu H, Ran F A, Hsu P D, Konermann S, Shehata S I, Dohmae N, Ishitani R, Zhang F, Nureki O. Crystal structure of Cas9 in complex with guide RNA and target DNA. Cell, 2014, 156(5): 935–949
CrossRef
Pubmed
Google scholar
|
[7] |
Abudayyeh O O, Gootenberg J S, Essletzbichler P, Han S, Joung J, Belanto J J, Verdine V, Cox D B T, Kellner M J, Regev A, Lander E S, Voytas D F, Ting A Y, Zhang F. RNA targeting with CRISPR-Cas13. Nature, 2017, 550(7675): 280–284
CrossRef
Pubmed
Google scholar
|
[8] |
Ma Y, Zhang J, Yin W, Zhang Z, Song Y, Chang X. Targeted AID-mediated mutagenesis (TAM) enables efficient genomic diversification in mammalian cells. Nature Methods, 2016, 13(12): 1029–1035
CrossRef
Pubmed
Google scholar
|
[9] |
Komor A C, Zhao K T, Packer M S, Gaudelli N M, Waterbury A L, Koblan L W, Kim Y B, Badran A H, Liu D R. Improved base excision repair inhibition and bacteriophage Mu Gam protein yields C:G-to-T:A base editors with higher efficiency and product purity. Science Advances, 2017, 3(8): eaao4774
|
[10] |
Kim D, Lim K, Kim S T, Yoon S H, Kim K, Ryu S M, Kim J S. Genome-wide target specificities of CRISPR RNA-guided programmable deaminases. Nature Biotechnology, 2017, 35(5): 475–480
CrossRef
Pubmed
Google scholar
|
[11] |
Jin S, Zong Y, Gao Q, Zhu Z, Wang Y, Qin P, Liang C, Wang D, Qiu J L, Zhang F, Gao C. Cytosine, but not adenine, base editors induce genome-wide off-target mutations in rice. Science, 2019, 364(6437): 292–295
CrossRef
Pubmed
Google scholar
|
[12] |
Zuo E, Sun Y, Wei W, Yuan T, Ying W, Sun H, Yuan L, Steinmetz L M, Li Y, Yang H. Cytosine base editor generates substantial off-target single-nucleotide variants in mouse embryos. Science, 2019, 364(6437): 289–292
CrossRef
Pubmed
Google scholar
|
[13] |
Grünewald J, Zhou R, Iyer S, Lareau C A, Garcia S P, Aryee M J, Keith Joung J. CRISPR adenine and cytosine base editors with reduced RNA off-target activities. bioRxiv, 2019: 631721
|
[14] |
Zhou C, Sun Y, Yan R, Liu Y, Zuo E, Gu C, Han L, Wei Y, Hu X, Zeng R, Li Y, Zhou H, Guo F, Yang H. Off-target RNA mutation induced by DNA base editing and its elimination by mutagenesis. Nature, 2019, 571(7764): 275–278
CrossRef
Pubmed
Google scholar
|
/
〈 | 〉 |