
International Winter Wheat Improvement Program: history, activities, impact and future
Alexey MORGOUNOV, Fatih OZDEMIR, Mesut KESER, Beyhan AKIN, Thomas PAYNE, Hans-Joachim BRAUN
Front. Agr. Sci. Eng. ›› 2019, Vol. 6 ›› Issue (3) : 240-250.
International Winter Wheat Improvement Program: history, activities, impact and future
International Winter Wheat Improvement Program (IWWIP) was established in 1986 between the Government of Turkey and CIMMYT with three main objectives: (1) develop winter/facultative germplasm for Central and West Asia, (2) facilitate global winter wheat germplasm exchange, and (3) training wheat scientists. ICARDA joined the program in 1991 making it a three-way partnership that continues to work effectively. The germplasm developed by IWWIP as well as the winter wheat cultivars and lines received from global cooperators are assembled into international nurseries. These nurseries are offered annually to public and private entities (IWWIP website) and distributed to more than 100 cooperators in all continents. IWWIP impact has primarily been in new winter wheat cultivars combining broad adaptation, high yield potential, drought tolerance and disease resistance. A total of 93 IWWIP cultivars have been released in 11 countries occupying annually an estimated 2.5–3.0 Mha. IWWIP cooperation with researchers in Turkey, Central and West Asia and several US universities has resulted in a number of publications reviewed in this paper. Important IWWIP impacts include national inventories of wheat landraces in Turkey, Tajikistan and Uzbekistan, their collection, characterization, evaluation and utilization.
biotic and abiotic stresses / breeding / methodology / winter wheat
Tab.1 SRIs measured on the WAMI population under YP and HS environments in Ciudad Obregon, Mexico during the 2015–2016 growing season |
SRIs | Equation |
---|---|
Vegetation indices | |
Simple ratio(SR) | RNIR/RRED[34] |
Normalized difference vegetation index_670 (NDVI_670) | (R780 – R670)/(R780 + R670)[14] |
Normalized difference vegetation index_670 (NDVI_705) | (R750 – R705)/(R750 + R705)[37] |
Enhanced vegetation index (EVI) | 2.5(RNIR – RRED)/(RNIR + 6RRED - 7.5RBLUE + 1)[38] |
MERIS terrestrial chlorophyll index 1 (MTCI1) | (R754 – R709)/(R709 – R681)[39] |
MERIS terrestrial chlorophyll index 2 (MTCI2) | (RNIR – R748)/(R748 – RRED)[39] |
Optimized soil adjusted vegetation index (OSAVI) | (RNIR – RRED)/(RNIR + RRED + 0.16)[42] |
Transformed chlorophyll absorption in reflectance index (TCARI) | 3((R700 – R670) – 0.2(R700 – R550) (R700/R670))[43] |
Water indices | |
Water index (WI) | R970/R900[45] |
Normalized water index_1 (NWI_1) | (R970 – R900)/(R970 + R900)[23] |
Normalized water index_2 (NWI_2) | (R970 – R850)/(R970 + R850)[23] |
Normalized water index_3 (NWI_3) | (R970 – R880)/(R970 + R880)[47] |
Normalized water index_4 (NWI_4) | (R970 – R920)/(R970 + R920)[47] |
Red edge indices | |
Normalized phaeophytinization index (NPQI) | (R415 – R435)/(R415 + R435)[49] |
Chlorophyll indices | |
Chlorophyll ratio (AB ratio) | RARSa/RARSb[35] |
Ratio analysis of reflectance spectra for chlorophyll a (RARSa) | R675/R700[36] |
Ratio analysis of reflectance spectra for chlorophyll b (RARSb) | (R675/R650× R700)[36] |
Ratio analysis of reflectance spectra for carotenoids (RARSc) | R760/R500[36] |
Pigment specific simple ratio a (PSSRa) | R800/R680[40] |
Anthocyanin reflectance index 1 (ARI1) | 1/R550– 1/R700[41] |
Anthocyanin reflectance index 2 (ARI2) | R800((1/R550) – (1/R700))[41] |
Carotenoid reflectance index 1 (CRI1) | 1/R510– 1/R550[44] |
Carotenoid reflectance index 2 (CRI2) | 1/R510– 1/R700[44] |
Caroenoide | |
Normalized difference pigment index (NDPI) | (R680−R430)/(R680 + R430)[45] |
Plant senescence reflectance index (PSRI) | (R680 – R500)/R750[46] |
Structure insensitive pigment index 2 (SIPI2) | (R800 – R445)/(R800 + R680)[48] |
Radiation use efficiency | |
Photochemical reflectance index (PRI) | (R531 – R570)/(R531 + R570)[15] |
Note: SRIs, spectral reflectance indices; WAMI, wheat association mapping initiative; YP, yield potential; HS, heat stress; RNIR, average reflectance between 780 and 900 nm; RRED, average reflectance between 670 and 690 nm; RBLUE, average reflectance between 459 and 479 nm. |
Tab.2 Mean values, broad sense heritability (H2), and correlation coefficients (r) of SRIs with GY of the WAMI population under YP and HS environments in Ciudad Obregon, Mexico during the 2015–2016 growing season |
SRIs | YP | HS | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Booting | Heading | Heading+ 7 days | Booting | Heading | |||||||||||||||
Mean | H2 | r | Mean | H2 | r | Mean | H2 | r | Mean | H2 | r | Mean | H2 | r | |||||
SR | 25.84 | 0.45 | 0.01 | 23.06 | 0.63 | -0.11 | 16.86 | 0.11 | -0.02 | 19.83 | 0.68 | 0.18 | 14.39 | 0.77 | 0.29** | ||||
NDVI_670 | 0.92 | 0.07 | 0.13 | 0.91 | 0.70 | -0.11 | 0.89 | 0.47 | 0.06 | 0.90 | 0.71 | 0.18 | 0.87 | 0.78 | 0.30** | ||||
NDVI_705 | 0.74 | 0.32 | 0.25** | 0.73 | 0.54 | 0.09 | 0.70 | 0.34 | 0.19 | 0.66 | 0.69 | 0.26** | 0.65 | 0.74 | 0.39** | ||||
EVI | 0.66 | 0.26 | 0.23** | 0.68 | 0.58 | 0.15** | 0.61 | 0.34 | 0.23** | 0.65 | 0.77 | 0.14 | 0.58 | 0.64 | 0.21 | ||||
MTCI1 | 3.67 | 0.52 | 0.18 | 3.55 | 0.54 | 0.04 | 2.91 | 0.02 | 0.09 | 2.56 | 0.67 | 0.24** | 2.36 | 0.73 | 0.38** | ||||
MTCI2 | 0.23 | 0.52 | 0.36** | 0.27 | 0.45 | 0.26** | 0.28 | 0.21 | 0.21 | 0.19 | 0.72 | 0.08 | 0.25 | 0.73 | 0.22** | ||||
OSAVI | 0.70 | 0.07 | 0.28** | 0.71 | 0.54 | 0.22** | 0.68 | 0.40 | 0.30** | 0.70 | 0.77 | 0.14 | 0.67 | 0.63 | 0.21 | ||||
TCARI | 0.08 | 0.50 | -0.08 | 0.08 | 0.54 | -0.03 | 0.10 | 0.04 | 0.07 | 0.13 | 0.84 | -0.08 | 0.10 | 0.48 | -0.19 | ||||
WI | 0.86 | 0.21 | -0.23** | 0.84 | 0.48 | -0.22** | 0.80 | 0.04 | -0.13 | 0.88 | 0.54 | -0.30** | 0.88 | 0.63 | -0.42** | ||||
NWI_1 | -0.08 | 0.22 | -0.23** | -0.09 | 0.49 | -0.22** | -0.09 | 0.01 | -0.12 | -0.07 | 0.54 | -0.30** | -0.07 | 0.63 | -0.42** | ||||
NWI_2 | -0.07 | 0.07 | -0.22** | -0.08 | 0.46 | -0.24** | -0.08 | 0.03 | -0.08 | -0.06 | 0.63 | -0.34** | -0.05 | 0.58 | -0.43** | ||||
NWI_3 | -0.07 | 0.09 | -0.23** | -0.09 | 0.48 | -0.24** | -0.09 | 0.06 | -0.07 | -0.07 | 0.52 | -0.30** | -0.06 | 0.57 | -0.42** | ||||
NWI_4 | -0.07 | 0.22 | -0.22** | -0.08 | 0.50 | -0.21 | -0.08 | 0.08 | -0.08 | -0.06 | 0.55 | -0.30** | -0.06 | 0.62 | -0.41** | ||||
AB ratio | 0.02 | 0.45 | 0.02 | 0.03 | 0.68 | 0.20 | 0.06 | 0.01 | 0.08 | 0.03 | 0.69 | -0.16 | 0.04 | 0.52 | -0.28** | ||||
PSSRa | 25.42 | 0.45 | 0.21 | 22.87 | 0.62 | 0.30** | 17.11 | 0.11 | 0.17 | 20.10 | 0.68 | -0.01 | 14.67 | 0.78 | -0.07 | ||||
RARSa | 0.45 | 0.43 | 0.06 | 0.49 | 0.85 | -0.09 | 0.52 | 0.22 | -0.09 | 0.39 | 0.87 | 0.11 | 0.51 | 0.87 | 0.22** | ||||
RARSb | 20.59 | 0.58 | -0.05 | 18.30 | 0.59 | -0.15 | 16.23 | 0.03 | -0.06 | 13.02 | 0.75 | 0.15 | 13.63 | 0.43 | 0.22** | ||||
RARSc | 21.51 | 0.51 | 0.02 | 19.77 | 0.74 | -0.11 | 15.77 | 0.18 | -0.01 | 16.85 | 0.63 | 0.16 | 13.91 | 0.76 | 0.29** | ||||
ARI1 | -0.81 | 0.38 | -0.35** | -0.43 | 0.71 | -0.22** | 0.34 | 0.56 | -0.23** | -0.34 | 0.80 | -0.18 | 0.34 | 0.75 | -0.21 | ||||
ARI2 | -0.41 | 0.50 | -0.39** | -0.24 | 0.76 | -0.26** | 0.17 | 0.49 | -0.18 | -0.19 | 0.78 | -0.18 | 0.16 | 0.76 | -0.22** | ||||
CRI1 | 19.26 | 0.55 | -0.16 | 14.70 | 0.80 | -0.24** | 13.39 | 0.41 | -0.21 | 14.96 | 0.65 | 0.05 | 10.86 | 0.66 | 0.12 | ||||
CRI2 | 18.45 | 0.59 | -0.18 | 14.26 | 0.83 | -0.25** | 13.70 | 0.47 | -0.23** | 14.63 | 0.68 | 0.01 | 11.20 | 0.66 | 0.06 | ||||
NPQI | -0.07 | 0.56 | 0.33** | -0.04 | 0.56 | 0.32** | -0.02 | 0.02 | 0.09 | -0.09 | 0.62 | 0.02 | -0.06 | 0.45 | 0.03 | ||||
NDPI | -0.01 | 0.51 | -0.42** | 0.01 | 0.82 | -0.30** | 0.10 | 0.12 | -0.02 | 0.02 | 0.82 | -0.15 | 0.04 | 0.78 | -0.21 | ||||
PSRI | -0.005 | 0.04 | -0.21 | -0.005 | 0.86 | -0.21 | 0.03 | 0.01 | 0.07 | -0.01 | 0.83 | -0.13 | -0.001 | 0.81 | -0.21 | ||||
SIPI2 | 0.92 | 0.21 | 0.07 | 0.91 | 0.74 | -0.15 | 0.90 | 0.49 | 0.01 | 0.90 | 0.67 | 0.15 | 0.88 | 0.76 | 0.27** | ||||
PRI | 0.01 | 0.24 | 0.32** | 0.01 | 0.53 | 0.24** | 0.03 | 0.04 | 0.08 | 0.01 | 0.83 | 0.29** | 0.001 | 0.80 | 0.30** |
Note: SRIs, spectral reflectance indices; GY, grain yield; WAMI, wheat association mapping initiative; YP, yield potential; HS, heat stress; SR, simple ratio; NDVI, normalized difference vegetation index; EVI, enhanced vegetation index; MTCI, MERIS terrestrial chlorophyll index; OSAVI, optimized soil adjusted vegetation index; TCARI, transformed chlorophyll absorption in reflectance index; WI, water index; NWI, normalized water index; AB ratio, chlorophyll ratio; PSSR, pigment specific simple ratio; RARS, ratio analysis of reflectance spectra for chlorophyll; ARI, anthocyanin reflectance index; CRI, carotenoid reflectance index; NPQI, normalized phaeophytinization index; NDPI, normalized difference pigment index; PSRI, plant senescence reflectance index; SIPI, structure insensitive pigment index; PRI, photochemical reflectance index; **, significant at P<0.01. |
Fig.1 Common and different spectral reflectance indices (SRIs) showed significant correlations with grain yield (GY) when measured at booting, heading, and heading plus 7 days stages under yield potential (YP) (a) and heat stress (HS) (b) environments in Cd. Obregon, Mexico during the 2015–2016 season. NDPI, normalized difference pigment index; PRI, photochemical reflectance index; NPQI, normalized phaeophytinization index; MTCI, MERIS terrestrial chlorophyll index; NWI, normalized water index; ARI, anthocyanin reflectance index; EVI, enhanced vegetation index; NDVI, normalized difference vegetation index; CRI, carotenoid reflectance index; OSAVI, optimized soil adjusted vegetation index; RARS, ratio analysis of reflectance spectra for chlorophyll; AB ratio, chlorophyll ratio; WI, water index; PSSR, pigment specific simple ratio. |
Fig.2 Manhattan plots for spectral reflectance indices (SRIs) of wheat association mapping initiative (WAMI) population at booting, heading, and heading plus 7 days under yield potential (YP) ((a)–(f)) and heat stress (HS) ((g)–(j)) environments. NDPI, normalized difference pigment index; EVI, enhanced vegetation index; CRI, carotenoid reflectance index; ARI, anthocyanin reflectance index; NDVI, normalized difference vegetation index; NWI, normalized water index; AB ratio, chlorophyll ratio. |
Fig.3 Genomic regions associated with agronomic traits and spectral reflectance indices (SRIs) in the wheat association mapping initiative (WAMI) population at booting (purple), heading (green), and heading plus 7 days (blue) under yield potential (YP) and at booting (orange) and heading (red) stages under heat stress (HS) environments. NDVI, normalized difference vegetation index; ARI, anthocyanin reflectance index; GN, grain number; RARS, ratio analysis of reflectance spectra for chlorophyll; PH, plant height; MTCI, MERIS terrestrial chlorophyll index; DTH, days to heading; GY, grain yield; TGW, thousand-grain weight; DTM, days to maturity; NDPI, normalized difference pigment index; PRI, photochemical reflectance index; CRI, carotenoid reflectance index; PSSR, pigment specific simple ratio; OSAVI, optimized soil adjusted vegetation index; EVI, enhanced vegetation index; NWI, normalized water index; NPQI, normalized phaeophytinization index; AB ratio, chlorophyll ratio; WI, water index. |
Tab.3 Significant (P<0.0001) markers associated with multiple spectral reflectance indices of the WAMI population at booting (YPB), heading (YPH), and 7 days after heading (YPH7) under YP, and at booting (HSB), heading (HSH) under HS in Ciudad Obregon, Mexico during the 2015–2016 growing season |
Marker | Chromosome | Position/cM | Associated traits |
---|---|---|---|
BS00075119_51 | 3A | 15 | NDVI_705 (YPB), MTCI2 (YPB) |
BobWhite_c9468_453 | 3A | 88 | NDPI (YPB, YPH), ARI2 (YPB, YPH) |
BobWhite_c9468_478 | 3A | 88 | NDPI (YPB, YPH), ARI2 (YPB, YPH) |
BS00070511_51 | 3A | 88 | NDPI (YPB), ARI2 (YPB) |
IAAV1334 | 3A | 88 | NDPI (YPB), ARI2 (YPB) |
TA001068-0306-w | 3A | 88 | NDPI (YPB, YPH), ARI2 (YPB, YPH) |
wsnp_BE406587A_Ta_2_1 | 3A | 88 | NDPI (YPB, YPH), ARI2 (YPB, YPH) |
wsnp_Ex_c22766_31972202 | 3A | 88 | NDPI (YPB, YPH), ARI2 (YPB, YPH) |
wsnp_Ex_c24293_33532428 | 3A | 88 | NDPI (YPB, YPH), ARI2 (YPB, YPH) |
wsnp_Ex_c9468_15697512 | 3A | 88 | NDPI (YPB, YPH), ARI2 (YPB, YPH) |
BS00040798_51 | 3A | 89 | NDPI (YPB, YPH), ARI2 (YPB) |
BS00048031_51 | 3A | 89 | NDPI (YPB), ARI2 (YPB) |
Excalibur_c29205_537 | 3A | 89 | NDPI (YPB, YPH), ARI2 (YPB, YPH) |
Excalibur_c7181_813 | 3A | 89 | NDPI (YPB, YPH), ARI2 (YPB) |
Excalibur_c854_1459 | 3A | 89 | NDPI (YPB, YPH), ARI2 (YPB) |
Excalibur_rep_c76510_255 | 3A | 89 | NDPI (YPB, YPH), ARI2 (YPB, YPH) |
Kukri_c101770_328 | 3A | 89 | NDPI (YPB, YPH), ARI2 (YPH) |
Kukri_c82097_197 | 3A | 89 | NDPI (YPB, YPH), ARI2 (YPB) |
RAC875_c10669_714 | 3A | 89 | NDPI (YPB), ARI2 (YPB) |
wsnp_CAP11_c318_261649 | 3A | 89 | NDPI (YPB), ARI2 (YPB) |
wsnp_Ex_c2331_4369782 | 3A | 89 | NDPI (YPB), ARI2 (YPB) |
wsnp_Ex_c25668_34932560 | 3A | 89 | NDPI (YPB), ARI2 (YPB) |
wsnp_Ex_rep_c66865_65262277 | 3A | 89 | NDPI (YPB), ARI2 (YPB) |
wsnp_Ex_rep_c66865_65262612 | 3A | 89 | NDPI (YPB), ARI2 (YPB) |
wsnp_Ex_rep_c66865_65263145 | 3A | 89 | NDPI (YPB), ARI2 (YPB) |
wsnp_Ra_c10669_17515792 | 3A | 89 | NDPI (YPB), ARI2 (YPB) |
wsnp_Ra_c29280_38672141 | 3A | 89 | NDPI (YPB, YPH), ARI2 (YPH) |
wsnp_RFL_Contig4814_5829093 | 3A | 89 | NDPI (YPB, YPH), ARI2 (YPB) |
BobWhite_c43681_334 | 3A | 90 | NDPI (YPB), ARI2 (YPB) |
BS00110405_51 | 3A | 90 | NDPI (YPB), ARI2 (YPB) |
GENE-3343_183 | 3A | 90 | NDPI (YPB), ARI2 (YPB) |
IAAV8924 | 3A | 90 | NDPI (YPB), PRI (YPB) |
Kukri_c25564_185 | 3A | 90 | NDPI (YPB), PRI (YPB), ARI2 (YPB) |
RAC875_c842_1516 | 3A | 90 | NDPI (YPB), ARI2 (YPB) |
RAC875_rep_c117959_132 | 3A | 90 | NDPI (YPB), PRI (YPB) |
RFL_Contig1034_2351 | 3A | 90 | NDPI (YPB), ARI2 (YPB) |
wsnp_Ex_c35073_43285821 | 3A | 90 | NDPI (YPB), PRI (YPB) |
wsnp_JD_c2743_3678590 | 3A | 90 | NDPI (YPB), ARI2 (YPB) |
wsnp_JD_c3034_4017676 | 3A | 90 | NDPI (YPB), ARI2 (YPB) |
wsnp_Ku_c3286_6111360 | 3A | 90 | NDPI (YPB), ARI2 (YPB) |
BS00000445_51 | 3A | 101 | CRI2 (YPH, YPH7) |
BS00001478_51 | 3A | 101 | CRI2 (YPH, YPH7) |
BS00061179_51 | 3A | 101 | CRI2 (YPH, YPH7) |
BS00080879_51 | 3A | 101 | CRI2 (YPH, YPH7) |
Excalibur_c39248_485 | 3A | 101 | CRI2 (YPH, YPH7) |
wsnp_Ex_c26887_36107413 | 3A | 103 | CRI2 (YPH, YPH7), ARI2 (YPH) |
BobWhite_c13704_244 | 3A | 104 | CRI2 (YPH, YPH7) |
BS00056089_51 | 3A | 104 | NDPI (YPH), ARI2 (YPH), CRI2 (YPH7) |
RAC875_rep_c109433_782 | 3A | 104 | CRI2 (YPH, YPH7) |
BS00061173_51 | 3A | 105 | CRI2 (YPH, YPH7) |
wsnp_Ex_c9483_15722127 | 3A | 105 | CRI2 (YPH, YPH7) |
RAC875_rep_c72275_185 | 3B | 132 | NDPI (YPB), PRI (YPH) |
Excalibur_c82684_66 | 4B | 71 | EVI (YPH7), OSAVI (YPH7) |
RAC875_c103110_275 | 4B | 71 | EVI (YPH7), OSAVI (YPH7) |
RAC875_c24550_1150 | 4B | 71 | EVI (YPH7), OSAVI (YPH7) |
IACX3657 | 5A | 43 | NDVI_705 (YPB), PRI (YPB) |
RAC875_c13931_205 | 5A | 89 | ARI2 (HSH), PRI (HSH) |
RAC875_rep_c112818_870 | 5B | 125 | CRI2 (YPH), MTCI2 (YPH) |
BobWhite_c13091_385 | 6B | 71 | NDVI_705 (HSH), AB ratio (HSH) |
Ex_c100170_579 | 6B | 71 | NDVI_705 (HSH), AB ratio (HSH) |
Excalibur_rep_c70364_129 | 6B | 71 | NDVI_705 (HSH), AB ratio (HSH) |
IAAV1816 | 6B | 71 | NDVI_705 (HSH), AB ratio (HSH) |
Note: WAMI, wheat association mapping initiative; NDVI, normalized difference vegetation index; MTCI, MERIS terrestrial chlorophyll index; NDPI, normalized difference pigment index; ARI, anthocyanin reflectance index; PRI, photochemical reflectance index; CRI, carotenoid reflectance index; EVI, enhanced vegetation index; OSAVI, optimized soil adjusted vegetation index; AB ratio, chlorophyll ratio. |
[1] |
Rajaram S, van Ginkel M, Fischer R A. CIMMYT’s wheat breeding mega-environments (ME). In: Proceedings of the 8th International Wheat Genetic Symposium, Beijing, China. ResearchGate, 1994, 1101–1106
|
[2] |
Braun H J, Atlin G, Payne T. Multi-location testing as a tool to identify plant response to global climate change. In: Reynolds M ed. Climate Change and Crop Production. CABI, 2010, 115–138
|
[3] |
Kuhr S R, Johnson V A, Peterson C J, Mattern P J. Trends in winter wheat performance as measured in international trials. Crop Science, 1985, 25(6): 1045–1049
CrossRef
Google scholar
|
[4] |
Morgounov A, Tufan H A, Sharma R, Akin B, Bagci A, Braun H J, Kaya Y, Keser M, Payne T S, Sonder K, McIntosh R. Global incidence of wheat rusts and powdery mildew during 1969–2010 and durability of resistance of winter wheat variety Bezostaya 1. European Journal of Plant Pathology, 2012, 132(3): 323–340
CrossRef
Google scholar
|
[5] |
Akin B, Chen X M, Morgunov A, Zencirci N, Wan A, Wang M. High-temperature adult-plant resistance to stripe rust in facultative winter wheat. Crop & Pasture Science, 2016, 67(10): 1064–1074
CrossRef
Google scholar
|
[6] |
Akın B, Yüce S, Singh R, Braun H J, Zencirci N, Morgunov A, Dreisigacker S. Leaf rust (Puccinia triticina) resistance genes determination using race differentials and molecular markers in winter-facultative wheat (Triticum aestivum L.). Agricultural Science Research Journal, 2013, 3(6): 167–177
|
[7] |
Yu L X, Liu S, Anderson J A, Singh R P, Jin Y, Dubcovsky J, Brown-Guidera G, Bhavani S, Morgounov A, He Z, Huerta-Espino J, Sorrells M E. Haplotype diversity of stem rust resistance loci in uncharacterized wheat lines. Molecular Breeding, 2010, 26(4): 667–680
CrossRef
Google scholar
|
[8] |
Yu L X, Morgounov A, Wanyera R, Keser M, Singh S K, Sorrells M. Identification of Ug99 stem rust resistance loci in winter wheat germplasm using genome-wide association analysis. Theoretical and Applied Genetics, 2012, 125(4): 749–758
CrossRef
Pubmed
Google scholar
|
[9] |
Morgounov A, Akin B, Demir L, Keser L, Kokhmetova A, Martynov S, Orhan S, Özdemir F, Özseven I, Sapakhova Z, Yessimbekova M. Yield gain due to fungicide application in varieties of winter wheat (Triticum aestivum) resistant and susceptible to leaf rust. Crop & Pasture Science, 2015, 66(7): 649–659
CrossRef
Google scholar
|
[10] |
Morgounov A, Haun S, Lang L, Martynov S, Sonder K. Climate change at winter wheat breeding sites in Central Asia, Eastern Europe, and USA, and implications for breeding. Euphytica, 2013, 194(2): 277–292
CrossRef
Google scholar
|
[11] |
Morgounov A I, Gummadov N, Belen S, Kaya Y, Keser M, Mursalova J. Association of digital photo parameters and NDVI with winter wheat grain yield in variable environments. Turkish Journal of Agriculture and Forestry, 2014, 38: 624–632
CrossRef
Google scholar
|
[12] |
Gummadov N, Keser M, Akin A, Cakmak M, Mert Z, Taner S, Ozturk I, Topal A, Yazar S, Morgounov A. Genetic gains in wheat in Turkey: winter wheat for irrigated conditions. Crop Journal, 2015, 3(6): 507–516
CrossRef
Google scholar
|
[13] |
Keser M, Gummadov N, Akin B, Belen S, Mert Z, Taner S, Topal A, Yazar S, Morgounov A, Sharma R C, Ozdemir F. Genetic gains in wheat in Turkey: winter wheat for dryland conditions. Crop Journal, 2017, 5(6): 533–540
CrossRef
Google scholar
|
[14] |
Dababat A A, Imren M, Erginbas-Orakci G, Ashrafi S, Yavuzaslanoglu E, Toktay H, Pariyar S R, Elekcioglu I H, Morgounov A I, Mekete T. The importance and management strategies of cereal cyst nematodes, Heterodera spp., in Turkey. Euphytica, 2015, 202(2): 173–188
CrossRef
Google scholar
|
[15] |
Dababat A A, Erginbas-Orakci G, Toktay H, Imren M, Akin B, Braun H J, Dreisigacker S, Elekcioglu I H, Morgounov A I. Resistance of winter wheat to Heterodera filipjevi in Turkey. Turkish Journal of Agriculture and Forestry, 2014, 38: 180–186
CrossRef
Google scholar
|
[16] |
Pariyar S R, Dababat A A, Sannemann W, Erginbas-Orakci G, Elashry A, Siddique S, Morgounov A, Leon J, Grundler F M W. Genome-wide association study in wheat identifies resistance to Cereal Cyst Nematode Heterodera filipjevi. Phytopathology, 2016, 106(10): 1128–1138
CrossRef
Pubmed
Google scholar
|
[17] |
Erginbaş-Orakci G, Morgounov A, Dababat A. Determination of resistance in winter wheat genotypes to the dryland root rots caused by Fusarium culmorum in Turkey. International Journal of Agriculture and Wildlife Science, 2018, 4(2): 193–202
CrossRef
Google scholar
|
[18] |
Sharma R C, Morgounov A I, Akin B, Bespalova L, Lang L, Litvinenko M, Mustatea P, Ozturk I, Postolatiy A, Rajaram S, Braun H J. Winter wheat eastern European regional yield trial: identification of superior genotypes and characterization of environments. Crop Science, 2014, 54(6): 2469–2480
CrossRef
Google scholar
|
[19] |
Beil C T, Manmathan H K, Anderson V A, Morgounov A, Haley S D. Population structure and genetic diversity analysis of germplasm from the winter wheat eastern European regional yield trial (WWEERYT). Crop Science, 2017, 57(2): 812–820
CrossRef
Google scholar
|
[20] |
Beil C T, Anderson V A, Morgounov A, Haley S D. Genomic selection for winter survival ability among a diverse collection of facultative and winter wheat genotypes. Molecular Breeding, 2019, 39(2): 29
CrossRef
Google scholar
|
[21] |
Mazid A, Keser M, Amegbeto K N, Morgounov A I, Bagci A, Peker K, Akin M, Kucukcongar M, Kan M, Semerci A, Karabak S, Altikat A, Yaktubay S. Measuring the impact of agricultural research: the case of new wheat varieties in Turkey. Experimental Agriculture, 2015, 51(2): 161–178
CrossRef
Google scholar
|
[22] |
Sharma R C, Rajaram S, Alikulov S, Ziyaev Z, Hazratkulova S, Khodarahami M, Nazeri S M, Belen S, Khalikulov Z, Mosaad M, Kaya Y, Keser M, Eshonova Z, Kokhmetova A, Ahmedov M G, Kamali M R. Improved winter wheat genotypes for Central and West Asia. Euphytica, 2013, 190(1): 19–31
CrossRef
Google scholar
|
[23] |
Tadesse W, Morgounov A I, Braun H J, Akin B, Keser M, Kaya Y, Sharma R C, Rajaram S, Singh M, Baum M, Van Ginkel M. Breeding progress for yield in winter wheat genotypes targeted to irrigated environments of the CWANA region. Euphytica, 2013, 194(2): 177–185
CrossRef
Google scholar
|
[24] |
Cakmak I, Yilmaz A, Kalayci M, Ekiz H, Torun B, Ereno B, Braun H J. Zinc deficiency as a critical problem in wheat production in Central Anatolia. Plant and Soil, 1996, 180(2): 165–172
CrossRef
Google scholar
|
[25] |
Cakmak I, Kutman U B. Agronomic biofortification of cereals with zinc: a review. European Journal of Soil Science, 2018, 69(1): 172–180
CrossRef
Google scholar
|
[26] |
Kan M, Kucukcongar M, Keser M, Morgounov M, Muminjanov H, Özdemir H, Qualset C. Wheat landraces in farmers’ fields in Turkey: national survey, collection and conservation, 2009–2015: Ankara, Turkey. FAO, 2015
|
[27] |
Morgounov A I, Keser M, Kan M, Küçükçongar M, Özdemir F, Gummadov N, Muminjanov H, Zuev E, Qualset C O. Wheat landraces currently grown in Turkey: distribution, diversity, and use. Crop Science, 2016, 56(6): 3112–3124
CrossRef
Google scholar
|
[28] |
Sehgal D, Dreisigacker S, Belen S, Küçüközdemir Ü, Mert Z, Özer E, Morgounov A. Mining centuries old in-situ conserved Turkish wheat landraces for grain yield and stripe rust resistance genes. Frontiers in Genetics, 2016, 7: 201
CrossRef
Pubmed
Google scholar
|
[29] |
Husenov B, Otambekova M, Morgounov A, Muminjanov H. Wheat landraces in farmers’ fields in Tajikistan: national survey, collection, and conservation, 2013–2015: Ankara, Turkey. FAO, 2015
|
[30] |
Baboev S, Morgounov A, Muminjanov H. Wheat landraces in farmers’ fields in Uzbekistan: national survey, collection, and conservation, 2010–2015: Ankara, Turkey. FAO, 2015
|
[31] |
Morgounov A, Abugalieva A, Akan K, Akın B, Baenziger S, Bhatta M, Dababat A A, Demir L, Dutbayev Y, El Bouhssini M, Erginbaş-Orakci G, Kishii M, Keser M, Koç E, Kurespek A, Mujeeb-Kazi A, Yorgancılar A, Özdemir F, Özturk I, Payne T, Qadimaliyeva G, Shamanin V, Subasi K, Suleymanova G, Yakişir E, Zelenskiy Y. High-yielding winter synthetic hexaploid wheats resistant to multiple diseases and pests. Plant Genetic Resources, 2018, 16(3): 273–278
CrossRef
Google scholar
|
[32] |
Bhatta M, Morgounov A, Belamkar V, Baenziger P S. Genome-wide association study reveals novel genomic regions for grain yield and yield-related traits in drought-stressed synthetic hexaploid wheat. International Journal of Molecular Sciences, 2018, 19(10): 3011
CrossRef
Pubmed
Google scholar
|
[33] |
Bhatta M, Morgounov A, Belamkar V, Yorgancılar A, Baenziger P S. Genome-wide association study reveals favorable alleles associated with common bunt resistance in synthetic hexaploid wheat. Euphytica, 2018, 214: 200
CrossRef
Google scholar
|
[34] |
Bhatta M, Baenziger P S, Waters B M, Poudel R, Belamkar V, Poland J, Morgounov A. Genome-wide association study reveals novel genomic regions associated with 10 grain minerals in synthetic hexaploid wheat. International Journal of Molecular Sciences, 2018, 19(10): 3237
CrossRef
Pubmed
Google scholar
|
[35] |
Gadimaliyeva G, Aminov N, Jahangirov A, Hamidov H, Abugalieva A, Shamanin V, Morgounov A. Productivity and disease resistance of primary hexaploid synthetic wheat lines and their crosses with bread wheat. Cereal Research Communications, 2018, 46(2): 355–364
CrossRef
Google scholar
|
Supplementary files
Supplementary Material1 (10 KB)
Supplementary Material2 (37 KB)
Supplementary Material3 (58 KB)
Supplementary Material4 (10 KB)
/
〈 |
|
〉 |