2025-04-23 2021, Volume 27 Issue 1

  • Select all
  • Mingtan Wang , Wenjing Lu , Huamin Zhang , Xianfeng Li

    The demands for high-performance and low-cost batteries make K-ion batteries (KIBs) considered as promising supplements or alternatives for Li-ion batteries (LIBs). Nevertheless, there are only a small amount of conventional inorganic electrode materials that can be used in KIBs, due to the large radius of K+ ions. Differently, organic electrode materials (OEMs) generally own sufficiently interstitial space and good structure flexibility, which can maintain superior performance in K-ion systems. Therefore, in recent years, more and more investigations have been focused on OEMs for KIBs. This review will comprehensively cover the researches on OEMs in KIBs in order to accelerate the research and development of KIBs. The reaction mechanism, electrochemical behavior, etc., of OEMs will all be summarized in detail and deeply. Emphasis is placed to overview the performance improvement strategies of OEMs and the characteristic superiority of OEMs in KIBs compared with LIBs and Na-ion batteries.

  • Haoxuan Du , Jiaxuan Fan , Chenglin Miao , Mingyu Gao , Yanan Liu , Dianqing Li , Junting Feng

    The interaction between the metal and the support of supported metal catalysts, which are widely used in industry, is the primary focus of the study of such catalysts. With the developing understanding of the metal–support interaction, the intrinsic factor that influences the catalytic performance has been determined to be the structure of interfacial sites. Layered double hydroxides (LDHs, a class of two-dimensional layered anion clay) possess several unique characteristics, such as the following: (1) tunable elemental component, homogeneous distribution of metal cations. (2) anchoring effect. (3) multiple layered structure for exfoliation or intercalation and special memory effect; and (4) internal/external confinement effects during topological transformation. Taking LDHs and their derivatives as precursors or supports shows superior advantages in designing interfacial active catalysts with tunable properties. Therefore, this review is mainly focused on constructing interfacial active catalysts by LDHs and revealing the interfacial effects (including electronic, geometric, and bifunctional effects) on the catalytic performance that will provide new perspectives and approaches for the development of heterogeneous catalysis.

  • Yao Tian , Yongchao Zong , Yinuo Zhou , Jiansheng Li , Nan Yang , Mai Zhang , Zhiqi Guo , Hao Song

    The low catalytic efficiency of redox-active cofactor photoregeneration severely limits the performance of photoenzymatic hybrid systems. Herein, we synthesized thiophene-conjugated porous C3N4 nanosheets (CN-ATCN) exhibiting boosted photoregeneration activity of nicotinamide cofactors (NADH and NADPH), which are the most common redox cofactors of oxidoreductases, with regeneration rates of 59.00 μM/min for NADH and 40.99 μM/min for NADPH, ~ 84.3 and 24.7 times higher than those of bulk g-C3N4, respectively. The thin nanosheet structure of CN-ATCN facilitates the exposure of active sites to reactants and favors the diffusion of reactants and products. Upon conjugation of a thiophene moiety into the carbon nitride framework, the optical and photoelectric properties of CN-ATCN were considerably enhanced by an extended π-conjugation system in the frameworks and molecular type II heterojunctions formed between the incorporated and non-incorporated portions of CN-ATCN. Upon coupling NAD(P)H photoregeneration reaction by CN-ATCN with NAD(P)H-dependent enzymatic systems, sustainable synthesis of L-tert-leucine and styrene oxide was achieved with rates of 964 and 14.9 μM/h, respectively.

  • Wei Kang , Yiqiang Zhao , Xueheng Jia , Lin Hao , Leping Dang , Hongyuan Wei

    A lithium-ion battery thermal management system has always been a hot spot in the battery industry. In this study, a novel high-thermal-conductivity composite phase-change material (CPCM) made by paraffin wax and silicon was adopted to facilitate heat transfer. Moreover, high resistance or even insulation of CPCM is capable of preventing short circuits between the cells. The heat transfer mechanism of CPCMs was determined under a scanning electron microscope. A thermogravimetric analyzer was employed to determine the thermal stability. A differential scanning calorimeter was used to explore the thermophysical properties of the composite samples. By comparing the results of the experiment, it was reported that under the silicon carbide content of 5%, the parameters were better than others. The phase-change enthalpy of CPCM was 199.4 J/g, the leakage rate of liquid was 4.6%, and the melting point was 53.6 °C. To verify the practicality of CPCM, a three-dimensional layered battery pack model was built in the COMSOL Multiphysics software. By simulating the thermal runaway inside the battery packs of various materials, it was reported that the addition of CPCM significantly narrowed the temperature range of the battery pack from 300–370 to 303–304 K. Therefore, CPCM can effectively increase the rate of heat transfer to prevent the chain of thermal runaway reactions. It also enables the battery pack to run at a stable temperature.

  • Youssef Belkassmi , Kamal Gueraoui , Lahoucine El maimouni , Najem Hassanain , Omar Tata

    Nanofluids are a potential alternative to significantly improving the performance of heat transfer applications. In this work, a numerical analysis to examine the effect of dispersing copper (Cu), copper oxide (CuO), and aluminum (Al2O3) nanoparticles in pure water on the performance of a flat plate solar collector (FPSC) and a numerical model was proposed. The influence of the nanofluid type on the thermal efficiency was critically investigated and discussed. The effect of the mass flow rate on the performance was also analyzed and discussed. Based on correlations of the thermophysical properties of nanofluids, a sensitivity analysis was used to analyze the impact of the nanoparticles on the base fluid. The results indicate that the performance of the FPSC with Cu/water nanofluid was better than that of FPSCs using CuO/water or Al2O3/water nanofluids. When the mass flow rate of the nanofluids was 8.0 L/min, the efficiency of the FPSC was much greater than those at the flow rates of 5.0 L/min and 2.0 L/min. Mean enhancements in thermal efficiency of 4.44%, 4.27%, and 4.21% were observed when 2.0 L/min was applied using Cu/water, CuO/water, and Al2O3/water nanofluids, respectively. Improvements in thermal efficiency of 2.76%, 2.53%, and 2.47% occurred when 8.0 L/min was applied.

  • Yuanyuan Zhai , Hongmei Qu , Zhongxuan Li , Bo Zhang , Jinxi Cheng , Jiaji Zhang

    In this study, we modified microcrystalline cellulose by cross-linking it with epichlorohydrin to obtain a rapid and efficient adsorbent for the removal of Reactive Blue 4 dye from aqueous solution. Evidences of the cross-linking of the microcrystalline cellulose were obtained by Fourier transform infrared spectroscopy, X-ray diffraction, Brunauer–Emmett–Teller analysis, thermogravimetric analysis, and scanning electron microscopy. We investigated the effects of adsorbent dosage, pH, initial dye concentration, temperature, and contact time on the dye adsorption capacity. The results showed that the adsorption equilibrium time was just 20 min and the maximum adsorption capacity was 69.79 mg/g. The adsorption isotherm data fitted the Langmuir isotherm model well, and the adsorption kinetics data followed the pseudo-second-order kinetic model. The results of the thermodynamic analysis suggest that the adsorption process was spontaneous and exothermic. Recyclability experiments demonstrated the good reusability of this adsorbent. Electrostatic interaction was found to dominate the adsorption process.