Engineering Fluorine Doping and Ru–Schottky Interfaces in TiO2 for Efficient Photocatalytic CO2 Reduction with H2O

Sichun Ling , Ke Tang , Yafei Zheng , Bo Su , Xiahui Lin , Xue Feng Lu , Yidong Hou , Zhengxin Ding , Sibo Wang

Transactions of Tianjin University ›› : 1 -10.

PDF
Transactions of Tianjin University ›› :1 -10. DOI: 10.1007/s12209-025-00457-x
Research Article
research-article

Engineering Fluorine Doping and Ru–Schottky Interfaces in TiO2 for Efficient Photocatalytic CO2 Reduction with H2O

Author information +
History +
PDF

Abstract

Photocatalytic CO2 reduction using H2O as the electron donor offers a sustainable pathway for carbon–neutral fuel synthesis; however, its efficiency is limited by sluggish charge separation and insufficient CO2 activation. Herein, we develop a ruthenium-decorated, fluorine-doped TiO2 photocatalyst (Ru/F-TiO2) that overcomes these limitations through spatially directed charge modulation and cooperative electronic engineering. Fluorine doping introduces oxygen vacancies that narrow the bandgap and form surface Ti‒F bonds, suppressing charge recombination. Simultaneously, Ru nanoparticles serve as efficient CO2 adsorption and activation centers while introducing additional surface defects that further strengthen CO2 binding. The strong coupling between Ru and semiconductor forms a Schottky junction, establishing a strong built-in electric field that promotes directional electron migration toward Ru sites and hole accumulation on F-TiO2. Consequently, Ru/F-TiO2 exhibits outstanding activity and durability, delivering CO and CH4 production rates of 124.8 and 19.8 μmol/(g·h), respectively. In situ diffuse reflectance infrared Fourier-transform spectroscopy analysis reveals key proton-coupled, multi-electron intermediates, elucidating the reaction pathway. This study demonstrates that the synergistic integration of non-metal doping and metal cocatalyst engineering provides a powerful strategy to regulate charge dynamics and boost solar-driven CO2 conversion.

Keywords

CO2 conversion / Photocatalysis / TiO2 / Schottky junction / F-doping

Cite this article

Download citation ▾
Sichun Ling, Ke Tang, Yafei Zheng, Bo Su, Xiahui Lin, Xue Feng Lu, Yidong Hou, Zhengxin Ding, Sibo Wang. Engineering Fluorine Doping and Ru–Schottky Interfaces in TiO2 for Efficient Photocatalytic CO2 Reduction with H2O. Transactions of Tianjin University 1-10 DOI:10.1007/s12209-025-00457-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Jiang L, Du H, Li L, et al.. Sequential growth of Cs3Bi2I9/BiVO4 direct Z-scheme heterojunction for visible-light-driven photocatalytic CO2 reduction. Trans Tianjin Univ, 2023, 29(6): 462-472

[2]

Xu X, Su B, Wang S, et al.. CO2 photoreduction by H2O: cooperative catalysis of palladium species on poly(triazine imide) crystals. Angew Chem Int Ed, 2025, 64(39 e202512386

[3]

Zhou Z, Guo W, Yang T, et al.. Defect and nanostructure engineering of polymeric carbon nitride for visible-light-driven CO2 reduction. Chin J Struct Chem, 2024, 43(3): 100245

[4]

Cai J, Li X, Su B, et al.. Rational design and fabrication of S-scheme NiTiO3/CdS heterostructures for photocatalytic CO2 reduction. J Mater Sci Technol, 2025, 234: 82-89

[5]

Saraev AA, Kurenkova AY, Mishchenko DD, et al.. Cu/TiO2 photocatalysts for CO2 reduction: structure and evolution of the cocatalyst active form. Trans Tianjin Univ, 2024, 30(2140-151

[6]

Fakhrutdinova ED, Reutova OA, Bugrova TA, et al.. Highly defective dark TiO2 modified with Pt: effects of precursor nature and preparation method on photocatalytic properties. Trans Tianjin Univ, 2024, 30(2): 198-209

[7]

Lu ER, Tao JQ, Yang C, et al.. Carbon-encapsulated Pd/TiO2 for photocatalytic H2 evolution integrated with photodehydrogenative coupling of amines to imines. Acta Phys Chim Sin, 2023, 39(4): 2211029

[8]

Yu JC, Yu Ho, et al.. Effects of F-doping on the photocatalytic activity and microstructures of nanocrystalline TiO2 powders. Chem Mater, 2002, 14(93808-3816

[9]

Czoska AM, Livraghi S, Chiesa M, et al.. The nature of defects in fluorine-doped TiO2. J Phys Chem C, 2008, 112(24): 8951-8956

[10]

Chen Y, Jiang Y, Wang X, et al.. Preparation and photocatalytic performance of F-TiO2 photocatalyst. Energy Environ Sci, 2018, 189(3032005

[11]

Chen C, Chen J, Wang Z, et al.. Surface brønsted-Lewis dual acid sites for high-efficiency dinitrogen photofixation in pure water. J Energy Chem, 2022, 67: 824-830

[12]

Sun Y, Wang H, Yang Y, et al.. Schottky barrier-based built-in electric field for enhanced tumor photodynamic therapy. ACS Appl Mater Interfaces, 2024, 16(13): 15916-15930

[13]

Zeng X, Jiang X, Ning Y, et al.. Constructing built-in electric fields with semiconductor junctions and Schottky junctions based on Mo–MXene/Mo–metal sulfides for electromagnetic response. Nano Micro Lett, 2024, 16(1): 213

[14]

Su B, Kong Y, Wang S, et al.. Hydroxyl-bonded Ru on metallic TiN surface catalyzing CO2 reduction with H2O by infrared light. J Am Chem Soc, 2023, 145(5027415-27423

[15]

Su B, Wang S, Xing W, et al.. Synergistic Ru species on poly(heptazine imide) enabling efficient photocatalytic CO2 reduction with H2O beyond 800 nm. Angew Chem Int Ed, 2025, 64(27 e202505453

[16]

Zheng Z, Zhang C, Li J, et al.. Insight into the effect of exposed crystal facets of anatase TiO2 on HCHO catalytic oxidation of Mn-Ce/TiO2. J Hazard Mater, 2024, 474 134710

[17]

Xie J, Jiang YH, Li SY, et al.. Stable photocatalytic coupling of methane to ethane with water vapor using TiO2 supported ultralow loading AuPd nanoparticles. Acta Phys Chim Sin, 2023, 39(10): 2306037

[18]

Wang D, Wu X, Gao Q. Novel energy-saving window coating based on F doped TiO2 nanocrystals with enhanced NIR shielding performance. Ceram Int, 2021, 47(2028557-28565

[19]

Zhu Q, Peng Y, Lin L, et al.. Stable blue TiO2−x nanoparticles for efficient visible light photocatalysts. J Mater Chem A, 2014, 2(12): 4429-4437

[20]

Liu Y, Xue WC, Liu XQ, et al.. Ultrafine Pt nanoparticles on defective tungsten oxide for photocatalytic ethylene synthesis. Small, 2024, 20(36 2402004

[21]

Yu B, Zhang L, Wu H, et al.. Plasma-treated F modified TiO2 impact to enhance the photocatalytic performance of TiO2. Chem Phys Lett, 2022, 801 139710

[22]

Huang H, Yan H, Duan M, et al.. TiO2 surface oxygen vacancy passivation towards mitigated interfacial lattice distortion and efficient perovskite solar cell. Appl Surf Sci, 2021, 544 148583

[23]

She S, Yu J, Tang W, et al.. Systematic study of oxygen evolution activity and stability on La1–xSrxFeO3−δ perovskite electrocatalysts in alkaline media. ACS Appl Mater Interfaces, 2018, 10(14): 11715-11721

[24]

Kou YF, Liu MC, Zhou QY, et al.. Fluorine doping mediated epitaxial growth of NaREF4 on TiO2 for boosting NIR light utilization in bioimaging and photodynamic therapy. Angew Chem Int Ed, 2024, 63(40 e202405132

[25]

Wang Z, Huang L, Su B, et al.. Unravelling the promotional effect of La2O3 in Pt/La-TiO2 catalysts for CO2 hydrogenation. Chem Eur J, 2019, 26(2): 517-523

[26]

Fang S, Rahaman M, Bharti J, et al.. Photocatalytic CO2 reduction. Nat Rev Methods Primers, 2023, 3(1): 61

[27]

Wang WY, Li SJ, Qiang Q, et al.. Catalytic refining lignin-derived monomers: seesaw effect between nanoparticle and single-atom Pt. Angew Chem Int Ed, 2024, 63(34 e202404683

[28]

Zhang J, Wang Y, Cai W, et al.. Regulating the hierarchical distribution of oxygen vacancies through Ce doping and NaBH4 reduction to enhance Co2NiO4 supercapacitor performance. Nanotechnology, 2025, 36(15 155601

[29]

Zhu H, Guo Y, Zheng F, et al.. Introducing oxygen vacancies on sodium titanate via NaBH4 treatment for conductometric hydrogen gas sensors. Sens Actuators B Chem, 2023, 375 132916

[30]

Manigrasso J, Chillón I, Genna V, et al.. Visualizing group II intron dynamics between the first and second steps of splicing. Nat Commun, 2020, 11(12837

[31]

Zheng Y, Ling S, Lv Y, et al.. Enhanced adsorption mediates efficient CO2 reduction over a Ru/TiO2–x Schottky heterojunction. Energy Fuel, 2024, 38(1918909-18917

[32]

Yang L, Ying J, Liu Z, et al.. Synthesis of core/shell cobalt-doped rutile TiO2 nanorods for MB degradation under visible light. RSC Adv, 2025, 15(13): 10144-10149

[33]

Wang HF, Wang F, Zhang SJ, et al.. Ice-templated synthesis of atomic cluster cocatalyst with regulable coordination number for enhanced photocatalytic hydrogen evolution. Adv Mater, 2024, 36(24 2400764

[34]

Yitagesu GB, Leku DT, Seyume AM, et al.. Biosynthesis of TiO2/CuO and its application for the photocatalytic removal of the methylene blue dye. ACS Omega, 2024, 9(40): 41301-41313

[35]

Agarwal S, Ganguli JN. Hydrogenation by nanoscale ruthenium embedded into the nanopores of K-10 clay. RSC Adv, 2014, 4(23): 11893-11898

[36]

Chang X, Wang T, Gong J. CO2 photo-reduction: insights into CO2 activation and reaction on surfaces of photocatalysts. Energy Environ Sci, 2016, 9(7): 2177-2196

[37]

Ou M, Tu WG, Yin SM, et al.. Amino-assisted anchoring of CsPbBr3 perovskite quantum dots on porous g-C3N4 for enhanced photocatalytic CO2 reduction. Angew Chem Int Ed, 2018, 57(41): 13570-13574

[38]

Xu Z, Cui Y, Young DJ, et al.. Combination of Co2+ -immobilized covalent triazine framework and TiO2 by covalent bonds to enhance photoreduction of CO2 to CO with H2 O. J CO2 Util, 2021, 49 101561

[39]

Zhang J, Wang W, Yang Y, et al.. N-doping of TiO2 for enhanced CO2 photocatalytic reduction and research on reaction mechanisms. Carbon Lett, 2025, 35(5): 2215-2226

[40]

Xia Y, Man J, Wu X, et al.. Oxygen-vacancy-assisted construction of Ce–TiO2 aerogel for efficiently boosting photocatalytic CO2 reduction without any sacrifice agent. Ceram Int, 2023, 49(4): 6100-6112

[41]

Pougin A, Dodekatos G, Dilla M, et al.. Au@TiO2 core–shell composites for the photocatalytic reduction of CO2. Chem Eur J, 2018, 24(47): 12416-12425

[42]

Cheng G, Tong X, Zhang W, et al.. Self-template-derived hollow brookite TiO2@Na2Ti3O7–Ag 1D@2D-0D Nanoarchitectures with amine modification promote photocatalytic CO2 reduction. Ind Eng Chem Res, 2025, 64(25): 12439-12451

[43]

Wei S, Li Y, Xu M, et al.. Simultaneous modulation of Ni single atoms and NiOx clusters on TiO2 for solar-driven CO2 and H2O conversion to CH4. Colloid Interface Sci, 2025, 683: 731-741

[44]

Liu Y, Sun S, Ma M, et al.. Synergistic integration of PdCu alloy on TiO2 for efficient photocatalytic CO2 reduction to CH4 with H2O. J Mater Chem A, 2024, 12(35): 23577-23589

[45]

Ye MH, Wang X, Liu EZ, et al.. Boosting the photocatalytic activity of P25 for carbon dioxide reduction by using a surface-alkalinized titanium carbide MXene as cocatalyst. Chemsuschem, 2018, 11(10): 1606-1611

[46]

Wang Y, Shang X, Shen J, et al.. Direct and indirect Z-scheme heterostructure-coupled photosystem enabling cooperation of CO2 reduction and H2O oxidation. Nat Commun, 2020, 11(1): 3043

[47]

Zhou J, Li J, Kan L, et al.. Linking oxidative and reductive clusters to prepare crystalline porous catalysts for photocatalytic CO2 reduction with H2O. Nat Commun, 2022, 13(14681

[48]

Liu F, Deng J, Su B, et al.. Poly(triazine imide) crystals for efficient CO2 photoreduction: surface pyridine nitrogen dominates the performance. ACS Catal, 2025, 15(21018-1026

[49]

Song P, Fang X, Jiang W, et al.. Coupling of BiOCl ultrathin nanosheets with carbon quantum dots for enhanced photocatalytic performance. Trans Tianjin Univ, 2024, 30(3): 211-220

[50]

Wei F, Zhao J, Liu Y-C, et al.. Photocatalytic ethylene production over defective NiO through lattice oxygen participation. Nat Commun, 2025, 16(1 6586

[51]

Dozzi MV, Candeo A, Marra G, et al.. Effects of photodeposited gold vs platinum nanoparticles on N,F-doped TiO2 photoactivity: a time-resolved photoluminescence investigation. J Phys Chem C, 2018, 122(26): 14326-14335

[52]

Wenderich K, Zhu K, Bu Y, et al.. Photophysical characterization of Ru nanoclusters on nanostructured TiO2 by time-resolved photoluminescence spectroscopy. J Phys Chem C, 2023, 127(29): 14353-14362

[53]

Deng J, Xu X, Su B, et al.. Structural amine-induced interfacial electrical double layers for efficient photocatalytic H2 evolution. Mater Horiz, 2025, 12(15): 5702-5709

[54]

Su J, Zhang J, Chai S, et al.. Optimizing poly(heptazine imide) photoanodes using binary molten salt synthesis for water oxidation reaction. Acta Phys-Chim Sin, 2024, 40(12 2408012

[55]

Lu K-Q, Li Y-H, Zhang F, et al.. Rationally designed transition metal hydroxide nanosheet arrays on graphene for artificial CO2 reduction. Nat Commun, 2020, 11(1): 5181

[56]

Yang H, Hou H, Yang M, et al.. Engineering the S-scheme heterojunction between NiO microrods and MgAl-LDH nanoplates for efficient and selective photoreduction of CO2 to CH4. Chem Eng J, 2023, 474 145813

[57]

He C, Wu S, Li Q, et al.. Constructing matched active sites for robust photocatalytic dry reforming of methane. Chem, 2023, 9(113224-3244

[58]

Li N, Zhai X-P, Ma B, et al.. Highly selective photocatalytic CO2 reduction via a lead-free perovskite/MOF catalyst. J Mater Chem A, 2023, 11(8): 4020-4029

[59]

Zhao Z, Yue S, Yang G, et al.. A unified view of carbon neutrality: solar-driven selective upcycling of waste plastics. Trans Tianjin Univ, 2024, 30(1): 1-26

[60]

Liu F, Xie Z, Su B, et al.. Enhancing visible light CO2 reduction via π-electron delocalization in barbituric acid-modified poly(triazine imide) crystals. ACS Catal, 2025, 15(17): 15033-15042

[61]

Zhang W, Deng C, Wang W, et al.. Achieving almost 100% selectivity in photocatalytic CO2 reduction to methane via in‐situ atmosphere regulation strategy. Adv Mater, 2024, 36(35 2405825

[62]

Wu X, Zhang W, Li J, et al.. Identification of the active sites on metallic MoO2−xnano-sea-urchin for atmospheric CO2 photoreduction under UV, visible, and near-infrared light illumination. Angew Chem Int Ed, 2022, 135(6 e202213124

[63]

Xu X, Lu J, Su B, et al.. Steering charge dynamics and surface reactivity for photocatalytic selective methane oxidation to ethane over Au/Ti-CeO2. Acta Phys-chim Sin, 2025, 41(11 100153

[64]

Su B, Zheng M, Lin W, et al.. S-scheme Co9S8@Cd0.8Zn0.2S-DETA hierarchical nanocages bearing organic CO2 activators for photocatalytic syngas production. Adv Energy Mater, 2023, 13(15 2203290

RIGHTS & PERMISSIONS

The Author(s)

PDF

45

Accesses

0

Citation

Detail

Sections
Recommended

/